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Statistical Analysis of Dynamic
Functional Brain Networks in Twins

Moo K. Chung, Shih-Gu Huang, Tananun Songdechakraiwut, Ian C. Carroll, H. Hill Goldsmith

Abstract—Recent studies have shown that functional brain
brainwork is dynamic even during rest. A common approach to
modeling the brain network in whole brain resting-state fMRI
is to compute the correlation between anatomical regions via
sliding windows. However, the direct use of the sample correlation
matrices is not reliable due to the image acquisition, processing
noises and the use of discrete windows that often introduce
spurious high-frequency fluctuations and the zig-zag pattern
in the estimated time-varying correlation measures. To address
the problem and obtain more robust correlation estimates, we
propose the heat kernel based dynamic correlations. We demon-
strate that the proposed heat kernel method can smooth out the
unwanted high-frequency fluctuations in correlation estimations
and achieve higher accuracy in identifying dynamically changing
distinct states. The method is further used in determining if
such dynamic state change is genetically heritable using a large-
scale twin study. Various methodological challenges for analyzing
paired twin dynamic networks are addressed.

Index Terms—Dynamic functional connectivity, windowless
dynamic correlation, heat kernel smoothing, sliding windows,
resting state fMRI, twin imaging study

I. INTRODUCTION

Findings of resting-state fMRI have revealed synchrony
between spontaneous blood-oxygen-level-dependent (BOLD)
signal fluctuations in sets of distributed brain regions despite
the absence of any explicit tasks [1]–[4]. The time-invariant
static measures of functional connectivity are often computed
over the entire scan duration. However, this oversimplification
reduces the complex dynamics of the resting-state functional
connectivity to the time average. Recent studies have sug-
gested the dynamic changes in functional connectivity over
time even during rest, referred to as the dynamic functional
connectivity, can be a meaningful biomarker [1]–[4].

The most common approach to modeling dynamic connec-
tivity is through the sliding windows (SW), where correla-
tions between brain regions are computed over the windows
[2], [3], [5]–[11]. Various SW methods have been proposed
including the tapered sliding window (TSW), which uses a
square window convolved with a Gaussian kernel [7], [12]–
[14], Hamming window [15], Tukey window [16] and expo-
nentially decaying window [12]. However, the sidelobes of
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the discrete window functions in the spectral domain cause
high-frequency fluctuations in the dynamic correlations in all
these methods [17]. Further, correlation computation within
windows is very sensitive to outliers [18]. To address these
problems, we propose the heat kernel method, which computes
the dynamic correlations without the heat kernel. We show
that the proposed heat kernel method significantly reduces the
unwanted high-frequency noises in the estimation of dynamic
correlations. One can summarize the whole-brain dynamically
changing functional connectivity into a smaller set of dynamic
connectivity states, defined as distinct transient connectivity
patterns that repetitively occur throughout the resting-state
scan [2], [3]. They are reliably observed across different
subjects, groups and sessions [3], [7], [16], [19]–[24]. We
show that the proposed heat kernel method is more robust
than SW- and TSW-methods in identifying and discriminating
states in a large-scale twin imaging study.

There are other methods such as instantaneous phase syn-
chrony analysis (IPSA) [25]–[28] or phase angle spatial em-
bedding (PhASE) [29] or weighted phase lag index (WPLI)
[30]. These methods embed data into the complex plane
and measure the synchrony between the phase angles. These
methods were not considered in this paper.

Brain functions are heavily influenced by genetic factors.
Twin brain imaging studies offer valuable genetic information,
based on the differing genetic similarity of the two zygosi-
ties, which allows estimation of genetic effects. Monozygotic
(MZ) twins share 100% of genes while dizygotic (DZ) twins
share 50% of genes [31], [32]. MZ-twins are more similar
or concordant than DZ-twins for cognitive aging, cognitive
dysfunction, and Alzheimer’s disease [33]. The difference
between MZ- and DZ-twins directly quantifies the extent to
which imaging phenotypes are influenced by genetic factors. If
MZ-twins show more similarity on a given feature compared
to DZ-twins, this provides evidence that genes significantly
influence that feature. Previous twin brain imaging studies
mainly used univariate imaging phenotypes such as cortical
surface thickness [34], fractional anisotropy [35], or functional
activation [36]–[38] in determining heritability in the regions
of interest [39], [40]. Measures of network topology and
features are worth investigating as multivariate phenotypes
[41]. However, many existing twin brain network studies
mainly focus on determining the genetic contributions of static
networks [36], [37], [42]–[44].

The main purpose of this paper is to demonstrate that genes
also shape the overall dynamic brain networks even during
rest. This goal is achieved based on two main contributions:
1) We present a novel heat kernel method for computing



2

dynamic correlations that improves the estimation performance
over the use of discrete windows. 2) The proposed method is
applied to 232 twins (130 MZ-twins and 102 DZ-twins) to
determine the heritability of such state changes. This requires
addressing various methodical issues that are specific to the
paired network setting, which is rarely encountered in non
twin imaging studies.

II. METHODS

A. Correlation over sliding windows

Widely used windowed dynamic correlations can be formal-
ized as follows. Consider time series x = (x0, x1, · · · , xT−1)
and y = (y0, y1, .., yT−1) with T time points. To reduce the
boundary effect in windowed methods [45], we connect the
data at the end time points 0 and T − 1 by mirror reflection
and make them into the circular data with 2T data points
(Figure 1):

x = (· · · , x2, x1, x0, x1, x2, · · · , xT−1, xT−1, xT−2, · · · ),
y = (· · · , y2, y1, y0, y1, y2, · · · , yT−1, yT−1, yT−2, · · · ).

Let Wi = [i− m
2 +1, i+ m

2 ] be the window of size m centered
at time point i. The mean and variance of x within window
Wi are computed as

xi =
∑
j∈Wi

wjxj ,

σ2
xi =

∑
j∈Wi

wj(xj − xi)
2,

where wj is the weight following the shape of the window
satisfying

∑
j∈Wi

wj = 1. For the usual square or rectangular
window, we have wj = 1/m. In [7], the tapered window,
which is the convolution of the square window with a Gaussian
kernel, is used so that the data points will gradually enter and
exit when moving across time [12]. Whether the window is
square or tapered square, correlation is then given by

ρi =

∑
j∈Wi

wj(xj − xi)(yj − yi)

σxiσyi
. (1)

Then the sliding window Wi at time point i will slide one time
point a time. Due to the reflection of data, for a time series with
T time points, we will have 2T overlapping sliding windows.

Figure 2 displays an example of the SW-method with
window sizes 15 and 20 TRs. The SW-method suffers from
severe zig-zag patterns caused by the use of the discrete
window, which could not be effectively reduced even if we
increase the window size from 15 to 20 TRs. Figure 2 also
displays the TSW-method using the square window of sizes
15 and 20 TRs convolved with the Gaussian kernel with
bandwidth 3 TRs [12]. The TSW-method reduces the zig-
zag pattern in SW-method significantly, but the TSW-method
still shows rapid high frequency fluctuations. Even more high-
frequency fluctuations occur in some time intervals when a
larger window is used. This indicates that these fluctuations
are in fact artifacts produced by the use of discrete windows.
Such zig-zag patterns and high-frequency fluctuations in the
SW- and TSW-methods are caused by the sidelobes of the
window functions in the spectral domain [17] (Figure 3). To

Fig. 1. Left: time series data (blue) projected onto a circle by connecting its
mirror reflection. Right: heat kernels Ks(t, t′) plotted at t = 0.

Fig. 2. Dynamic correlations computed by the SW- and TSW-methods with
window size measured as the full width at half maximum (FWHM) 15 (top)
and 20 (bottom) TRs. The SW-method shows the severe zig-zag pattern.
The TSW-method reduced the zig-zag pattern but we can still observe high
frequency fluctuations. These zig-zag pattern and high-frequency fluctuations
were not eliminated and became even worse in some intervals (dashed circles)
when larger window size was used indicating they are in fact artifacts produced
by the use of discrete windows.

address the problem caused by the use of discrete window, we
propose to use the heat kernel defined over all time points.

B. Heat kernel convolution on a circle

We first define the heat kernel on the unit interval and
extend it to a circle. The heat kernel has been mainly used
on nonstandard geometry such as the brain cortical surface
[46]. The heat kernel can be easily constructed on the circle
as well. Consider 1D heat diffusion of functional data f(t) on
unit interval [0, 1]:

∂

∂s
h(t, s) =

∂2

∂t2
h(t, s) (2)

at diffusion time s with initial condition h(t, s = 0) = f(t).
Note the initial functional data do not have to be smooth
or differentiable. Then the unique solution is given by the
weighted Fourier series (WFS) [46], [47]

h(t, s) =

∞∑
l=0

e−l
2π2scflψl(t), (3)

where ψ0(t) = 1, ψl(t) =
√
2 cos(lπt) are the cosine basis

and cfl are the expansion coefficients of f with respect to ψl:

cfl =

∫ 1

0

f(t)ψl(t)dt.

We can rewrite (3) as convolution

h(t, s) =

∫ 1

0

Ks(t, t
′)f(t′)dt′,
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Fig. 3. Left: The square window, tapered window and heat kernel with the
same FWHM equivalent to heat kernel bandwidth s = 2.3 × 10−4 The
heat kernel is defined on a circle continuously without endpoint or boundary.
Here, we only showed the kernel at 60 time points. Right: The absolute values
of the first 100 cosine series expansion coefficients of the widow and kernel
functions. The sidelobes of the window functions in spectral domain will cause
severe fluctuations that caused severe zig-zag pattern observed in Figure 2.

Heat kernel Weights of heat kernel

Fig. 4. Left: heat kernels Ks(t, t′) at t = 0 with different diffusion time
or bandwidth s. The heat kernel has larger FWHM when s increases. Right:
weights e−l

2π2s of the heat kernels. As s increases, the weights in the high
frequencies become smaller compared to low frequencies, and more high-
frequency components will be smoothed out.

where heat kernel Ks(t, t
′) is defined as

Ks(t, t
′) =

∞∑
l=0

e−l
2π2sψl(t)ψl(t

′).

The heat kernel is a probability distribution satisfying∫ 1

0
Ks(t, t

′)dt′ = 1. The diffusion time s, also referred to
as the kernel bandwidth, controls the amount of diffusion.

Now we project f(t) defined on [0, 1] onto the circle C with
circumference 2 by the mirror reflection in the following way
(Figure 1)

g(t) = f(t) if t ∈ [0, 1], g(t) = f(2− t) if t ∈ [1, 2].

Then we solve diffusion equation (2) with initial condition
h(t, s = 0) = g(t), which is periodic on C. It can be shown
that the solution is given by

h(t, s) =

∫ 2

0

Ks(t, t
′)g(t′)dt′.

Using the mirror symmetry, we extend the domain of cosine
basis ψl and heat kernel

ψl(t) = ψl(2− t)
Ks(t, t) = Ks(t, 2− t)

for t ∈ [1, 2]. Then we have∫ 2

0

Ks(t, t
′)dt′ =

∫ 1

0

Ks(t, t
′)dt′ +

∫ 1

0

Ks(t, 2− t′)dt′ = 2.

Unlike SW and TSW window functions, there is no endpoint
or boundary in the heat kernel defined on a circle with
non-zero values over the entire circle (Figure 1). On the
circle, which is a curved manifold, heat kernel has a thicker

Fig. 5. The SW-, TSW- and proposed heat kernel methods with FWHM 15
(top) and 20 (bottom) TRs. The heat kernel method eliminated most of the
zig-zag pattern and high-frequency fluctuations in the SW- and TSW-methods.

tail compared to truncated Gaussian kernel. As bandwidth s
increases, the tail regions get thicker and eventually we have
[46]

lim
s→∞

Ks(t, t
′) = 1.

Figure 4 plots the heat kernels Ks(t, t
′) at fixed t = 0 and

the weights e−l
2π2s for different bandwidth s. The heat kernel

does not have the sidelobe problem as in the discrete window
functions (Figure 3).

Similarly, we also have∫ 2

0

Ks(t, t
′)g(t′)dt′

=

∫ 1

0

Ks(t, t
′)g(t′)dt′ +

∫ 1

0

Ks(t, 2− t′)g(2− t′)dt′

= 2

∫ 1

0

Ks(t, t
′)g(t′)dt′.

Hence, heat kernel smoothing on the circle can be simply done
by smoothing in unit interval [0, 1].

In the numerical implementation, the cosine series coeffi-
cients cfl are estimated using the least squares method [47].
We set the expansion degree to equate the number of time
points, which is 295. Window size of 10 to 20 TRs were used
in SW and TSW methods. This is equivalent to heat kernel
bandwidth of s = 10−5 and 10−4 in terms of FWHM.

C. Heat kernel based dynamic correlation

The heat kernel based dynamic correlation between x(t) and
y(t) over [0, 1] is

ρ(t) =

∫ 1

0
Ks(t, t

′)x(t′)y(t′)dt′ − µx(t)µy(t)
σx(t)σy(t)

, (4)

where

µx(t) =

∫ 1

0

Ks(t, t
′)x(t′)dt′,

σ2
x(t) =

∫ 1

0

Ks(t, t
′)x2(t′)dt′ − µ2

x(t)

are the dynamic mean and variance of x(t). µy(t) and σ2
y(t)

are defined similarly. The heat kernel based correlation gen-
eralizes the integral correlations with the additional weighting
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Fig. 6. The ratio of within-cluster to between-cluster sum of squared distances
versus the number of clusters K = 2, ..., 8 for window/kernel FWHM 15
(left) and 20 (right) TRs. By the elbow method, three clusters were chosen
since the slope changes the most drastically from steep to shallow at the elbow
point K = 3.

term [48] and also generalizes the discrete windowed correla-
tion (1).

Suppose we further represent functional data x(t) and y(t)
using the cosine basis as [47]

x(t) =
∞∑
l=0

cxlψl(t), y(t) =
∞∑
l=0

cylψl(t),

where cxl =
∫ 1

0
x(t)ψl(t)dt and cyl =

∫ 1

0
y(t)ψl(t)dt are the

cosine series coefficients. Similarly we expand x(t)y(t), x2(t)
and y2(t) using the cosine basis and obtain coefficients cxyl,
cxxl and cyyl. Then heat kernel based dynamic correlation (4)
can be further written as

ρ(t) =

∑∞
l=0 e

−l2π2scxylψl(t)− µx(t)µy(t)
σx(t)σy(t)

, (5)

with

µx(t) =

∞∑
l=0

e−l
2π2scxlψl(t),

σ2
x(t) =

∞∑
l=0

e−l
2π2scxxlψl(t)− µ2

x(t).

Correlation (5) is the formula we used to compute the dynamic
correlation in this study.

In SW- and TSW-methods, smaller windows can capture
more short-lived variations than larger windows [8], but will
increase the risk of creating high-amplitude variations and
spurious fluctuations even when the brain connectivity is
actually static [10], [12], [49]. In this study, following [7],
[12], square windows of size 15 and 20 TRs (i.e., 30 and
40 seconds) were used in the SW-method. For TSW-method,
the tapered windows were obtained by convolving the square
windows with a Gaussian kernel with bandwidth 3 TRs. For
the proposed heat kernel method, bandwidth s = 2.3 × 10−4

and 4.1×10−4, which give equivalent FWHM 15 and 20 TRs
respectively. Figure 5 displays the heat kernel based dynamic
correlation. The proposed heat kernel method eliminated most
of the zig-zag pattern and high-frequency fluctuations in the
SW- and TSW-methods.

D. Estimation of distinct state space

For p brain regions, we estimate p×p dynamically changing
correlation matrices Ci(t) for the i-th subject at time points
t = t1, ..., tT . Let dij denote the vectorization of the upper

Fig. 7. Left: brain regions using AAL template. The left and right precentral
gyri regions are marked as regions 1 and 2. Right: average fMRI signals within
left and right precentral gyri (blue) projected onto a circle and connected with
their mirror reflections (red).

triangle of p × p matrix Ci(tj) (Figure 8). The collection of
dij over T=295 time points and n =479 subjects is then
feed into the k-means clustering in identifying the recurring
brain connectivity states that are common across subjects at
the group level [7], [50]. For each subject, the state visits
at 295 time points are then represented as a time series of
integers between 1 and k (Figure 16-bottom). These discrete
states serve as the basis of investigating brain connectivity.

For the convergence of k-means clustering, the clustering
was repeated 100 times with different initial centroids and
the best result with the lowest sum of squared distances was
chosen. The optimal number of cluster k was determined by
the elbow method [7], [13], [16], [50]–[54]. For each value of
k, we computed the within-cluster and between-cluster sums
of squared distances. By the elbow method, we chose k = 3
which gives the largest slope change in the ratio of within-
cluster to between-cluster sum of squares (Figure 6).

The dynamics of state change can be modeled as a Markov
chain [55], [56]. For subject i, let si(t) ∈ {1, 2, 3} be the state
label at time t. The transition probability of moving from state
k1 to state k2, denoted as P (si(t) = k2| si(t− 1) = k1) is
then used to quantify the dynamics of state changes. We also
used the occupancy rate of state kj given by

1

nT

n∑
i=1

T∑
t=1

I(si(t) = kj),

where I is the indicator function, n = 479 subjects and T =
295 time points.

E. Heritability estimate in twins

We investigated if the state change pattern itself is geneti-
cally heritable. Figure 9 displays the state visits in randomly
selected 3 MZ- and 3 DZ-twins. However, the time series of
state changes do not synchronize between twins. Thus, we
investigated the heritability of estimated state space. For each
subject, we computed the average correlation-map of each
state, where the average is taken within each state. Figure
18 displays the average correlation map of a paired twin. The
correlation at each connection is used as the input to the twin
network analysis below.

We assume there are m MZ- and n DZ-twins. At edge q,
let xi = (xi1, xi2)

> be the i-th twin pair in MZ-twin and
yi = (yi1, yi2)

> be the i-th twin pair in DZ-twin. They are
represented as

x =

(
x11, · · · , xm1

x12, · · · , xm2

)
, y =

(
y11, · · · , yn1
y12, · · · , yn2

)
,
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Fig. 8. 116× 116 dynamic correlation matrices of a MZ-twin at time points
1, 21, 41, ..., 281 using the proposed heat kernel method with FWHM 15 TRs.
In the actual analyses, we used all the time points.

Fig. 9. State visits for 3 MZ-twins (left) and 3 DZ-twins (right). They are
selected randomly. We are interested in determining the heritability such state
visits.

Let xj be the j-th row of x, i.e., xj = (x1j , x2j , · · · , xmj).
Similarly let yj = (y1j , y2j , · · · , ynj). Then MZ- and DZ-
correlations are computed as γMZ(x1,x2) = corr(x1,x2)
and γDZ(y1,y2) = corr(y1,y2). In the widely used ACE ge-
netic model, the heritability index (HI) h, which determines the
amount of variation due to genetic influence in a population, is
estimated using Falconer’s formula [31], [44], [57]. MZ-twins
share 100% of genes while same-sex DZ-twins share 50% of
genes on average. Thus, the additive genetic factor A and the
common environmental factor C are related as

γMZ = A+ C, γDZ = A/2 + C,

where γMZ and γDZ are correlations computed within MZ-
and DZ-twins. Thus HI h, which measures the contribution of
A, is given by

h(x,y) = 2(γMZ − γDZ).

However, the order of twins is interchangeable, and we can
transpose the i-th twin pair in MZ-twin such that

τi(x1) = (x11 · · ·xi−1,1, xi2, xi+1,1 · · ·xm1),

τi(x2) = (x12 · · ·xi−1,2, xi1, xi+1,2 · · ·xm2)

and obtain another twin correlation γMZ(τi(x1), τi(x2)). Fig-
ure 12 illustrates many possible transpositions within twins.
Ignoring symmetry, there are 2m possible combinations in or-
dering the twins, which forms a permutation group. Computing
correlations over all permutations is not even computationally
feasible for large m. This has been the main weakness of the
ACE model. Thus, we propose a fast online computational

State 3State 2State 1

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10. The average correlation matrices (cluster centroids) of the three
states. The values of average correlations range from 0.03 to 0.98 in state
1, from -0.12 to 0.95 in state 2, and from -0.22 to 0.89 in state 3. Only
the windowless method with FWHM 20 TR was plotted because different
methods have similar result. Within each state, the absolute errors between
the centroids obtained from different methods are all smaller than 0.075.

Fig. 11. The average correlation of the three states using the heat kernel
method with FWHM 20 TRs. Only strong connections with correlation above
0.8 are displayed. State 1 includes all the strong connections in states 2 and 3.
State 2 includes all the strong connections in state 3. Left and right precunei,
right superior parietal lobule, left cuneus and right lingual gyrus are the five
most connected regions in state 1.

strategy for ACE [43]. We propose to perform a sequence
of random transpositions and compute the twin correlation at
each transposition.

Over transposition τi, the correlation changes from
γMZ(x1,x2) to γMZ(τi(x1), τi(x2)) incrementally. We will
determine the exact increment over the transposition. The
Pearson correlation between xk and xl involves the following
functions.

ν(xk) =

m∑
l=1

xlk

ω(xk,xl) =

m∑
r=1

(
xrk − ν(xk)/m

)(
xrl − ν(xl)/m

)
.

The functions µ and ω are updated over transposition τi as

ν(τi(xk)) = ν(xk)− xik + xil

ω(τi(xk), τi(xl)) = ω(xk,xl) + (xik − xil)2/m
−(xik − xil)

(
ν(xk)− ν(xl)

)
/m.

Then the MZ-twin correlation after transposition is updated as

γMZ(τi(x1), τi(x2)) =
ω(τi(x1), τi(x2))√

ω(τi(x1), τi(x1))ω(τi(x2), τi(x2))
.

The time complexity for correlation computation is 33 oper-
ations per transposition, which is substantially lower than the
computational complexity of directly computing correlations
per permutation. In the numerical implementation, we se-
quentially apply random transpositions τi1 , τi2 , · · · , τiJ . This
results in J different twin correlations, which are averaged.
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Fig. 12. The schematic of transpositions on 3 MZ- and 2 DZ-twins. b)
Transposition within a MZ-twin. c) Transposition within a DZ-twin. d)
Transpositions in both MZ- and DZ-twins. Any transposition will affect the
heritability estimate so it is necessary to account for as many transpositions
as possible.

Let

π1 = τi1 , π2 = τi2 ◦ τi1 , · · · , πJ = τiJ ◦ · · · ◦ τi2 ◦ τi1 .

The average correlation γMZ
J of all J transpositions is given

by

γMZ
J =

1

J

J∑
j=1

γMZ(πij (x1), πij (x2)).

In each sequential update, the average correlation can be
updated iteratively as

γMZ
J =

J − 1

J
γMZ
J−1 +

1

J
γMZ(πiJ (x1), πiJ (x2)).

If we use enough number of transpositions, the average corre-
lation γMZ

J converges to the true underlying twin correlation
γMZ for sufficiently large J . DZ-twin correlation γDZ is esti-
mated similarly and HI-map h is given as the twice difference
in twin correlations at each connection. The computer code
for computing twin correlations and heritability index using
transpositions is given in http://www.stat.wisc.edu/
˜mchung/transpositions.

III. APPLICATIONS

A. Dataset and preprocessing

Resting-state (rs) functional magnetic resonance images
(rs-fMRI) were collected on a 3T MRI scanner (Discovery
MR750, General Electric Medical Systems, Milwaukee, WI,
USA) with a 32-channel RF head coil array. T1-weighted
structural images (1 mm3 voxels) were also acquired axially
with an isotropic 3D Bravo sequence (TE = 3.2 ms, TR =
8.2 ms, TI = 450 ms, flip angle = 12◦). T2-weighted gradient-
echo echo-planar pulse sequence images were collected during
resting state with TE = 20 ms, TR = 2000 ms, and flip
angle = 60◦. The functional scans were undergone a series
of data reduction, correction, registration, and spatial and
temporal preprocessing [58]. The resulting rs-fMRI consists of
91× 109× 91 isotropic voxels at 295 time points. Excluding
one subject that has no fMRI signals in two brain regions, the
average fMRI signals of 479 healthy subjects (231 males and
248 females) ranging in age from 13 to 25 years were used
in the study. Among 479 subjects, there are 130 MZ-twins

Fig. 13. The average standard deviation within each state. Heat kernel method
had the smallest variability demonstrating the method estimates the state space
more robustly. The state 1 has the strongest connectivity with the lowest
amount of dispersion in connectivity.

(59 male twins, 71 female twins) and 102 DZ-twins (51 male
twins, 44 female twins, 7 opposite sex twins).

We employed the Automated Anatomical Labeling (AAL)
brain template to parcellate the brain volume into 116 non-
overlapping anatomical regions [59]. The fMRI data were
averaged across voxels within each brain region, resulting
in 116 average fMRI signals with 295 time points for each
subject. The rs-fMRI signals were then scaled to fit to unit
interval [0, 1]. To reduce the boundary effect, we continuously
connected fMRI with its mirror reflection at the end points
t = 0 and t = 1. Figure 7 displays the average fMRI in the
left and right precentral gyri connected at the first (t = 0) and
the 295-th scan (t = 1). This has the effect of making fMRI
circular data on a circle with circumference 2.

For each subject, dynamically changing 116 × 116 corre-
lation matrices in 116 regions were computed for all three
methods. The dynamic correlation matrix of a twin is shown in
Figure 8, where the proposed heat kernel method with FWHM
15 TRs was used.

B. Dynamically changing state space

The dynamic correlation matrices for all the subjects were
clustered into three states using the k-means clustering. The
average correlation within each state is displayed in Figures 10
and 11. Within each state, we computed the standard devi-
ation of correlations for each brain connection over all time
points and subjects and then averaged them across all brain
connections (Figure 13). For FWHM 15 TRs, relative to the
SW-method, the average standard deviations within state 1,
2 and 3 were reduced 8.8%, 11% and 11.2% by the TSW-
method, and reduced 12.5%, 15.8% and 15.3% by the heat
kernel method, respectively. Similarly for FWHM 20 TRs, the
average standard deviations were reduced 7.5%, 7.6%, and
5.9% by the TSW-method, and reduced 12.6%, 13.8%, and
10.8% by the heat kernel method.

The heat kernel method had the smallest variability within
each state compared SW- and TSW-methods demonstrating
the method estimates the state space more accurately.

Transition probability between states. For the proposed
heat kernel method, we computed the transition probability
between states and averaged over all subjects (Figure 14).
In average, each subject remained in the same state for a
long period of time before transitioning to other states. The
average probability of staying in the same state at any time

http://www.stat.wisc.edu/~mchung/transpositions
http://www.stat.wisc.edu/~mchung/transpositions
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Fig. 14. Transition probabilities averaged across all 479 subjects for FWHM
15 TRs (top) and 20 TRs (bottom). In average, subjects remained in the
same state for a long period of time before transiting to other states. The
probabilities of remaining in the same state increase when larger bandwidth
is used.
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Fig. 15. 50 strongest connections in state 1. They are sorted according to
correlation values. 11 of these connections are interhemispheric connectivity
demonstrating high synchronization across hemispheres.

point is between 0.85 and 0.94 for larger bandwidth (20 TRs)
and between 0.88 and 0.96 for smaller bandwidth (15 TRs).
Almost zero transition probability between state 1 and state
3 show the inability of transitioning directly between these
two states. The proposed heat kernel method has the lowest
transition probabilities between different states and the highest
probabilities of remaining in the same state demonstrating
more stable state space estimation.

Strong connections in state space. From the average cor-
relation of the three states (Figures 10 and 11), we tabulated
the first 50 connections with highest average correlations in
state 1 (Figure 15). Among those 50 connections, 11 are
hemispherically paired demonstrating strong hemispheric syn-
chronization. Among these 11 paired regions, calcarine sulci,
cunei, lingual gyri, superior occipital gyri and middle occipital
gyri also have strong connections among them. Figure 11-left
displays strong connections with correlation values larger than
0.8 in state 1.

C. Dynamic interhemispheric connectivity

Since there is an evidence showing functional connectivity
in state 1 is highly synchronized across hemispheres, we
decided to perform the separate interhemispheric connectivity
analysis. Excluding the 8 vermis regions that do not belong
to the left or right brain hemisphere, we computed the 54
dynamic correlations of the 54 hemispherically paired brain
regions using the proposed heat kernel method. For each of the

Fig. 16. Dynamic correlation between the left and right precentral gyri (top)
and estimated state space (bottom). The SW-, TSW- and proposed heat kernel
methods with FWHM 15 (left) and 20 (right) TRs were used. The heat kernel
method estimated the dynamic correlations more smoothly over time with the
least number of state changes.
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Fig. 17. Dynamic interhemispheric correlations. They are sorted in terms of
the average correlations of state 1.

54 interhemispheric pairs, the dynamic correlations at 295 time
points were concatenated across 479 subjects, which resulted
in 295 ·479 = 141305 total number of correlations that served
as the input to k-means clustering.

Figure 16 displays the result of correlating the left and right
precentral gyri of one subject. The heat kernel method reduced
rapid state changes and high-frequency fluctuations caused by
the use of discrete windows. Figure 17 displays the average
correlation and the occupancy rate of each state and inter-
hemispheric connectivity [60], [61]. Precuneus, cuneus, lingual
gyrus, paracentral lobule and superior occipital are the five
brain regions having the highest interhemispheric correlations
in the state space, and thus have the strongest hemispheric
symmetry. The parahippocampal gyrus, inferior frontal gyrus
(pars triangularis), lobule X of cerebellar hemisphere, olfactory
cortex and lobule III of cerebellar hemisphere are the five brain
regions having the weakest hemispheric symmetry.

D. Heritability of state space

Thus, we applied the proposed transposition method to the
time series of state visits and computed the heritability. We
further investigated the genetic contribution of the dynamic
changes of the three distinct states based on 130 MZ- and
102 DZ-twins (Figures 8 and 9). It is unclear the degree
of heritability of such state. Figure 18 displays an example
of estimated state space for a twin, where the correlations
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are averaged within each state. Subsequently, the heritability
of the estimated state space is computed using the proposed
transposition method.

We randomly transpose a twin and update the correlation
using the proposed online formula 50000 times. This process
is repeated 100 times and total 50000 × 100 correlations
are averaged to obtain the underlying MZ-twin correlation.
Similarly we estimated the DZ-twin correlation. At each
connection, the standard deviation of 100 results was smaller
than 0.01, which guarantees the convergence of the estimate
within two decimal places in average. Figure 19 displays the
twin correlations and the estimated HI-map of each state. The
standard derivation (SD) of the estimated HI is bounded by
the twice the sum of SD of twin correlations, i.e.,

SD(h) ≤ 2[SD(γMZ) + SD(γDZ)].

Thus, the SD of HI is within 0.04. The HI-map is the baseline
index and may be interpreted as determining the percentage
genetic contributions.

The highly heritable connections show very different net-
work pattern than the group-level average state space estima-
tion given in Figure 11. Strong connections are not necessarily
heritable. In fact, many connections with low correlations
in states 2 and 3 are most heritable. Table I lists 5 most
heritable connections in each state. In state 1, left hippocampus
and left middle frontal gyrus (orbital) connection shows the
strongest heritability among many other connections. In state
2, right superior temporal pole and left middle cingulate
connection shows the strongest heritability. In state 3, right
middle temporal gyrus and left inferior occipital connection
shows the strongest heritability.

IV. DISCUSSION

The resting-state networks tend to remain in the same state
for a long period before the transition to another state [7], [8],
[13], [62], [63]. In this study, the proposed heat kernel method
showed a longer stability with less rapid changes in the state
space and exhibited a higher probability of remaining in the
same state compared to the SW- and TSW-methods. We have
further shown that the proposed heat kernel method is robust
over different choice of bandwidth (15 and 20 TRs).

In this study, the average correlation matrices of the three
states follow similar connectivity patterns to the previous
studies [64], [65]. We observed higher correlations between
calcarine sulci, cunei, lingual gyri, superior occipital gyri and
middle occipital gyri. All these regions belong to the occipital
lobe and the part of visual network that are often observed
in the resting state networks. Compared to other resting state
networks, the visual network has the strongest connectivity
across different states, followed by the somatomotor network
[66], [67].

Previous static network studies have demonstrated high cor-
relations between hemispherically paired brain regions [68]–
[71]. In [68], it was shown that the median cingulate and
paracingulate gyri, thalamus, precuneus, anterior cingulate
and paracingulate gyri are some of the regions with high-
est interhemispheric correlations. [69] demonstrated higher

Fig. 18. The average correlation within the estimated state of a MZ twin
(shown in Figure 8) based on the heat kernel method with FWHM 20 TRs.
Within a state, correlations are averaged. Only connections above correlation
0.85 are displayed.

interhemispheric correlation in primary sensory-motor cor-
tices, including postcentral gyrus, occipital pole, lingual gyrus,
cuneal cortex, precentral gyrus among other regions. In [71],
the authors showed a trend toward higher interhemispheric
connectivity near the midline, such as the frontal pole, oc-
cipital cortex and medial parietal lobe, deep gray nuclei, and
cerebellum.

In this paper, we demonstrated that the dynamic change of
brain network is also highly symmetric across hemispheres.
The results showed that hemispherically paired regions with
high correlations in state 1 also have high correlations in
state 2. Further, states 1 and 2 dominate the dynamic net-
work changes with the occupancy rate over 75%. Consistent
with previous statistic network studies, we observed relatively
higher interhemispheric correlations in precuneus, cuneus,
lingual gyrus, paracentral lobule, superior occipital, supple-
mentary motor area, midcingulate area and calcarine sulcus
among other regions. Many of these regions are close to the
midline as well.

We also investigated the heritability of the estimated state
spaces and the pattern of state changes. The dominant connec-
tions in each state are not necessarily heritable. We observed
states 2 and 3 have far more connections with high heritability
than state 1. We developed the novel transposition method that
speed up generating permutations for accurate estimation of
heritability. The transposition methods can be easily adapted
a faster alternative to the permutation test.
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Fig. 19. Twin correlation of state space. The 1st and 2nd rows display
MZ- and DZ-correlation of each state above 0.35. The 3rd row displays the
heritability index (HI) of each state. The twin correlations and HI are estimated
through the transposition method. Only connections with HI above 0.75 are
shown.

State Connection HI

1

Left hippocampus - Left middle frontal gyrus (orbital) 0.82 ± 0.04
Right caudate nucleus - Left middle frontal gyrus (orbital) 0.73 ± 0.04

Left hippocampus - Left middle frontal gyrus (lateral) 0.71 ± 0.04
Lobule IV, V of vermis - Left middle frontal gyrus (orbital) 0.69 ± 0.04

Left supramarginal gyrus - Left hippocampus 0.66 ± 0.04

2

Right superior temporal pole - Left middle cingulate 0.98 ± 0.04
Left lobule IV, V of cerebellar hemisphere - Left rolandic operculum 0.96 ± 0.04

Right amygdala - Left amygdala 0.95 ± 0.04
Right precuneus - Left opercular part of inferior frontal gyrus 0.95 ± 0.04

Left crus II of cerebellar hemisphere - Right amygdala 0.92 ± 0.04

3

Right middle temporal gyrus - Left inferior occipital 1.00 ± 0.04
Right transverse temporal gyri - Left superior occipital 0.98 ± 0.04

Left inferior temporal gyrus - Left lingual gyrus 0.97 ± 0.04
Right inferior temporal gyrus - Right cuneus 0.96 ± 0.04

Left lobule VIII of cerebellar hemisphere - Left paracentral lobule 0.93 ± 0.04

TABLE I
TOP FIVE MOST HERITABLE CONNECTIONS IN EACH STATE.
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