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1. Introduction

Although topological data analysis has been around for many decades with well-grounded theoretical
development, it still suffers from numerous statistical and computational issues. For these reasons, it has
not yet become a standard tool for data scientists. The authors point out the difficulty of directly applying
existing statistical models to persistent homology due to the heterogeneous nature of topological features.
The statistical development in topological data analysis in the last decade has been focused on making
heterogeneous features into homogenous structured data by transformations or smoothing. Thus, the idea
of applying survival analysis techniques to the birth and death process of topological features is very
intriguing. The authors succeeded in elucidating the connection between event history methods and the
lifetime of topological features, and the paper has stimulated many new interesting questions.

2. Trees in persistent homology

One of the most popular applications of persistent homology are on binary trees (Bendich et al., 2016;
Li et al., 2017). Trees and graphs are 1-skeletons, which are Rips complexes consisting of only nodes and
edges. Trees do not have 1-cycles and can be quantified using 0-cycles only. Other higher-order topological
features are simply ignored. However, Garside et al. (2021) used somewhat inefficient filtrations in the 2D
plane that increase the radius of circles from the root node or points along the tree. Such filtrations produce
persistent diagrams that spread points in a 2D plane. Further, such an approach creates 1-cycles that may
not really be needed in analysing trees. These types of persistent diagrams are difficult to analyse since the
locations of the scatter points and the number of scatter points do not correspond across different persistent
diagrams. For a 1-skeleton, there exists a more efficient 1D filtration called the graph filtration, which
filters edge weights varying from −∞ to ∞ (Chung et al., 2019; Songdechakraiwut & Chung, 2020b).

Given a binary tree with node set V = {1, 2, . . . , p}, define a weighted tree T = (V , w) with the edge
weight w = (wij). The edge weight wij is given by the distance between nodes i and j if they are connected
and 0 otherwise. Assume that the edge weights are all unique so that we can build the order statistics:

min
i, j

wij = w(1) < w(2) < · · · < w(p−1) = max
i, j

wij.
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Fig. 1. (a) Binary tree used in Garside et al. (2021). (b) β0-curve over graph filtration. The edge weights of the tree
are used as the filtration values. (c) The points in the persistent diagram all lined up at y = 0.31.

Now threshold the weighted tree T at ε, which leads to the binary tree Tε = (V , wε) with edge weights
wε = (wε, ij), wε, ij = 1 if wij > ε and 0 otherwise. Finally, we obtain the graph filtration

Tw(1)
⊃ Tw(2)

⊃ · · · ⊃ Tw(q−1)
,

which completely characterizes the topology of the original binary tree. Since Tε is a collection of
binary trees, there is no 1-cycle. Each time a new threshold is applied, the tree splits into two parts.
Thus, the 0-th Betti number β0 is monotonically increasing over the filtration. In fact, β0(Tw(i) ) = i + 2
(Chung et al., 2019). None of the 0-cycles ever die once they are born. For convenience, we set the death
value of 0-cycles to some fixed number c > w(q−1). Then the persistence diagram of the graph filtration
is simply (w(1), c), (w(2), c), . . . , (w(q−1), c) forming 1D scatter points along the horizontal line y = c, and
making various analysis and operations, including matching, significantly simplified (Songdechakraiwut &
Chung, 2020b). Figure 1 illustrates the graph filtration and corresponding 1D scatter points in persistence
diagrams on the binary tree used in Garside et al. (2021). In this example, c = 0.31 is arbitrarily picked to
be larger than the maximum edge weight 0.3034.

A different graph filtration is also possible by making the edge weight to be the shortest distance
from the root node. This filtration also carries the identical topological information. For general graphs
beyond trees, there will be 1-cycles and β1 is monotonically decreasing over the graph filtration (Chung
et al., 2019). Similarly, the persistence diagram is given as 1D scatter points along the vertical line
(Songdechakraiwut & Chung, 2020b). Subsequently, statistical analysis on β0, β1 curves as well as their
persistence diagram can be performed using existing tools in the order statistics.

3. Accumulating persistence

Garside et al. (2021) proposed modelling the birth and death of cycles as the observed data in event history
analysis in a literal sense. Event history analysis has been widely used in diverse areas, including survival
analysis in medicine and failure time analysis in engineering, and thus such an approach would open a new
direction for research. From Garside et al. (2021), other event history approaches can be equally applicable
to the birth and death of cycles. The Nelson–Aalen method and many other event history methods all bypass
the problem of matching births and deaths across different subjects by accumulating events. In Garside
et al. (2021), functions Nx(t) and Y (t) accumulate the indicator variables for the events by summation. Such
an approach usually yields the Nelson–Aalen plot type of monotone curves, which make the subsequent
analysis stable and easy to perform. Although other authors did not make the connection to event history
analysis, barcodes have often been accumulated into a summary statistic. In Biscio & Møller (2019), the
accumulated persistence function, which simply sums the length of barcodes, is proposed for brain artery
trees. In Songdechakraiwut & Chung (2020a), barcodes are also accumulated for time series data. In graph
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Fig. 2. (a) Sulcal (blue) and gyral (red) trees of brain cortical surface mesh (Huang et al., 2020). (b) Diffusion of sulcal
trees (value −1) and gyral trees (value +1). (c) Two-sample t-statistic on 268 females and 176 males localizing the

sexual diffemorphism in the temporal lobes.

filtration, the accumulating barcode is equivalent to computing the area under the Betti curves. It would
be of interest to investigate various accumulation strategies beyond the Nelson–Aalen estimator. Garside
et al. (2021) have opened a new research direction.

4. Lack of localization

The approach in Garside et al. (2021) succeeded in differentiating the vascular tree patterns between
healthy and diabetic retinopathy patients. However, their method does not clearly identify the location of the
difference within the vascular tree. In related problems in medical diagnostics, it is important to determine
the topological differences. However, a more important question is localizing the source of differences.
Since there is no one-to-one map between the transformed topological features and the original data space,
it is often not possible to localize the signals. In our opinion, this has been the biggest limitation of the
topological data analysis methods in biomedical data. Thus, we believe that development of topological
data analysis methods should be towards this important, though very difficult, question. Compared to
topological data analysis methods, geometric methods are more adept at detecting localized signals in
trees. Figure 2 displays the sucal and gyral trees obtained from brain surface meshes (Huang et al., 2020).
Trees are treated as a heat source with value +1 on gyral trees and a heat sink with value −1 on sulcal
trees. Then isotropic diffusion is performed to produce the smooth map of sulcal and gyral trees. The major
advantage of this approach is that such maps can be easily compared across different subjects. In Huang
et al. (2020), a two-sample t-statistic is calculated at each mesh vertex and is used in localizing the sex
difference, 268 females, 176 males, near the temporal lobes of the brain. Such localized signal detection
is not possible with many existing topological data analysis methods. Persistent homology features are,
by definition, global summary measures, and they might be more useful for tasks that do not involve
identifying the source of signal differences. Thus, they might be more useful in discrete decision-making
tasks such as clustering and classification. In fact, topological data analysis has begun to be more useful
in deep learning (Chen et al., 2019) and in identifying shared common features in time series (Wang et al.,
2015, 2018).

5. Consistency versus stability

Although topological data analysis has been applied in various fields, it still lacks the rigorous foundation
for statistical inference. Most topological data analysis features enjoy the stability property that shows
that the distance d between two topological features is bounded by some known well-behaved distances
(Cohen-Steiner et al., 2007; Adams et al., 2017). However, to build the proper statistical framework we
need statistical consistency (Bubenik et al., 2010). Given the average topological feature Tn over n samples,
we need the following topological version of consistency that shows the convergence to true population
signal T in probability: limn→∞ P{d(Tn, T ) > ε} = 0 for all ε > 0. Since most topological features such
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as persistence diagrams do not form a vector space, it is not immediately obvious how to even define
the expectation and variance of topological features Tn. Such consistency guarantees the convergence
of statistical results for a sufficient sample size. Existing stability results are mostly on the stability of
topological data analysis features, but not about the consistency of the test statistics on such features.
Additional investigations are needed to establish the consistency of statistics built on top of topological
data analysis features. The consistency of the Nelson–Aaelen estimator and other accumulation-based
survival functions is well established (Andersen et al., 2012). Thus, the use of survival analysis methods
will automatically bring the needed consistency results.
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