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Abstract. Human brain activity is often measured using the blood-
oxygen-level dependent (BOLD) signals obtained through functional mag-
netic resonance imaging (fMRI). The strength of connectivity between
brain regions is then measured and represented as Pearson correlation
matrices. As the number of brain regions increases, the dimension of
matrix increases. It becomes extremely cumbersome to even visualize
and quantify such weighted complete networks. To remedy the problem,
we propose to embedded brain networks onto a hypersphere, which is a
Riemannian manifold with constant positive curvature.

1 Introduction

In functional magnetic resonance imaging (fMRI) studies of human brain, the
connectivity matrices are often constructed using the Pearson correlation be-
tween the average blood-oxygen-level dependent (BOLD) signals between par-
cellations [9]. The whole brain is often parcellated into p disjoint regions, where
p is usually a few hundreds [3,17]. Subsequently, either functional or structural
information is overlaid on top of the parcellation and p× p connectivity matrix
C = (cij) that measures the strength of connectivity between brain regions i and
j is obtained. Recently, we are beginning to see large-scale brain networks that
are more effective in localizing regions and increasing prediction power [6,37].
However, increasing parcellation resolution also increases the computational bur-
den exponentially.

For an undirected network with p number of nodes, there are p(p − 1)/2
number of edges and thus, the brain network is considered as an object of in
dimension p(p−1)/2. Such high dimensional data often requires O(p3) run time
for various matrix manipulations such as matrix inversion and singular value
decomposition (SVD). Even at 3mm resolution, functional magnetic resonance
images (fMRI) has more than 25000 voxels in the brain [6]. It requires about
5GB of storage to store the matrix of size 25000 × 25000 (Figure 1). At 1mm
resolution, there are more than 300000 voxels and it requires more than 670GB
of storage. Considering large-scale brain imaging datasets often have thousands
images, various learning and inference at higher spatial resolution would be a
serious computational and storage challenge.
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Fig. 1: The correlation brain network (left) obtained from the resting-state func-
tional magnetic resonance images (rs-fMRI) of a healthy subject at 5000 regions
[6,19]. The network is so dense to visualize all the edges (right), only the con-
nections with positive correlations are shown. Beyond visualization, performing
various matrix and graph operations such dense network is computationally time
consuming and often not feasible.

We directly address these challenges by embedding the brain networks into
3D unit sphere. Although there are few available technique for embedding graphs
into hyperbolic spaces, the hyperbolic spaces are not intuitive and not necessarily
easier to compute [30,34]. Since numerous computational tools have been devel-
oped for spherical data, we propose to embed brain networks on a 2D sphere.
The spherical network embedding offers far more adaptability and applicability
in various problems.

2 Embedding onto a sphere

Consider a weighted complete graph G = (V,C) consisting of node set V =
{1, . . . , p} and edge weight C = (cij), where cij is the weight between nodes i
and j. The edge weights measure similarity or dissimilarity between nodes. The
edge weights in most brain networks are usually given by some sort of similarity
measure between nodes [26,27,29,31,36]. Most often the Pearson correlation is
used in brain network modeling [9] (Figure 1).

Suppose measurement vector xj = (x1j , · · · , xnj)> ∈ Rn is given on node j
over n subjects. We center and rescale the measurement xj such that

x>j xj =

n∑
i=1

x2ij = 1,

n∑
i=1

xij = 0.
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We can show that cij = x>i xj is the Pearson correlation [9]. Such points are in
the n-dimensional sphere Sn−1. Let the n× p data matrix be X = [x1, · · · ,xp].
Then the correlation matrix is given by X>X

X>X = (x>i xj) = U>D(η1, · · · , ηp)U (1)

with U>U = Ip and D is a diagonal matrix with eigenvalues η1 ≥ · · · ≥ ηp.
Since there are usually more nodes than subjects in brain images, i.e., n � p,
the correlation matrix is not positive definite and some eigenvalues might be
zeros [6]. Since the correlation is a similarity measure, it is not distance. Often
used correlation distance cij = 1− x>i xj is not metric. To see this, consider the
following 3-node counter example:

x1 = (0,
1√
2
,− 1√

2
)>, x2 = (

1√
2
, 0,− 1√

2
)>, x3 = (

1√
6
,

1√
6
,− 2√

6
)>.

Then we have c12 > c13 + c23 disproving triangle inequality. Then the question
is under what condition, the Pearson correlations becomes a metric?

Theorem 1. For centered and scaled data x1, · · · ,xp, θij = cos−1(x>i xj) is a
metric.

Proof. The centered and scaled data xi and xj are residing on the unit sphere
Sn−1. The correlation between xi and xj is the cosine angle θij between the two
vectors, i.e.,

x>i xj = cos θij .

The geodesic distance d between nodes xi and xj on the unit sphere is given by
angle θij :

θij = cos−1(x>i xj).

For nodes xi,xj ∈ Sn−1, there are two possible angles θij and 2π−θij depending
on if we measure the angle along the shortest or longest arcs. We take the
convention of using the smallest angle in defining θij . With this convention,

θij ≤ π.

Given three nodes xi,xj and xk, which forms a spherical triangle, we then have
spherical triangle inequality

θij ≤ θik + θkj . (2)

The inequality (2) is proved in [32]. Other conditions for metric are trivial. ut
Theorem 1 directly shows that the embedding of correlation matrices on Sn−1

can be easily done by simply centering and scaling data. A similar approach is
proposed for embedding an arbitrary distance matrix to a sphere in [39]. In
our case, the problem is further simplified due to the geometric structure of
correlation matrices. On S2, the network is simply embedded as nodes x1, · · · ,xp
and edges with weights cos(x>i xj) [9].
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3 Hypersperical harmonic expansion of brain networks

Once we embedded correlation networks onto a sphere, it is possible to alge-
braically represent such networks as basis expansion involving the hyperspherical
harmonics [13,21,23,24,25]. Let ϕ = (θ, ϕ2, · · · , ϕn−1) be the spherical coordi-
nates of Sn−1 such that θ ∈ [0, π), ϕi ∈ [0, 2π) where θ is the axial angle. Then
the spherical Laplacian ∆n−1 is iteratively given as [10]

∆n−1 =
∂2

∂θ2
+ (n− 2) cot θ

∂

∂θ
+

1

sin2 θ
∆n−2.

With respect to the spherical Laplacian ∆n−1, the hyperspherical harmonics
Yl(ϕ) with l = (l1, · · · , ln−1) satisfies

∆n−1Yl(ϕ) = −λlYl(ϕ)

with eigenvalues λl = ln−1(ln−1 + n − 1) for |l1| ≤ l2 ≤ · · · ln−1. The hyper-
spherical harmonics are given in terms of the Legendre polynomials. We can
compute the hyperspherical harmonics inductively from the previous dimension
starting with S2, which we parameterize with (θ, ϕ2) ∈ [0, π)⊗ [0, 2π). Then the
traditional spherical harmonics Yl2l1 is given as [8,11]

Yl2l1 =


cl2l1P

|l1|
l2

(cos θ) sin(|l1|ϕ2), −l2 ≤ l1 ≤ −1,
cl2l1√

2
P
|l1|
l2

(cos θ), L1 = 0,

cl2l1P
|l1|
l2

(cos θ) cos(|l1|ϕ2), 1 ≤ l1 ≤ l2,

where cl2l1 =
√

2l2+1
2π

(l2−|l1|)!
(l2+|l1|)! and P l1l2 is the associated Legendre polynomial

satisfying

P l1l2 (x) =
(1− x2)l1/2

2l2 l2!

dl2+l1

dxl2+l1
(x2 − 1)l2 , x ∈ [−1, 1].

Previous imaging literature often used the complex-valued spherical harmonics
[5,16,20,33]. In practice, it is suffice to use only real-valued spherical harmonics
[11], which is more convenient in setting up real-valued models. The relationship
between the real- and complex-valued spherical harmonics is given in [4,22].

The hyperspherical harmonics are orthonormal with respect to area element

dµ(ϕ) = sinn−2 θ sinn−3 ϕ2 · · · sinϕn−1dϕ

such that

〈Yl1Yl2〉 =

∫
Sn−1

Yl1(ϕ)Yl2(ϕ) dµ(ϕ) = δ1112
,

where δ1112
is the Kronecker’s delta. Then using the hyperspherical harmonics,

we can build the multiscale representation of networks through the heat kernel
expansion [7,8]

Kt(ϕ,ϕ
′) =

∑
l

e−λltYl(ϕ)Yl(ϕ
′),
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where the summation is over all possible valid integer values of l.
Given initial data g(t = 0,ϕ) = f(ϕ) on Sn−1, the solution to diffusion

equation
dg

dt
= ∆n−1g

at time t is given by

g(t,ϕ) =

∫
Sn−1

Kt(ϕ,ϕ
′)f(ϕ′) dµ(ϕ′)

=
∑
l

e−λltflYl(ϕ)

with spherical harmonic coefficients fl = 〈f, Yl〉. The coefficients are often es-
timated in the least squares fashion in the spherical harmonic representation
(SPHARM) often used in brain cortical shape modeling [8,16,20,33]. However,
for the network embedding problem, it does not require the least squares method.
The embedded network nodes can be modeled as the Dirac delta function such
that

f(ϕ) =
1

p

p∑
i=1

δ(ϕ− xi).

We normalize the expression such that
∫
Sn−1 f(ϕ)dµ(ϕ) = 1. Then we can alge-

braically show that the solution is given by

g(t,ϕ) =
∑
l

e−λltYl(ϕ)

p∑
i=1

Yl(xi).

4 Spherical multidimensional scaling

We have shown how to embed correlation matrices into Sn−1 and model them
parametrically using spherical harmonics. In many large scale brain imaging
studies, the number of subject n can be thousands. Embedding in such a high
dimensional sphere may not be so useful in practice. We propose to embed
correlation matrices into two sphere S2, which is much easier to visualize and
provides parametric representation through available SPAHRM tools [7].

Given metric θij = cos−1(x>i xj), we want to find the lower dimensional
embedding yj = (y1j , y2j , y3j)

> ∈ S2 satisfying

‖yj‖2 = y>j yj =

3∑
i=1

y2ij = 1.

This is a spherical multidimensional scaling (MDS) often encountered in analyz-
ing spherical data such as earthquakes [14] and colors in computer vision [28].
Consider 3× p data matrix Y = [y1, · · · ,yp]. Then the spherical MDS proceeds
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as follows. Given data matrix X in (1), we find Y = [y1, · · · ,yp] that minimizes
the loss

L(X,Y) =

p∑
i,j=1

[
cos−1(x>i xj)− cos−1(y>i yj)

]2
. (3)

The spherical MDS (3) is usually solved via the gradient descent on spherical
coordinates [28]. However, the approximate version of (3) can be solved exactly.
At the minimum of (3), the loss is expected to be small and we can approximate
the expression using the Taylor expansion [1]

cos−1(x>i xj) =
π

2
− x>i xj + · · · .

Ignoring any higher order terms, we minimize the linearized loss

L(X,Y) =

p∑
i,j=1

[
x>i xj − y>i yj

]2
. (4)

The loss (4) can be written in the matrix form

L(X,Y) = tr(X>X−Y>Y)2 = ‖X>X−Y>Y‖2F , (5)

with the Frobenius norm ‖ · ‖F . The minimization of loss (5) is a low-rank
approximation problem, which can be exactly solved through the Eckart Young
Mirsky theorem [18]:

arg min
Y>Y

L(X,Y) = U>D(η1, η2, η3, 0, · · · , 0)U,

where U is the orthogonal matrix obtained as the SVD of X>X in (1). The proof
is in [12]. The theorem states that in order to match a given symmetric matrix
using the Frobenius norm with another symmetric matrix, we need to align with
the principle directions of the given matrix.

Let [v1, · · · ,vp] be 3×pmatrix consisting of the first three rows ofD(
√
η1,
√
η2,√

η3, 0, · · · , 0)U . All other rows below are zero. Each column
vj

‖vj‖ ∈ S
2. Further,

( v>i vj
‖vi‖‖vj‖

)
= U>D(η1, η2, η3, 0, · · · , 0)U.

Thus Y =
[

v1

‖v1‖ , · · · ,
vp

‖vp‖

]
solves (5) and we claim

Theorem 2.
arg min

Y∈S2
L(X,Y) =

[ v1

‖v1‖
, · · · , vp

‖vp‖

]
.

The embedding is not unique. For any rotation matrix Q, QY will be another
embedding. In brain imaging applications, where we need to embed multiple
brain networks, the rotation matrix Q should not come from individual subject
but should come from the fixed average template.
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Fig. 2: Left: embedding of a brain network with 5000 nodes to sphere S2. Each
scatter point can be modeled as the Dirac delta function. Right: embedding to
hyperbolic space, where the embedded points from a torus-like circular pattern.

5 Experiement

We applied the proposed spherical embedding to a functional brain network ob-
tained through the Human Connectome Project (HCP) [35,38]. The resting-state
functional magnetic resonance image (rs-fMRI) of a healthy subject was collected
with 3T scanner at 2.0 mm voxel resolution (91×109×91 spatial dimensionality),
1200 frames at a rate of one frame every 720 ms. The scan went through spatial
and temporal preprocessing including spatial distortions and motion correction,
frequency filtering, artifact removal as the part of HCP preprocessing pipeline
[35]. fMRI is then denoised using the Fourier series expansion with cosine basis
[19]. A correlation matrix of size 5000 × 5000 was obtained by computing the
Pearson correlation of the expansion coefficients across uniformly sampled 5000
brain regions (Figure 1). Following the proposed method, we embedded the brain
network into 5000 scatter points on S2 (Figure 2). The method seems to embed
brain networks uniformly across S2. The Shepard diagram of displaying distance
cos−1(y>i yj) vs. cos−1(x>i xj) is given in Figure 3. The correlation between the
distances is 0.51 indicating a reasonable embedding performance.

6 Discussion

The embedding of brain networks to a sphere allows various computation of brain
networks straightforward. Instead of estimating the network gradient discretely
in coarse fashion, it is possible to more smoothly estimate the network gradient
on a sphere using the spherical coordinates [15]. We can further able to obtain
various differential quantities of brain networks such as gradient and curls often
used in the Hodge decomposition [2]. This is left as a future study.
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Fig. 3: The shepard diagrams of all the pairwise distances (gray points) on 5000
nodes with spherical MDS (left) and hyperbolic MDS. Red points are first 500
pairwise distances. The geodesic distance cos−1(x>i xj) is used for Pearson cor-
relations. The correlation between distances are 0.51 for spherical MDS and
0.0018 for hyperbolic MDS demonstrating far better embedding performance of
spherical MDS.

The major body of literature on the embedding of networks is toward hyper-
bolic spaces, where 2D Poincare disk D is often used [30,34,39]. Figure 2 shows
the embedding of the brain network to D using hyperbolic MSD [40]. It is usually
characterized by the torus-like circular pattern. Unlike spherical embedding, the
hyperbolic embedding does not provide uniform scatter points.

The Shepard diagram of displaying the geodesic distance in the Poincare
disk vs. cos−1(x>i xj) is given in Figure 3. The correlation between distances
is 0.0018 indicating a poor embedding performance compared to the spherical
MDS. For correlation based brain networks, the spherical MDS might be a better
alternative over hyperbolic MDS. However, further investigation is needed for
determining the optimal embedding method for brain networks.
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