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Abstract. Persistent homology has undergone significant development
in recent years. However, one outstanding challenge is to build a coherent
statistical inference procedure on persistent diagrams. In this paper, we
first present a new lattice path representation for persistent diagrams. We
then develop a new exact statistical inference procedure for lattice paths
via combinatorial enumerations. The lattice path method is applied to
the topological characterization of the protein structures of the COVID-
19 virus. We demonstrate that there are topological changes during the
conformational change of spike proteins.

1 Introduction

Despite its rigorous mathematical foundation developed for two decades starting
with study [13], persistent homology still suffers from numerous statistical and
computational problems. It has not yet become a standard tool in medical imag-
ing. Persistent homology has been applied to a wide variety of data including
brain networks [8], protein structures [15], RNA viruses [5] and molecular struc-
tures [19]. However, most of these methods only serve as exploratory tools that
provide descriptive summary statistics rather than formal inference. The main
difficulty is due to the heterogeneous nature of topological features, which do
not have a one-to-one correspondence across persistent diagrams. Motivated by
these challenges, we propose a more principled topological inference procedure
through lattice paths.

Lattice paths are widely studied algebraic objects in combinatorics and may
have potential applications in persistent homology [2,8,21,23]. Here, we propose
to use the lattice path approach in computing probabilistic statements about
the similarity of two persistent diagrams. This is often needed to produce some
baseline quantitive measure, such as the p-value, commonly used in biomedical
research [7,8]. Existing methods for computing p-values usually rely on approx-
imate time consuming resampling techniques: jackknife, bootstrap and the per-
mutation test [1,8]. However, our approach is analytic and thus computes the
exact probability without computational burden.

The main contributions of this paper are the following: (1) a new data rep-
resentation via Dyck and lattice paths; (2) the analytic approach for computing
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Fig. 1. Left: COVID-19 virus with spike proteins (red). Right: Spike proteins of the
three different corona viruses. The spike proteins consist of three similarly shaped
interwinding substructures identified as A (blue), B (red) and C (green) domains.
(Color figure online)

probabilities without resampling and significantly reducing run time; (3) the first
topological study on the shape of COVID-19 virus spikes proteins. The proposed
lattice path method was used in differentiating the conformational changes of
the COVID-19 virus spike proteins that is needed for the virus to penetrate host
cells (Fig. 1). This demonstration is particularly relevant due to the potential for
advancing vaccine development and the current public health concern [4,25].

2 Methods

Simplicial Homology. High dimensional objects, such as proteins and
molecules, can be modeled as a point cloud data V consisting of p number
of points (atoms) indexed as V = {1, 2, · · · , p}. Suppose that the distance
ρij between points i and j satisfies the metric properties. For proteins, we
can simply use the Euclidean distance between atoms in a molecule. Then
X = (V, ρ), ρ = (ρij) is a metric space where we can build a filtration neces-
sary for persistent homology. If we connect points following some criterion on
the distance, they will form a simplicial complex which will follow the topolog-
ical structure of the molecule [12,18,28]. The k-simplex is the convex hull of
k + 1 points in V . A simplicial complex is a finite collection of simplices such
as points (0-simplex), lines (1-simplex), triangles (2-simplex) and higher dimen-
sional counterparts. In particular, the Rips complex Xε is a simplicial complex,
whose k-simplices are formed by (k+1) points which are pairwise within distance
ε [16]. The Rips complex induces a hierarchical nesting structure called the Rips
filtration Xε0 ⊂ Xε1 ⊂ Xε2 ⊂ · · · for filtration values 0 = ε0 < ε1 < ε2 < · · · . The
filtration is quantified through k-cycles where 0-cycles are the connected com-
ponents, 1-cycles are loops while 2-cycles are 3-simplices (tetrahedron) with-
out interior. During the Rips filtration, the i-th k-cycles are born at filtra-
tion value bi and die at di. The collection of all the paired filtration values
{(b1, d1), · · · , (bq, dq)} displayed as scatter points in 2D plane is called the per-
sistent diagram.
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Fig. 2. Top: 4 different Dyck paths out of 14 possible paths for q = 4. Bottom: corre-
sponding lattice paths.

Dyck Paths. The first step in the proposed lattice path method is to sort the
set of all the birth and death values in the filtration as order statistics c : c(1) <
c(2) < · · · < c(2q), where c(i) is one of the birth or death values. The subscript
(i) denotes the i-th smallest value. We will simply call such sequence as the
birth-death process. Every possible valid sequence of birth and death values can
be viewed as forming a probability space, where each valid sequence is likely to
happen with equal probability. During the filtration, the sequence of birth and
death occurs somewhat randomly but still maintains a specific pairing structure.

There exists a one-to-one relation between the ordering information and Dyck
paths if we identify births with ↗ and deaths with ↘ [2,21]. If we trace the
arrows, we obtain the Dyck path (Fig. 2) [23]. A valid Dyck path always starts
at y = 0 and ends at y = 0. At any moment during the filtration, a Dyck path
cannot go below y = 0. The total number of Dyck paths is called the Catalan
number κp = 1

q+1

(
2q
q

)
. The first few Catalan numbers are κ1 = 1, κ2 = 2, κ3 = 5

and κ4 = 14. More rapid changes in the direction of Dyck paths imply more
fleeting fluctuations which are indicative of smaller topological signals. Less fluc-
tuations indicate larger persistence and thus larger topological structures. The
first path in Fig. 2 has larger persistence while the last path has smaller persis-
tence.

Lattice Paths. If we rotate the Dyck paths clockwise at 45◦ and flip verti-
cally, we obtain equivalent monotone lattice paths consisting of a sequence of →
(uparrow) and ↑ (downarrow). Figure 2 displays corresponding monotone lattice
paths between (0, 0) and (q, q) where the path does not pass above the diagonal
line y = x [23]. During the filtration, there cannot be more deaths than births
and thus the path must lie below the diagonal line. The total area below Dyck
paths can be used to quantify the Dyck paths [6]. Since the area below a Dyck
path is equivalent to q2/2 subtracted by the total area of boxes below the corre-
sponding lattice path, we will simply use lattice paths for quantification. If we
tabulate how the area of boxes change over the x-coordinate in a lattice path, it
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is monotone. In the first path in Fig. 2, the number of boxes below the first and
the last lattice paths are (0, 0, 0, 0) and (0, 1, 2, 3). The area below the path is
related to persistence. A barcode with smaller persistences (last path in Fig. 2)
will have more boxes (dark gray boxes) while longer persistences will have fewer
boxes (first path in Fig. 2). Given the sequence of heights of piled-up boxes, we
can recover the corresponding lattice path by tracing the outline of boxes. We
can further recover the original pairing information about births and deaths. In
the Rips filtration for 0-cycles, persistent diagrams line up vertically as (0, d(i)).
We simply augment them as ((i − 1)δ, d(i)) for sufficiently small δ.

The lattice and Dyck path representations only encode the ordering infor-
mation about how births and deaths are paired, and do not encode the actual
filtration values. This is remedied by adaptively weighting the length of arrows
in lattice paths. We sort the set of birth values bi and death values di as the
order statistics:

b(1) < b(2) < · · · < b(q−1) < b(q), d(1) < d(2) < · · · < d(q−1) < d(q).

We start at origin (0, 0). When we encounter a birth b(i), we take the horizon-
tal step to b(i). When we encounter a death d(i), take the vertical step to d(i)
(Fig. 2). The weighted lattice paths contains the same topological information
as the original persistent diagram.

Exact Topological Inference. Using the weighted lattice paths, we can pro-
vide the probabilistic statement about the discrepancy between two birth-death
processes which can be used for topological inference. For this, we need the
transformation φ:

Theorem 1. There exists a one-to-one map from a birth-death process to a
monotone function φ with φ(0) = 0 and φ(1) = q.

Proof. We explicitly construct such a function φ. Consider the sequence of areas
of boxes as we traverse the weighed lattice path: h : h1 ≤ h2 ≤ · · · ≤ hq, where
hi+1 = (b(i+1) − b(i))(d(i+1) − d(i)) is the area of i-th box with h1 = 0. The
areas h may not strictly increase (Fig. 3). If births occurs r times sequentially
in the birth-death process, h will have r repeated identical areas hi, · · · , hi as
a subsequence. To make the subsequence strictly increasing, we simply add a
sequence of strictly increasing small numbers δ(0, 1, 2, · · · , r−1) to the repetition
with δ ≤ 1

r (Fig. 3). Denote the transformed sequence as h′ : h′
1 < · · · < h′

q. Then
φ(t) is given as a step function

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ∈ [0,
h′
1

q )

j if t ∈ [h′
j

q ,
h′
j+1
q ) for j = 1, · · · , q − 1

q if t ∈ [h′
q

q , 1]

.

From φ(t), the original sequence h and the original birth-death process can be
recovered exactly. Such a map from a birth-death process to φ is one-to-one. �
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Fig. 3. Left: Weighted lattice path equivalent to a persistent diagram. Middle: The
area of boxes below lattice paths h (dotted line) is made into strictly increasing to h′

(solid line). Right: The problem of lattice path enumeration between (0, 0) and (q1, q2)
with the constraint |x/q1 − y/q2| < d.

Note ‖h − h′‖2 → 0 as δ → 0. So by making δ as small as possible, we can
construct a strictly monotone h′ to be arbitrarily close to h. The normalized
step function φ(t)/q can be viewed as an empirical cumulative distribution and
many statistical tools for analyzing distributions can be readily applied. Figure 4-
bottom displays the lattices paths and the normalized step functions of 1-cycles
corresponding to the spike proteins used in the study.

With monotone function φ, we are ready to test the topological equivalence
of two birth-death processes:

C1 : c11 < c12 < · · · < c1q1 , C2 : c21 < c22 < · · · < c2q2 .

Let φ1 and φ2 be the step functions corresponding to C1 and C2. The topological
distance

D(φ1, φ2) = sup
t∈[0,1]

∣
∣
∣
φ1(t)
q1

− φ2(t)
q2

∣
∣
∣

will be used as the test statistic for testing the equivalence of C1 and C2. The
normalizing denominators q1 and q2 ensures that the value of step functions
are in [0, 1]. The statistic D(φ1, φ2) is the upper bound of area difference under
φ1(t)/q1 and φ2(t)/q2:

∫ 1

0

∣
∣
∣
φ1(t)
q1

− φ2(t)
q2

∣
∣
∣ dt ≤ D(φ1, φ2).

Theorem 2. Under the null hypothesis of equivalence of C1 and C2,

P (D(φ1, φ2) ≥ d) = 1 − Aq1,q2(
q1+q2

q1

) ,

where Au,v satisfies Au,v = Au−1,v +Au,v−1 with the boundary condition Aq1,0 =
A0,q2 = 1 within the band |u/q1 − v/q2| < d.
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Proof. The statement can be proved similarly as the combinatorial construc-
tion of the Kolmogorov-Smirnov test [3,8,17]. First, we combine monotonically
increasing sequences C1 and C2 and sort them into a bigger monotone sequence
of size q1 + q2. Then, we represent the combined sequence as the sequence of →
and ↑ respectively depending on if they are coming from C1 or C2. Under the
null, there is no preference and they equally likely come from C1 or C2. If we
follow the sequence of arrows, it forms a monotone lattice path from (0, 0) to
(q1, q2). In total, there are

(
q1+q2

q1

)
possible equally likely lattice paths that forms

the sample space. From Theorem 1, the values of φ1(t) and φ2(t) are integers
from 0 to q. Then it follows that

P (D ≥ d) = 1 − P (Dq < d) = 1 − Aq1,q2(
q1+q2

q1

) ,

where Au,v is the total number of valid paths from (0, 0) to (u, v) within dotted
red lines in Fig. 3. Au,v is iteratively computed using Au,v = Au−1,v + Au,v−1.
with the boundary condition Au,0 = A0,v = 1 for all u and v. �

Computing Aq1,q2 iteratively requires at most q1 · q2 operations while the
permutation test will cause a computational bottleneck for large q1 and q2. Thus,
the proposed lattice path method computes the exact p-value substantially faster
than the permutation test. Since most protein molecules consist of thousands of
atoms, q1 and q2 should be sufficiently large to apply the asymptotic [10,17,22]:

Theorem 3. limq1,q2→∞ P
(√

q1q2
q1+q2

D ≥ d
)

= 2
∑∞

j=1(−1)j−1e−2j2d2
.

Subsequently, the p-value under the null hypothesis is given by

p-value = 2e−d2
o − 2e−8d2

o + 2e−18d2
o · · · ,

where do is the observed value of
√

q1q2
q1+q2

D. Computing the p-value through

Theorem 3 mainly requires sorting, which has the runtime of O(
q log q

)
for q =

q1 = q2. On the other hand, the traditional permutation test requires computing
the distance for

(
2q
q

)
possible permutations, which is asymptotically O(4q/

√
πq)

[11,14]. For thousands of atoms, the total number of permutations is too large
to compute. Thus, only a small fraction of randomly generated permutations
are used in the traditional permutation test [9–11,20,24,27]. Even if we use
hundreds of thousands permutations, the traditional permutation test still takes
a significant computational effort. Further, as an approximation procedure, the
standard permutation test does not perform better than the exact topological
inference, which gives the mathematical ground truth. This is demonstrated in
Table 1 in the simulation study [9].

3 Application: Spike Proteins of COVID-19 Virus

The proposed lattice path method is used to study the topological structure
of the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), which is



Lattice Paths for Persistent Diagrams 83

Fig. 4. Top: persistent diagrams of three different spike proteins. The red dots are
0-cycles and the black dots are 1-cycles. The units are in Å (angstrom). Bottom: the
corresponding lattice paths and normalized step functions φ(t)/q. (Color figure online)

often called COVID-19. Since the start of the global pandemic (approximately
December 2019), COVID-19 has already caused 3.85 million deaths in the world
as of June 2021. The COVID-19 virus is specific member of a much broader
coronavirus family, which all have spike proteins surrounding the spherically
shaped virus similar to the sun’s corona. The glycoprotein spikes bind with
receptors on the host’s cells and consequently cause severe infection. The atomic
structure of spike proteins can be determined through the cryogenic electron
microscopy (cryo-EM) [4,25]. Figure 1-left illustrates spike proteins (colored red)
that surround the spherically shaped virus. Each spike consists of three similarly
shaped protein molecules with rotational symmetry often identified as A, B and
C domains. The spike proteins have two distinct conformations identified as open
and closed states, where the domain’s opening is necessary for interfacing with
the host cell’s surface for membrane fusion and viral entry (Fig. 1-right). Indeed,
most current vaccine efforts focus on preventing the open state from interfacing
with the host cell. Hence, this line of research is of prime importance in vaccine
development and therapeutics [4].

In this study, we analyzed the spikes of three different coronaviruses identified
as 6VXX, 6VYB [25] and 6JX7 [26]. The 6VXX and 6VYB are respectively
the closed and open states of SARS-Cov-2 from human while 6JX7 is feline
coronavirus (Fig. 1). All the domains of 6VXX have exactly 7604 atoms and
are expected to be topologically identical. Applying the lattice path method to
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1-cycles, we tested the topological equivalence of the B-domain and the A- and
C-domains within 6VXX. The normalized step functions are almost identical and
the observed topological distances are 0.0090 and 0.0936, which give the p-value
of 1.00 each. As expected, the method concludes that they are topologically
equivalent. Figure 4-bottom displays the lattice paths and the normalized step
functions for domain B of 6VXX. The plots for other domains are visually almost
inseparable and hence not shown. The closed domain B of 6VXX is also compared
against the open domain B of 6VYB. The open state has a significantly reduced
number of atoms at 6865 due to the conformational change that may change
the topology as well. The observed topological distance is 0.20 and with an
extremely small p-value of 8.1123 × 10−38 which strongly suggests evidence for
topological change. The persistent diagrams of both closed and open states are
almost identical in smaller birth and death values below 6 Å (angstrom) (Fig. 4-
top). The major difference is in the scatter points with larger birth and death
values. The lattice path method confirms that the local topological structures
are almost identical while the global topological structures are different.

The domain B of 6VXX is also compared against the domain B of feline
coronavirus 6JX7 consisting of 9768 atoms. Since 6JX7 is not from human, it is
expected that they are different. The topological distance is 0.9194 and p-values
is 0.00 × 10−38 confirming that the topological nature of spikes are different.
This shows the biggest difference among all the comparisons done in this study.
The Matlab codes and data used for the study are available at http://www.stat.
wisc.edu/∼mchung/TDA.

4 Conclusions

In this paper, we proposed a new representation of persistent diagrams using lat-
tice paths. The novel representation enable us to perform the statistical inference
combinatorially by enumerating every possible valid lattice paths analytically.
The proposed lattice path method is subsequently used to analyze the coro-
navirus spike proteins. The normalized step functions φ(t)/q for all the spike
proteins show fairly stable consistent global monotone pattern but with local-
ized differences. We demonstrated the lattice path method has the ability to
statistically discriminate between the conformational changes of the spike pro-
tein that are needed in the transmission of the virus. We hope that the our
new representation enables scientists in their effort to automatically identify the
different types and states of coronaviruses in a more principled manner.
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