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AbstractWe present the novel Wasserstein graph clustering for dynamically chang-
ing graphs. The Wasserstein clustering penalizes the topological discrepancy be-
tween graphs. The Wasserstein clustering is shown to outperform the widely used
:-means clustering. The method applied in more accurate determination of the state
spaces of dynamically changing functional brain networks.

1 Introduction

In standard graph theory based network analysis, network features such as node
degrees and clustering coefficients are obtained from the adjacency matrices after
thresholding weighted edges [50, 14]. The final statistical analysis results change
depending on the choice of threshold or parameter [13, 32]. There is a need to
develop a multiscale network analysis framework that provides consistent results and
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interpretation regardless of the choice of parameter. Persistent homology, a branch of
algebraic topology, offers a novel solution to this multiscale analysis challenge [21].
Instead of examining networks at one fixed scale, persistent homology identifies
persistent topological features that are robust under different scales [39, 47]. Unlike
existing graph theory approaches that analyze networks at one different fixed scale
at a time and captures the changes of topological features over different scales and
then identifies the most persistent topological features that are robust under noise
perturbations. This robust performance under different scales is needed for dynamic
networks that change over time.

Persistent homological network approaches are shown to be more robust and
outperforming many existing graph theory measures and methods. In [31, 32], per-
sistent homology was shown to outperform eight existing graph theory features such
as clustering coefficient, samll-worldness and modularity. In [15, 17], persistent ho-
mology was shown to outperform various matrix norm based network distances.
In [56], persistent homology was shown to outperform the power spectral density
and local variance methods. In [55], persistent homology was shown to outperform
topographic power maps. In [60], center persistency was shown to outperform the
network-based statistic and element-wise multiple corrections. However, the method
has been mainly used on static networks or as a static summary of time varying
networks [5]. The dynamic pattern of persistent homology for time varying brain
network was rarely investigated expect few [59, 44, 48].

In this paper, we propose to develop the novel dynamic persistent homology
framework for time varying graph data. We will show that the proposed method
based on the Wasserstein distance can capture the topological patterns that are
consistently observed across different time points. The Wasserstein distance or Kan-
torovich–Rubinstein metric is originally defined between probability distributions
[54]. Due to the connection to the optimal mass transport, which enjoys various
optimal properties, the Wasserstein distance has been applied to various imaging
applications. However, there are not many applications of Wasserstein distance in
network data. [36] used theWasserstein distance in resampling brain surface meshes.
[46] used the Wasserstein distance in classifying brain cortical surface shapes. [43]
used the Wassterstein distance for manifold regression problem in the space of pos-
itive definite matrices for the source localization problem in EEG. [57] used the
Wasserstein distance in predicting Alzheimer’s disease progression in magnetoen-
cephalography (MEG) brain networks. However, the Wassterstein distance in these
applications are all geometric in nature.

The main contribution of our paper is as follows. We present a coherent scalable
framework for the computation of Wasserstein distance on graphs. We directly build
the Wasserstein distance using the edge weights in graphs making the method far
more accessible and adaptable. We achieve O(= log =) run time in most graph ma-
nipulation tasks such as matching and averaging. Such scalable computation enables
us to perform a computationally demanding graph clustering task with ease. The
method is applied in the determination of he state spaces of dynamically changing
functional brain networks.



Dynamic Persistent Homology for Brain Networks via Wasserstein Graph Clustering 3

2 Graphs as simplical complexes

A high dimensional object such as brain networks can be modeled as weighted graph
X = (+, |) consisting of node set + indexed as + = {1, 2, · · · , ?} and edge weights
| = (|8 9 ) between nodes 8 and 9 . If we order the edge weights in the increasing
order, we have the sorted edge weights:

min
9 ,:

| 9: = |(1) < |(2) < · · · < |(@) = max
9 ,:

| 9: ,

where @ ≤ (?2− ?)/2. The subscript ( ) denotes the order statistic. In terms of sorted
edge weight set, = {|(1) , · · · , |(@) }, we may also write the graph as X = (+,,).
If we connect nodes following some criterion on the edge weights, they will form
a simplical complex which will follow the topological structure of the underlying
weighted graph [21, 61]. Note that the :-simplex is the convex hull of : + 1 points in
+ . A simplicial complex is a finite collection of simplices such as points (0-simplex),
lines (1-simplex), triangles (2-simplex) and higher dimensional counter parts.

The Rips complex Xn is a simplicial complex, whose :-simplices are formed by
(: + 1) nodes which are pairwise within distance n [23]. While a graph has at most
1-simplices, the Rips complex has at most (? − 1)-simplices. The Rips complex
induces a hierarchical nesting structure called the Rips filtration

Xn0 ⊂ Xn1 ⊂ Xn2 ⊂ · · ·

for 0 = n0 < n1 < n2 < · · · , where the sequence of n-values are called the filtration
values. The filtration is quantified through a topological basis called :-cycles. 0-
cycles are the connected components, 1-cycles are 1D closed path or loop while
2-cycles are a 2-simplices without interior. Any :-cycles can be represented as a
linear combination of basis :-cycles. The Betti numbers V: counts the number of
independent :-cycles. During theRips filtration, the 8-th :-cycles are born at filtration
value 18 and die at 38 . The collection of all the paired filtration values

%(X) = {(11, 31), · · · , (1@ , 3@)}

displayed as 1D intervals is called the barcode and displayed as scatter points in
2D plane is called the persistent diagram. Since 18 < 38 , the scatter points in the
persistent diagram are displayed above the line H = G line by taking births in the
G-axis and deaths in the H-axis.

For dynamically changing brain network X(C) = (+, |(C)), we assume the node
set is fixed while edge weights are changing over time C. If we build persistent
homology at each fixed time, the resulting barcode is also time dependent:

%(X(C)) = {(11 (C), 31 (C)), · · · , (1@ (C), 3@ (C))}.
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2.1 Graph filtrations

As the number of nodes ? increases, the resulting Rips complex becomes very dense.
As the filtration values increases, there exists an edge between every pair of nodes.
At higher filtration values, Rips filtration becomes an ineffective representation of
networks. To remedy this issue, graph filtration was introduced [31, 32]. Given
weighted graph X = (+, |) with edge weight | = (|8 9 ), the binary network Xn =

(+, |n ) is a graph consisting of the node set + and the binary edge weights |n =

(|n ,8 9 ) given by

|n ,8 9 =

{
1 if |8 9 > n ;
0 otherwise.

Note |n is the adjacency matrix of Xn , which is a simplicial complex consisting
of 0-simplices (nodes) and 1-simplices (edges) [23]. While the binary network Xn
has at most 1-simplices, the Rips complex can have at most (? − 1)-simplices. By
choosing threshold values at sorted edge weights |(1) , |(2) , · · · , |(@) [13], we obtain
the sequence of nested graphs:

X|(1) ⊃ X|(2) ⊃ · · · ⊃ X|(@) .

The sequence of such a nested multiscale graph is called as the graph filtration
[31, 32]. Figure 1 illustrates a graph filtration in a 4-nodes example. Note that
X|(1)−n is the complete weighted graph for any n > 0. On the other hand, X|(@)
is the node set + . By increasing the threshold value, we are thresholding at higher
connectivity so more edges are removed.

For dynamically changing brain networks, we can similarly build time varying
graph filtrations at each time point {X| (C) : C ∈ R+}.

2.2 Birth-death decomposition

Unlike theRips complex, there are no higher dimensional topological features beyond
the 0D and 1D topology in graph filtration. The 0D and 1D persistent diagrams
(18 , 38) tabulates the life-time of 0-cycles (connected components) and 1-cycles
(loops) that are born at the filtration value 18 and die at value 38 . The 0th Betti
number V0 (|(8) ) at filtration value |(8) counts the number of 0-cycles and shown
to be non-decreasing over filtration (Figure 1) [17]: V0 (|(8) ) ≤ V0 (|(8+1) ). On the
other hand the 1st Betti number V1 (|(8) ) counts the number of independent loops and
shown to be non-increasing over filtration (Figure 1) [17]: V1 (|(8) ) ≥ V1 (|(8+1) ).

During the graph filtration, when new components is born, they never dies. Thus,
0D persistent diagrams are completely characterized by birth values 18 only. Loops
are viewed as already born at −∞. Thus, 1D persistent diagrams are completely
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Fig. 1 Graph filtrations are obtained by sequentially thresholding graphs in increasing edgeweights.
The 0-th Betti number V0 (number of connected components) and the first Betti number V1 (number
of cycles) are then plotted over the filtration values. The Betti curves are monotone over graph
filtrations. However, different graphs (top vs. middle) can yield identical Betti curves.

characterized by death values 38 only. We can show that the edge weight set, can
be partitioned into 0D birth values and 1D death values [49]:

Theorem 1 (Birth-deathdecomposition)The edgeweight set, = {|(1) , · · · , |(@) }
has the unique decomposition

, = ,1 ∪,3 , ,1 ∩,3 = ∅ (1)

where birth set ,1 = {1 (1) , 1 (2) , · · · , 1 (@0) } is the collection of 0D sorted birth
values and death set ,3 = {3 (1) , 3 (2) , · · · , 3 (@1) } is the collection of 1D sorted
death values with @0 = ? − 1 and @1 = (? − 1) (? − 2)/2. Further,1 forms the 0D
persistent diagram while,3 forms the 1D persistent diagram.

Proof During the graph filtration, when an edge is deleted, either a new component
is born or a cycle dies [17]. These events are disjoint and does not happen at the
same time. The claim is proved by contradiction. Assume the both events happen at
the same time in contrary. Then V0 increases by 1 while V1 decreases by 1. When
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Fig. 2 Left: Dynamically changing correlation matrices computed from rs-fMRI using the sliding
window of size 60 for a subject [26]. The constructed correlation matrices are superimposed on
top of the white matter fibers [16], which are colored based on correlation values. Right: The
corresponding birth and death sets that are changing over time. Columns are the sorted birth and
death edge values at that particular time point.

an edge is deleted, the number of nodes ? is fixed while the number of edges @ is
reduced to @ − 1. Thus the Euler characteristic j = ? − @ of the graph increases by
1. The Euler characteristic can be also given by an alternating sum j = V0 − V1 [1].
Subsequently, the Euler characteristic increases by 2, which contradict the previous
computation. Thus, both events cannot occur at the same time. This establishes the
decomposition, = ,1 ∪,3 ,,1 ∩,3 = ∅.

In a complete graph with ? nodes, there are @ = ?(? − 1)/2 unique edge weights.
There are @0 = ? − 1 number of edges that produces 0-cycles. This is equivalent to
the number of edges in the maximum spanning tree of the graph. Since,1 and,3

partition the set, there are

@1 = @ − @0 =
(? − 1) (? − 2)

2

number of edges that destroys 1-cycles.
The 0D persistent diagram of the graph filtration is given by {(1 (1) ,∞), · · · ,

(1 (@0) ,∞)}. Ignoring∞,,1 is the 0D persistent digram. The 1D persistent diagram
of the graph filtration is given by {(−∞, 3 (1) ), · · · , (−∞, 3 (@1) )}. Ignoring −∞,,3

is the 1D persistent digram. �

Numerical implementation. The algorithm for decomposing the birth and death
set is as follows. As the corollary of Theorem 1, we can show that the birth set
is the maximum spanning tree (MST). The identification of ,1 is based on the
modification to Kruskal’s or Prim’s algorithm and identify the MST [32]. Then,3

is identified as ,/,3 . Figure 1 displays graph filtration on 2 different graphs with
4 nodes, where the birth sets consists of 3 red edges and the death sets consist of
3 blue edges. Figure 2 displays how the birth and death sets change over time in
the brain network of a single subject. We made the computer codes available at
http://www.stat.wisc.edu/~mchung/dynamicTDA. Given edge weight matrix

http://www.stat.wisc.edu/~mchung/dynamicTDA
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, as input, the Matlab function WS_decompose.m outputs the birth set,1 and the
death set,3 .

2.2.1 Algebra on birth-death decompositions

Consider graph X = (+, |) with the birth-death decompositions, = ,1 ∪,3:

,1 = {1 (1) , · · · , 1 (@0) }, ,3 = {3 (1) , · · · , 3 (@1) }.

Let F (,) = | be the function that maps each edge in the ordered edge set, back
to the original edge weight matrix |. F −1 (|) = , is the function that maps each
edge in the edge weight matrix to the birth death decomposition. Such maps are
one-to-one. Since,1 and,3 are disjoint, we can write as

F (,1 ∪,3) = F (,1) ⊕ F (,3).

Define the scalar multiplication on the ordered set, as

2, = (2,1) ∪ (2,3) = {21 (1) , · · · , 21 (@0) } ∪ {23 (1) , · · · , 23 (@1) }

for 2 ∈ R. Then we have F (2,) = 2F (,) for 2 > 0. The relation does not hold for
2 < 0 since it is not order preserving. Define the scalar addition on the ordered set
, as

2 +, = (2 +,1) ∪ (2 +,3) = {2 + 1 (1) , · · · , 2 + 1 (@0) } ∪ {2 + 3 (1) , · · · , 2 + 3 (@1) }

for 2 ∈ R. Since the addition is order preserving, F (2+,) = 2+F (,) for all 2 ∈ R.
Define scalar multiplication of 2 to graph X = (+, |) as 2X = (+, 2F (,)).

Define the scalar addition of 2 to graphX as 2 +X = (+, 2 +F (,)). Let 2 = 21 ∪ 23
be an ordered set with 21 = (21(1) , · · · , 2

1
(@0) ) and 23 = (23(1) , · · · , 2

3
(@1) ). Define the

set addition of 2 to the ordered set, as

2 +, = (21 +,1) ∪ (23 +,3)

with 21+,1 = {21(1) +1
:
(1) , · · · , 2

1
(@0) +1

:
(@0) } and 23+,3 = {23(1) +3

:
(1) , · · · , 2

3
(@1) +

3:(@1) }. Then we have the following decomposition.

Theorem 2 For graphX = (+, |) with the birth-death decompositions, = ,1∪,3

and positive ordered sets 21 and 23 , we have

F ((21 +,1) ∪,3) = (21 + F (,1)) ⊕ F (,3) (2)
F (,1 ∪ (23 − 2∞ +,3)) = F (,1) ⊕ (F (23 − 2∞ +,3), (3)

where 2∞ is a large number bigger than any element in 23 .

Proof Note 21 +,1 is order preserving.,1 is the MST of graph X. The total edge
weights of MST does not decrease if we change all the edge wights of MST from
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,1 to 21 +,1 . Thus 21 +,1 will be still MST and F (21 +,1) = 21 +F (,1). The
death set,3 does not change when the edges in MST increases. This proves (2).

The sequence (01, · · · , 0@1) = 23 − 2∞ with 08 = 23(8) − 2∞ < 0 is increasing.
Adding (01, · · · 0@1) to,3 is order preserving. Decreasing edge weights in,3 will
not change the total edge weights of MST. Thus the birth set is still identical to,1 .
Then the death set is 23 − 2∞ +,3 . This proves (3). �

The decomposition (3) does not work if we simply add an arbitrary ordered set to
,3 since it will change the MST. Numerically the above algebraic operations are all
linear in run time and will not increase the computational load. So far, we demon-
strated what the valid algebraic operations are on the birth-death decompositions.
Now we address a more important question of if the birth-death decomposition is
addictive. Given graphs X1 = (+, |1) and X2 = (+, |2) with corresponding birth-
death decompositions ,1 = ,11 ∪,13 and ,2 = ,21 ∪,23 , define the sum of
graphs X1 + X2 as a graph X = (+, |) with birth-death decomposition

,1 ∪,3 = (,11 +,21) ∪ (,13 +,23). (4)

However, it is unclear if there even exists a unique graph with decomposition (4).
Define projectionF (,1 |,2) as the projection of edge values in the ordered set,1

onto the edge weight matrix F (,1) such that the birth values,11 are sequentially
mapped to the F (,21) and the death values ,13 are sequentially mapped to the
F (,23). Trivially, F (,1 |,1) = F (,1). In general, F (,1 |,2) ≠ F (,2 |,1). The
projection can be written as

F (,1 |,2) = F (,11 |,21) ⊕ F (,13 |,23).

Theorem 3 Given graphs X1 = (+, |1) and X2 = (+, |2) with corresponding birth-
death decompositions ,1 = ,11 ∪,13 and ,2 = ,21 ∪,23 , there exists graph
X = (+, |) with birth-death decomposition,1 ∪,3 satisfying

,1 ∪,3 = (,11 +,21) ∪ (,13 +,23).

with
| = F (,1 ∪,3) = F (,11 +,21 |,11) ⊕ F (,13 +,23 |,13).

Proof We prove by the explicit construction in a sequential manner by applying only
the valid operations.

1) Let 2∞ be some fixed number larger than any edge weights in |1 and |2. Add
2∞ to the decomposition,11 ∪,13 to make all the edges positive:

2∞ +,11 ∪,13 = (2∞ +,11) ∪ (2∞ +,13). (5)

The edge weight matrix is given by

F ((2∞ +,11) ∪ (2∞ +,13)) = 2∞ + F (,1).
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2)We add the ordered set,21 to decomposition (5) and obtain

2∞ + (,11 +,21) ∪,13 = (2∞ +,11 +,21) ∪ (2∞ +,13). (6)

We next determine how the corresponding edge weight matrix changes when the
birth-death decomposition changes from (5) to (6). Increasing birth values from
2∞ +,11 to 2 +,11 +,21 increases the total edge weights in the MST of 2∞ + X1.
Thus, 2 +,11 +,21 is still MST. The death set does not change from 2∞ +,13 . The
edge weight matrix is then given by

F ((2∞ +,11 +,21) ∪ (2∞ +,13))
= F (2∞ +,11 +,21 |,11) ⊕ F (2∞ +,13). (7)

(7) can be also derived from (2) in Theorem 2 as well.
3) Add ordered set,23 − 2∞ to the death set in the decomposition (6) and obtain

(2∞ +,11 +,21) ∪ (,13 +,23). (8)

Decreasing death values from 2∞ +,13 to ,13 +,23 does not affect the the total
edge weights in the MST of (7). There is no change in MST. The birth set does not
change from 2 +,11 +,21 . Thus,

F ((2∞ +,11 +,21) ∪ (,13 +,23))
= F (2∞ +,11 +,21 |,11)F (,13 +,23 |,13)
= (2∞ + F (,11 +,21 |,11)) ⊕ F (,13 +,23 |,13) (9)

Since edge weights in,23 − 2∞ are all negative, we can also obtain the above result
from Theorem 2.

4) Finally we subtract 2∞ from the brith set in (8) and obtain the projection of
sum onto,1.

F (,11 +,21 |,11) ⊕ F (,13 +,23 |,13). (10)
�

Remark. Theorem 3 does not guarantee the uniqueness of edge weight matrices.
Instated of projecting birth and death values onto the first graph, we can also project
onto the second graph

F (,11 +,21 |,21) ⊕ F (,13 +,23 |,21).

or any other graph. Different graphs can have the same birth-death sets. Figure 3
shows two different graphs with the identical birth and death sets.
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Fig. 3 Schematic of proof of Theorem 3 with 4-nodes examples. Each step of operations yield
graphs with valid birth-death decompositions. The first row is the construction of sum operation by
projecting to ,1. The second row is the construction of sum operation by projecting to ,2. Red
colored edges are the maximum spanning trees (MST). Each addition operation will not change
MST. Eventually, we can have two different graphs with the identical birth-death decomposition.

3 Wasserstein graph clustering

Consider persistent diagrams %1 and %2 given by

%1 : G1 = (11
8 , 3

1
8 ), · · · , G@ = (11

@ , 3
1
@), %2 : H1 = (12

8 , 3
2
8 ), · · · , H@ = (12

@ , 3
2
@).

Their empirical distributions are given in terms of Dirac-Delta functions

51 (G) =
1
@

@∑
8=1

X(G − G8), 52 (H) =
1
@

@∑
8=1

X(H − H8).

Then we can show that the 2-Wasserstein distance on persistent diagrams is given
by

�, (%1, %2) = inf
k:%1→%2

( ∑
G∈%1

‖G − k(G)‖2
)1/2

(11)

over every possible bĳection k between %1 and %2 [54]. Optimization (11) is the
standard assignment problem, which is usually solved by Hungarian algorithm in
O(@3) [22]. However, for graph filtration, the distance can be computed inO(@ log @)
by simply matching the order statistics on birth or death sets [41, 49]:

Theorem 4 The 2-Wasserstein distance between the 0D persistent diagrams for
graph filtration is given by

�, 0 (%1, %2) =
[ @0∑
8=1
(11
(8) − 1

2
(8) )

2
]1/2

,
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where 1 9(8) is the 8-th smallest birth values in persistent diagram% 9 . The 2-Wasserstein
distance between the 1D persistent diagrams for graph filtration is given by

�, 1 (%1, %2) =
[ @1∑
8=1
(31
(8) − 3

2
(8) )

2
]1/2

,

where 3 9(8) is the 8-th smallest death values in persistent diagram % 9 .

Proof 0D persistent diagram is given by {(1 (1) ,∞), · · · , (1 (@0) ,∞)}. Ignoring ∞,
the 0D Wasserstein distance is simplified as

�2
, 0 (%1, %2) = min

k

@0∑
8=1
|11
8 − k(11

8 ) |2,

where the minimum is taken over every possible bĳection k from {11
1, · · · , 1

1
@0 }

to {12
1, · · · , 1

2
@0 }. Note

∑@0
8=1 |1

1
8
− k(11

8
) |2 is minimum only if

∑@0
8=1 1

1
8
k(11

8
) is

maximum. Rewrite
∑@0
8=1 1

1
8
k(11

8
) in terms of the order statistics as

∑@0
8=1 1

1
(8)k(1

1
(8) ).

Now, we prove by induction. When @ = 2, there are only two possible bĳections:

11
(1)1

2
(1) + 1

1
(2)1

2
(2) and 11

(1)1
2
(2) + 1

1
(2)1

2
(1) .

Since 11
(1)1

2
(1) + 1

1
(2)1

2
(2) is larger, k(11

(8) ) = 12
(8) is the optimal bĳection. When

@0 = : , assume q(11
(8) ) = 1

2
(8) is the optimal bĳection. When @0 = : + 1,

max
k

:+1∑
8=1

11
(8)k(1

2
(8) ) ≤ max

k

:∑
8=1

11
(8)k(1

1
(8) ) +max

k
11
(:+1)g(1

1
(:+1) ).

The first term is maximized if k(11
(8) ) = 12

(8) . The second term is maximized if
k(11

(:+1) ) = 1
2
(:+1) . Thus, we proved the statement.

1Dpersistent diagramof graphfiltration is given by {(−∞, 3 (1) ), · · · , (−∞, 3 (@) )}.
Ignoring −∞, the Wasserstein distance is given by

�2
, 1 (%1, %2) = min

k

@1∑
8=1
|31
8 − k(31

8 ) |2.

Then we follow the similar inductive argument as the 0D case. �

3.1 Graph matching via the Wasserstein distance

Using the Wasserstein distance between two graphs, we match graphs at the edge
level. In the usual graphmatching problem, the node labels do not have to bematched
and thus, the problem is different from simply regressing brain connectivity matrices
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over other brain connectivity matrices at the edge level [6]. The graph matching has
been previously used in matching and averaging heterogenous tree structures such
as brain artery trees and neuronal trees [25].

Suppose we have weighted graphs X1 = (+1, |
1) and X1 = (+2, |

2), and corre-
sponding 0D persistent diagrams %0

1 and %2
2 and 1D persistent diagrams %1

1 and %2
2.

We define the Wasserstein distance between graphs X1 and X2 as the Wasserstein
distance between corresponding persistent diagrams %1 and %2:

�, 9 (X1,X2) = �, 9 (% 91 , %
9

2).

The 0DWasserstein distance matches birth edges while the 1DWasserstein distance
matches death edges. We need to use both distances together to match graphs. Thus,
we use the squared sum of 0D and 1D Wasserstein distances

D(X1,X2) = �2
, 0 (X1,X2) + �2

, 1 (X1,X2)

as the Wasserstein distance between graphs in the study. Then we can show the
distance is translation and scale invariant in the following sense:

D(2 + X1, 2 + X2) = D(X1,X2),
1
2
D(2X1, 2X2) = D(X1,X2).

Unlike existing computationally demanding graph matching algorithms, the
method is scalable at O(@ log @) run time. The majority of runtime is on sorting
edge weights and obtaining the corresponding maximum spanning trees (MST).

3.2 Wasserstein graph mean

Given a collection of graphs X1 = (+, |1), · · · ,X= = (+, |=) with edge weights
|: = (|:

8 9
), the usual approach for obtaining the average network X̄ is simply

averaging the edge weigth matrices in an element-wise fashion

X̄ =

(
+,

1
=

=∑
:=1

|:8 9

)
.

However, such average is the average of the connectivity strength. It is not necessarily
the average of underlying topology. Such an approach is usually sensitive to topo-
logical outliers [17]. We address the problem through the Wasserstein distance. A
similar concept was proposed in persistent homology literature through the Wasser-
stein barycenter [2, 19], which is motivated by Fréchet mean [30, 52]. However, the
method has not seen many applications in modeling graphs and networks.

With Theorem 3, we define the Wasserstein graph sum of graphs X1 = (+, |1)
and X2 = (+, |2) as X1 + X2 = (+, |) with the birth-death decomposition,1 ∪,3
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satisfying
,1 ∪,3 = (,11 +,21) ∪ (,13 +,23).

with
| = F (,1 ∪,3).

However, the sum is not uniquely defined. Thus, the average of two graphs is also
not uniquely defined. The situation is analogous to Fréchet mean, which often does
not yield the unique mean [30, 52]. However, this is not an issue since their topology
is uniquely defined and produces identical persistent diagrams. Now, we define the
Wasserstein graph mean EX of X1, · · · ,X= as

EX =
1
=

∑=

:=1
X: . (12)

The Wasserstein graph mean is the minimizer with respect to the Wasserstein dis-
tance, which is analogous to the samplemean as theminimizer of Euclidean distance.
However, the Wasserstein graph mean is not unique in geometric sense. It is only
unique in topological sense.

Theorem 5 The Wasserstein graph mean is the graph given by

EX = arg min
-

=∑
8=1
D(-,X8).

Proof Since the cost function is a linear combination of quadratic functions, the
global minimum exists and unique. Let - = (+,,1 ∪ ,3) be the birth-death
decomposition with ,1 = {1 (1) , · · · , 1 (@0) } and ,3 = {3 (1) , · · · , 3 (@1) }. From
Theorem 4,

=∑
8=1
D(-,X8) =

=∑
8=1

[ @0∑
8=1
(1 (8) − 1:(8) )

2 +
@1∑
8=1
(3 (8) − 3:(8) )

2
]
.

This is quadratic so the minimum is obtained by setting its partial derivatives with
respect to 1 (8) and 3 (8) equal to zero:

1 (8) =
1
=

=∑
:=1

1:(8) , 3 (8) =
1
=

=∑
:=1

3:(8) .

Thus, we obtain

,1 =
1
=

=∑
:=1

,:1 , ,3 =
1
=

=∑
:=1

,:3 .

This is identical to the birth-death decomposition of 1
=

∑=
:=1X: and hence proves the

statement. �

The Wasserstein graph variance VX is defined in a similar fashion:
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VX =
1
=

=∑
8=1
D(EX,X8),

which is interpreted as the variability of graphs from the Wassterstein graph mean
EX. We can rewrite the Wasserstein graph variance as

VX =
1
=

=∑
8=1
D

(1
=

=∑
9=1
X9 ,X8

)
=

1
=2

=∑
8, 9=1
D(X8 ,X9 ). (13)

The formulation (13) compute the variance using the pairwise distances without the
need for computing the Wasserstein graph mean.

3.3 Wasserstein graph clustering

There are few studies that used the Wasserstein distance for clustering [36, 58].
The existing methods are mainly applied to geometric data without topological
consideration. It is not obvious how to apply the method to cluster graph data. We
propose to use theWasserstein graphmatchingmethod to cluster collection of graphs
X1, · · · ,X= into : clusters �1, · · · , �: such that

∪:8=1�8 = {X1, · · · ,X=}, �8 ∩ � 9 = ∅.

The total number of ways of partitioning = data points into : nonempty clusters
is the Stirling number of the second kind (=,: [35]. There are (=,1 = 1 1-clusters,
(=,2 = 2=−1 −1 2-clusters and (=,=−1 =

=(=−1)
2 possible (=−1)-clusters out of = data

points. Asymptotically (=,: increases exponentially as [35]

(=,: ∼
:=

:!
.

Brute-force approaches for searching for every possible clusters is not feasible for
large =. We propose to a more scalable approach for clustering.

Let � = (�1, · · · , �: ) be the collection of clusters. Let ` 9 be the Wasserstein
cluster mean given by

` 9 =
1
|� 9 |

∑
- ∈� 9

-

with |� 9 | number of elements in the cluster� 9 . The clustermean is computed through
the birth-death decomposition using (12). Let ` = (`1, · · · , `: ) be the cluster mean
vector. The within-cluster distance is given by
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;, (�; `) =
:∑
9=1

∑
- ∈� 9

D(-, ` 9 )., (14)

which can be also written as

;, (�; `) =
:∑
9=1
|� 9 |V 9X, (15)

whereV 9X = 1
|� 9 |

∑
- ∈� 9 D(-, ` 9 ) is theWasserstein graph variance within cluster

� 9 . The optimal cluster is found by minimizing ;, (�) in (14) over every possible�.
If ` is given and fixed, the identification of clusters� can be done easily by assigning
each network to the closest mean. Thus the Wasserstein clustering algorithm can
be written as the two-step optimization similar to the expectation maximization
(EM) algorithm often used in variational inferences and likelihood methods [7]. The
first step computes the cluster mean. The second step minimizes the within-cluster
distance. The two-step optimization is then iterated till convergence. Such process
converges locally.
Theorem 6 The Wasserstein graph clustering algorithm converges locally.
Proof In the expectation step, we compute the cluster mean. Assume � =

(�1, · · · , �: ) is estimated from the previous iteration. In the current iteration, the
cluster mean ` corresponding to � is updated as

` 9 ←
1
|� 9 |

∑
- ∈� 9

-.

for each 9 . From Theorem 5, the cluster mean gives the lowest bound on function
;, (�; a) for any a = (a1, · · · , a: ):

;, (�; `) =
:∑
9=1

∑
- ∈� 9

D(-, ` 9 ) ≤
:∑
9=1

∑
- ∈� 9

D(-, a 9 ) = ;, (�; a). (16)

In each iteration, we check if the cluster mean ` is changed from the previous
iteration. If not, the algorithm simply stops. Thus we can force ;, (�; a) to be
strictly decreasing over each iteration.

In theminimization step, the clusters are updated from� to� ′ = (� ′
�1
, · · · , � ′

�:
)

by reassigning each graph X8 to the closest cluster ��8 , i.e.,

�8 = arg min
9
�, (X8 , ` 9 ).

Subsequently, we have

;, (� ′; `) =
:∑
9=1

∑
- ∈�′

�8

�, (X8 , `�8 ) ≤
:∑
9=1

∑
- ∈� 9

�, (X8 , ` 9 ) = ;, (�; `). (17)
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From (16) and (17), ;, (�; `) strictly decreases over iterations. Any bounded strictly
decreasing sequence converges. �

Numerical implementation. Just like :-means clustering algorithm that converges
only to local minimum, there is no guarantee the Wasserstein graph clustering
converges to the global minimum [28]. This is remedied by repeating the algorithm
multiple times with different random seeds .

3.4 Clustering as a linear assignment problem

Let H8 be the true cluster label for the 8-th data. Let Ĥ8 be the estimate of H8
we determined from Wasserstein graph clustering. Let H = (H1, · · · , H=) and
Ĥ = ( Ĥ1, · · · , Ĥ=). In clustering, there is no direct association between true clustering
labels and predicted cluster labels. Given : clusters �1, · · · , �: , its permutation
c(�1), · · · , c(�: ) is also a valid cluster for c ∈ S: , the permutation group of order
: . There are :! possible permutations in S: [18]. The clustering accuracy �(H, Ĥ) is
then given by

�( Ĥ, H) = 1
=

max
c∈S:

=∑
8=1

1(c( Ĥ) = H).

This a modification to an assignment problem and can be solved using the Hungarian
algorithm in O(:3) run time [22]. Let � ( Ĥ, H) be the confusion matrix of size : × :
tabulating the correct number of clustering in each cluster. The diagonal entries show
the correct number of clustering while the off-diagonal entries show the incorrect
number of clusters. To compute the clustering accuracy, we need to sum the diagonal
entries. Under the permutation of cluster labels, we can get different confusion
matrices. For large : , it is prohibitive expensive to search for all permutations. Thus
we need tomaximize the sum of diagonals of the confusionmatrix under permutation
with weight � = (28 9 ):

1
=

max
&∈S:

tr(&�) = 1
=

max
&∈S:

∑
8, 9

@8 928 9 , (18)

where & = (@8 9 ) is the permutation matrix consisting of entries 0 and 1 such that
there is exactly single 1 in each row and each column. This is a linear sum assignment
problem (LSAP), a special case of linear assignment problem [33].

4 Application to functional brain networks

The proposed method is applied in the accurate estimation of state spaces in dynam-
ically changing functional brain networks. The 479 subjects resting-state functional
magnetic resonance images (rs-fMRI) used in this paper were collected on a 3T
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MRI scanner (Discovery MR750, General Electric Medical Systems, Milwaukee,
WI, USA) with a 32-channel RF head coil array. The 479 healthy subjects consist
of 231 males and 248 females ranging in age from 13 to 25 years were used. The
image acquisition and preprocessing details are given in [8]. After preprocessing,
which include motion corrections and image alignment to the template, the resulting
rs-fMRI consist of 91× 109× 91 isotropic voxels at 295 time points. We parcellated
the brain volume into 116 non-overlapping brain regions from a widely used atlas
[53]. The fMRI data were averaged across voxels within each brain region, resulting
in 116 average fMRI signals with 295 time points for each subject. The rs-fMRI
signals were then scaled to fit to unit interval [0, 1] and treated as functional data in
[0, 1].

4.1 Weighted Fourier series representation

The most common approach in computing time-varying correlation in time series
data is through SW, where correlations between brain regions are computed over
the windows [3, 29, 45, 37, 28]. However, the use of discrete windows can induce
unnecessary high-frequency fluctuations in dynamic correlations [38], though in
some cases tapering can mitigate this effect [3]. Further, correlation computation
within windows is sensitive to outliers [20].

To address these problems, we performed the Weighted Fourier series (WFS)
representation that generalizes the cosine Fourier transform with the additional ex-
ponential weight that smooths out high frequency noises while reducing the Gibbs
phenomenon [12, 26].WFS further avoids using sliding windows (SW) in computing
correlations over time. For persistent homology method to work robustly across dif-
ferent subjects and time points, such signal denoising methods are needed. Consider
arbitrary noise signal 5 (C), C ∈ [0, 1] which will be denoised through diffusion.

Theorem 7 The unique solution to 1D heat diffusion:

m

mB
ℎ(C, B) = m2

mC2
ℎ(C, B) (19)

on unit interval [0, 1] with initial condition ℎ(C, B = 0) = 5 (C) is given by WFS:

ℎ(C, B) =
∞∑
;=0

4−;
2 c2B2 5 ;k; (C), (20)

where k0 (C) = 1, k; (C) =
√

2 cos(;cC) are the cosine basis and 2 5 ; =
∫ 1

0 5 (C)k; (C)3C
are the expansion coefficients.

The algebraic derivation is given in [12]. Note the cosine basis is orthonormal

〈k; , k<〉 =
∫ 1

0
k; (C)k< (C) 3C = X;<,
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Fig. 4 Left: The original and smoothed fMRI time series using WFS with degree ! = 295 and
different heat kernel bandwidth B. The bandwidth 4.141× 10−4 is used in this study approximately
matches 20 TRs often used in the sliding window methods. Right: Doted gray lines are correlations
computed over sliding windows. The solid black lines are correlations computed using WFS.

where X;< is Kroneker-detal taking value 1 if ; = < and 0 otherwise. We can rewrite
(20) as a more convent convolution form

ℎ(C, B) =
∫ 1

0
 B (C, C ′) 5 (C ′)3C ′,

where heat kernel  B (C, C ′) is given by

 B (C, C ′) =
∞∑
;=0

4−;
2 c2Bk; (C)k; (C ′).

The diffusion time B is usually referred to as the kernel bandwidth and controls the
amount of smoothing. Heat kernel satisfies

∫ 1
0  B (C, C ′) 3C = 1 for any C ′ and B.

To reduce unwanted boundary boundary effects near the data boundary C = 0 and
C = 1 [26, 28], we project the data onto the circle C with circumference 2 by the
mirror reflection:

6(C) = 5 (C) if C ∈ [0, 1], 6(C) = 5 (2 − C) if C ∈ [1, 2] .

Then perform WFS on the circle.

Theorem 8 The unique solution to 1D heat diffusion:

m

mB
ℎ(C, B) = m2

mC2
ℎ(C, B) (21)

on the circle C with the initial periodic condition ℎ(C, B = 0) = 5 (C) if C ∈
[0, 1], ℎ(C, B = 0) = 5 (2 − C) if C ∈ [1, 2] is given by WFS:
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ℎ(C, B) =
∞∑
;=0

4−;
2 c2B2 5 ;k; (C), (22)

where k0 (C) = 1, k; (C) =
√

2 cos(;cC) are the cosine basis and 2 5 ; =
∫ 1

0 5 (C)k; (C)3C
are the expansion coefficients.

Proof The cosine basis is defined on interval [0, 1]. We extend the domain of the
basis by mirror reflection k̃(C) = k(C)/

√
2 in [0, 1] and k̃(C) = k(2 − C)/

√
2 for

C ∈ [1, 2]. Since k̃(2) = k̃(0), the extended basis k̃ is a proper basis on circle C.
The basis is scaled to have orthonormality:

〈k̃; , k̃<〉 =
∫ 1

0
k; (C)k< (C) 3C +

∫ 2

1
k; (2 − C)k< (2 − C) 3C = X;<.

Subsequently, we can also extend the heat kernel as  ̃B (C, C ′) =  B (C, C ′)/2 if C ′ ∈
[0, 1] and  ̃B (C, C ′) =  B (C, 2− C ′)/2 if C ′ ∈ [1, 2]. The extended heat kernel satisfies∫ 2

0
 B (C, C ′)3C ′ =

∫ 1

0
 B (C, C ′)3C ′ +

∫ 2

1
 B (C, 2 − C ′)3C ′ = 1.

Then, the solution to (21) is given by heat kernel convolution [12]

ℎ(C, B) =
∫ 2

0
 ̃B (C, C ′)ℎ(C ′, B = 0) 3C ′

=

∫ 1

0

1
2
 B (C, C ′) 5 (C ′)3C ′ +

∫ 2

1

1
2
 B (C, 2 − C ′) 5 (2 − C ′)3C ′

=

∫ 1

0
 B (C, C ′)6(C ′)3C ′.

Hence, heat kernel smoothing on the circle with mirror reflection symmetry can be
simply done by applying WFS in unit interval [0, 1]. �

Numerical implementation. The cosine series coefficients 2 5 ; are estimated using
the least squares method by setting up a matrix equation [12]. We set the expansion
degree to equate the number of time points, which is 295. The window size of 20
TRs were used in most sliding window methods [3, 34, 28]. We matched the full
width at half maximum (FWHM) of heat kernel to the window size numerically. We
used the fact that diffusion time B in heat kernel approximately matches to the kernel
bandwidth of Gaussian kernel 4−C2/2f2 as f = B2/2 (page 144 in [11]). 20 TRs is
approximately equivalent to heat kernel bandwidth of about 4.144 · 10−4 in terms of
FWHM. Figure 4 displays the WFS representation of rsfMRI with different kernel
bandwidths.
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4.2 Dynamic correlation on weighted Fourier series

The weighted Fourier series representation provides a way to compute correlations
dynamically without using sliding windows. Consider time series G(C) and H(C) with
heat kernel  B (C, C ′). The mean and variance of signals with respect to the heat kernel
are given by

EG(C) =
∫ 1

0
 B (C, C ′)G(C ′) 3C ′. VG(C) =

∫ 1

0
 B (C, C ′)G2 (C ′) 3C ′ −

[
EG(C)

]2

Subsequently, the correlation |(C) of G(C) and H(C) is given by

|(C) =
∫ 1

0  B (C, C ′)G(C ′)H(C ′) 3C − EG(C)EH(C)√
VG(C)

√
VH(C)

.

When the kernel is shaped as a sliding window, the correlation |(C) exactly matches
the correlation computed over the sliding window. The kernelized correlation gen-
eralizes the concept of integral correlations with the additional weighting term [27].
As B→∞, |(C) converges to the Pearson correlation computed over the whole time
points. Thus, the kernel bandwidth behaves like the length of sliding window.

Theorem 9 The correlation |(C) of time series G(C) and H(C) with respect to heat
kernel  B (C, C ′) is given by

|(C) =
∑∞
;=0 4

−;2 c2B2GH;k; (C) − `G (C)`H (C)
fG (C)fH (C)

, (23)

with

`G (C) =
∞∑
;=0

4−;
2 c2B2G;k; (C), f2

G (C) =
∞∑
;=0

4−;
2 c2B2GG;k; (C) − `2

G (C).

2G; =

∫ 1

0
G(C)k; (C)3C, 2H; =

∫ 1

0
H(C)k; (C)3C

are the cosine series coefficients. Similarly we expand G(C)H(C), G2 (C) and H2 (C) using
the cosine basis and obtain coefficients 2GH; , 2GG; and 2HH; .

The derivation follows by simply replacing all the terms with the WFS representa-
tion. Correlation (23) is the formula we used to compute the dynamic correlation in
this study. Figure 4 displays the WFS-based dynamic correlation for different band-
widths. A similar weighted correlation was proposed in [40], where time varying
exponential weights proportional to 4C/\ with exponential decay factor \. However,
our exponential weight term is related to the spectral decomposition of heat kernel
in the spectral domain and invariant over time. The WFS based correlation is not
related to [40].
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Fig. 5 Left: The time series of estimated state spaces using theWasserstein clustering and :-means
clustering for 3 subjects. The time is normalized into unit interval [0, 1]. Right: The ratio of
within-cluster to between-cluster distances. Smaller the ratio, better the clustering fit is.

4.3 Estimation of distinct state space in dynamic connectivity

For ? brain regions, we estimated ? × ? dynamically changing correlation matrices
�8 (C) for the 8-th subject using WFS. Let C8 9 denote the vectorization of the upper
triangle of ?×?matrix�8 (C 9 ) at time point C 9 into ?2×1 vector. The collection ofC8 9
over) = 295 time points and = = 479 subjects is then feed intoWasserstein clustering
in identifying the recurring brain connectivity states that is common across subjects
at the group level. We compared the proposed Wassertein clustering against the
:-means clustering, which has been often used baseline method in the state space
modeling [3, 26, 28]. After clustering, each correlation matrix �8 (C 9 ) is assigned
integers between 1 and : . These discrete states serve as the basis of investigating the
dynamic pattern brain connectivity [51]. For the convergence of both Wasserstein
and :-means clustering, the clusterings were repeated 10 times with different initial
centroids and the average results are reported. Figure 5-left displays the result of the
Wasserstein clustering against the :-means in few brain regions for a subject. 295
time points are rescaled to fit into unit interval [0, 1].

The optimal number of cluster : was determined by the elbow method [3, 42, 51,
28]. For each value of : , we computed the ratio of the within-cluster to between-
cluster distances. The ratio shows the goodness-of-fit of the cluster model. The
optimal number of clusters were determined by the elbow method, which gives
the largest slope change in the ratio. : = 3 gives the largest slope in the both
methods (Figure 5-right). At : = 3, the ratio is 0.034 ± 0.012 for 479 subjects for
Wasserstein while it is 0.202±0.047 for the :-means. The six times smaller ratio for
the Wasserstein clustering demonstrates the superior model fit over :-means. Figure
6 shows the results of clustering. The dynamic change of states can be viewed as a
Markov chain [24, 4, 28]. For the Wasserstein clustering, the probabilities of staying
in the states 1, 2 and 3 are 0.97, 0.96 and 0.97 respectively. for the :-means clustering,
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Fig. 6 Left: The average estimated state spaces of dynamically changing brain networks. Right: The
change of state spaces modeled as a Markov chain with transition probabilities. The Wasserstein
clustering results significantly increases the transition probability to stay in the same state.

the probabilities of staying in the states 1, 2 and 3 are 0.94, 0.93 and 0.93 respectively.
These few percentage differences significantly increases the Wasserstein clustering
model fit. We believe our method provides more accurate results.

5 Conclusion

In this study, the proposed the Wasserstein graph clustering for estimation and
quantification of dynamic state changes in time varying networks. We developed a
coherent statistical theory based on persistent homology and presented how such
method is applied to the resting state fMRI data. The resting-state brain networks
tend to remain in the same state for a long period before the transition to another state
[3, 45, 10]. The average brain network in each state (Figure 6) does not follow similar
connectivity patterns observed in the previous studies [9]. But further research is
needed for independent validation.
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