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A B S T R A C T

Persistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It
captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing
topological features that persist over these scales. These features are summarized in persistence diagrams, and
their dissimilarity is quantified using the Wasserstein distance. However, the Wasserstein distance does not
follow a known distribution, posing challenges for the application of existing parametric statistical models. To
tackle this issue, we introduce a unified topological inference framework centered on the Wasserstein distance.
Our approach has no explicit model and distributional assumptions. The inference is performed in a completely
data driven fashion. We apply this method to resting-state functional magnetic resonance images (rs-fMRI) of
temporal lobe epilepsy patients collected from two different sites: the University of Wisconsin-Madison and
the Medical College of Wisconsin. Importantly, our topological method is robust to variations due to sex and
image acquisition, obviating the need to account for these variables as nuisance covariates. We successfully
localize the brain regions that contribute the most to topological differences. A MATLAB package used for all
analyses in this study is available at https://github.com/laplcebeltrami/PH-STAT.
1. Introduction

In standard graph theory based network analysis, network features
such as node degrees and clustering coefficients are obtained from
the adjacency matrices after thresholding weighted edges that measure
brain connectivity (Chung et al., 2017a; Sporns, 2003; Wijk et al.,
2010). However, the final statistical analysis results change depending
on the choice of threshold or parameter (Chung et al., 2013; Lee
et al., 2012; Zalesky et al., 2010). There is a need to develop a
multiscale network analysis framework that provides consistent results
and interpretation regardless of the choice of parameter (Li et al.,
2020; Kuang et al., 2020). Persistent homology, an algebraic topology
method in topological data analysis (TDA), offers a novel solution
to this multiscale analysis challenge (Edelsbrunner and Harer, 2010).
Instead of examining networks at one fixed scale, persistent homology
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identifies persistent topological features that are robust under different
scales (Petri et al., 2014; Sizemore et al., 2018). Unlike existing graph
theory approaches that analyze networks at one different fixed scale
at a time, persistent homology captures the changes of topological
features over different scales and then identifies the most persistent
topological features that are robust under noise perturbations. Per-
sistent homological network approaches have been shown to be more
robust and to outperform many existing graph theory measures and
methods (Bassett and Sporns, 2017; Yoo et al., 2016; Santos et al.,
2019; Songdechakraiwut and Chung, 2020). In Lee et al. (2012), per-
sistent homology was demonstrated to outperform eight existing graph
theory features, such as the clustering coefficient, small-worldness,
and modularity. Similarly, in Chung et al. (2017b, 2019a), persistent
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053-8119/© 2023 Published by Elsevier Inc. This is an open access article under th

https://doi.org/10.1016/j.neuroimage.2023.120436
Received 15 May 2023; Received in revised form 14 September 2023; Accepted 30
e CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

October 2023

https://www.elsevier.com/locate/ynimg
http://www.elsevier.com/locate/ynimg
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
mailto:mkchung@wisc.edu
mailto:garciaramos@wisc.edu
mailto:fbpaiva@neurology.wisc.edu
mailto:jmathis@mcw.edu
mailto:prabhakaran@wisc.edu
mailto:vnair@uwhealth.org
mailto:memeyerand@wisc.edu
mailto:hermann@neurology.wisc.edu
mailto:jbinder@mcw.edu
mailto:struck@neurology.wisc.edu
https://doi.org/10.1016/j.neuroimage.2023.120436
https://doi.org/10.1016/j.neuroimage.2023.120436
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage 284 (2023) 120436M.K. Chung et al.

c

homology was found to outperform various matrix-norm-based network
distances.

Starting with the first TDA application in brain imaging in Chung
et al. (2009), where Morse filtration was used to characterize the
cortical thickness of autistic children, there have been numerous ap-
plications of TDA in brain imaging. Lee et al. (2011b,a) demonstrated
the use of persistent homology in modeling functional brain networks
for the first time. In recent years, TDA has garnered increasing interest
in the neuroimaging community, with various applications in different
modalities and disorders. For instance, TDA has also been employed in
the analysis of resting-state fMRI data (Petri et al., 2014), where TDA
was used to identify topological changes in brain networks under the
influence of the psychedelic compound psilocybin. Lord et al. (2016)
applied TDA to investigate the topological properties of resting-state
networks, contrasting them against graph theory approaches. Giusti
et al. (2016) proposed using simplicial homology to model higher-order
brain connectivity. In Wang et al. (2017, 2018), persistent homology
was shown to outperform topographic power maps, power spectral den-
sity, and local variance methods in an EEG study. In Yoo et al. (2017),
center persistency was demonstrated to outperform both the network-
based statistic and element-wise multiple corrections. Saggar et al.
(2018) applied TDA to task fMRI to track within- and between-task
transitions. Stolz et al. (2021) used TDA to characterize the task-based
fMRI of schizophrenia patients.

TDA has also been applied to analyze structural brain connectivity,
starting with Chung et al. (2011), where Rips filtration was employed
to model white matter fiber tracts. Reimann et al. (2017) utilized Betti
numbers to model synaptic neural networks. Sizemore et al. (2018)
employed TDA to investigate the topological cavities that exist in struc-
tural connectivity across subjects, using diffusion spectrum imaging.
Although persistent homology has been applied to a wide range of brain
network studies, its primary role has been as an exploratory data anal-
ysis tool, providing anecdotal evidence for network differences. One
factor limiting its more widespread adoption is the lack of transparent
interpretability. The lack of transparent interpretability is one factor
hampering more widespread use of topological approaches. A method
that directly ties topology to brain function and structure is needed to
understand the origin of topological differences. The methods proposed
in this study aim to address these deficits.

The Wasserstein distance is a popular metric for comparing per-
sistence diagrams. However, its application in statistical inference for
brain network studies has been limited, largely due to computational
constraints and scalability issues. Notable exceptions exist in the liter-
ature (Abdallah et al., 2023; Kumar et al., 2023; Robinson and Turner,
2017; Salch et al., 2021; Songdechakraiwut et al., 2021). Instead,
researchers have turned to the vectorization of persistence diagrams
as a more practical and efficient alternative for statistical inference.
Vectorization involves transforming a persistence diagram into a vec-
tor representation, making it more amenable to standard machine
learning and statistical techniques. Chung et al. (2009) vectorized the
persistence diagram into images by counting the number of scatter
points in the unit squares. Bubenik (2015) vectorized the persistence
diagram into a sequence of tent functions, known as the persistence
landscape. Adams et al. (2017) converted the persistence diagram into a
discrete, grid-based representation referred to as the persistence image.
In this paper, we demonstrate the feasibility of developing a coherent
scalable statistical inference framework based on the Wasserstein dis-
tance for differentiating brain networks in a two-sample comparison
setting. Our method simply bypasses the need for vectorization of
persistence diagrams.

The Wasserstein distance or the Kantorovich–Rubinstein metric, was
originally defined for comparing probability distributions (Vallender,
1974; Canas and Rosasco, 2012; Berwald et al., 2018). Due to its
connection to optimal mass transport, which enjoys various optimal
properties, the Wasserstein distance has found applications in various
2

imaging domains. However, its use in brain imaging and network data
has been limited. Mi et al. (2018) employed the Wasserstein distance
in resampling brain surface meshes. Shi et al. (2016), Su et al. (2015)
utilized the Wasserstein distance for classifying brain cortical surface
shapes. Hartmann et al. (2018) leveraged the Wasserstein distance
in building generative adversarial networks. Sabbagh et al. (2019)
applied the Wasserstein distance to a manifold regression problem in
the space of positive definite matrices for source localization in EEG. Xu
et al. (2021) used the Wasserstein distance for predicting the progres-
sion of Alzheimer’s disease in magnetoencephalography (MEG) brain
networks. However, the Wasserstein distance in these applications is
purely geometric in nature, and no TDA is performed.

We present a coherent scalable framework for the computation
of topological distance on graphs through the Wasserstein distance.
We directly build the Wasserstein distance using the edge weights
in graphs making the method far more accessible and adaptable. We
achieve (𝑛 log 𝑛) run time in most graph manipulation tasks such as
matching and averaging. The method is applied in building a uni-
fied inference framework for discriminating networks topologically.
Compared to existing graph theory feature based methods and other
topological distances, the method provides more robust performance
against false positives while increasing sensitivity when subtle topo-
logical signals are present. The method is applied in characterizing the
brain networks of temporal lobe epilepsy patients obtained from the
resting-state functional magnetic resonance imaging (rs-fMRI) without
model specification or statistical distributional assumptions. We will
show that the proposed method based on the Wasserstein distance can
capture the topological patterns that are consistently observed across
different subjects.

2. Methods

2.1. Preliminary: graphs as simplicial complexes

A high-dimensional object, such as brain networks, can be modeled
as a weighted graph  = (𝑉 ,𝑤), consisting of a node set 𝑉 indexed
as 𝑉 = {1, 2,… , 𝑝} and edge weights 𝑤 = (𝑤𝑖𝑗 ) between nodes 𝑖 and 𝑗
(Fig. 1). Although the method is applicable to arbitrary edge weights,
in this study, the edge weights will be derived from correlations across
different brain regions in rs-fMRI. Determining optimal methods to
threshold the weight adjacency matrix 𝑤 in order to quantify brain con-
nectivity remains a persistent challenge in graph theory (Adamovich
et al., 2022). Unfortunately, choices in the threshold parameter can
significantly impact the results, hindering both reproducibility and
cross-study comparisons, as well as the biological interpretation of
results. The persistent homology approaches are able to overcome this
limitation of graph theory through the process of filtration (Lee et al.,
2011b,a). If we connect nodes based on a certain criterion and index
them over increasing filtration values, they form a simplicial complex
that captures the topological structure of the underlying weighted
graph (Edelsbrunner and Harer, 2010; Zomorodian, 2009). During the
filtration, a topological latent space is created, spanning from the mini-
mum to maximum weights of the weighted adjacency matrix. Various
metrics have been proposed to quantify the differences in structural
and functional connectivity between different brain states or conditions
within this latent space (Sizemore et al., 2018, 2019; Songdechakraiwut
and Chung, 2023).

The Rips filtration is most commonly used in the literature. The Rips
omplex 𝜖 is a simplicial complex, where 𝑘-simplices are formed by
(𝑘+1) nodes that are pairwise within distance 𝜖 (Ghrist, 2008). While a
graph has at most 1-simplices, the Rips complex can have up to (𝑝−1)-
simplices. The Rips complex induces a hierarchical nesting structure
known as the Rips filtration

𝜖0 ⊂ 𝜖1 ⊂ 𝜖2 ⊂⋯

for 0 = 𝜖0 < 𝜖1 < 𝜖2 <⋯, where the sequence of 𝜖-values are called the

filtration values. The filtration is characterized through a topological
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Fig. 1. The average correlation brain networks of 50 healthy controls (HC) and 101 temporal lobe epilepsy (TLE) patients. They are overlaid on top of the gray matter boundary
of the MNI template. The brain network of TLE is far sparse compared to that of HC. The sparse TLE network is also consistent with the plot Betti-0 curve where TLE networks
are more disconnected than HC networks. It demonstrates the global dysfunction of TLE and the breakdown of typical brain connectivity.
basis known as 𝑘-cycles. 0-cycles correspond to connected components,
1-cycles represent 1D closed paths or loops, and 2-cycles are 3-simplices
(tetrahedra) without an interior. Any 𝑘-cycle can be represented as a
linear combination of basis 𝑘-cycles. The Betti number 𝛽𝑘 counts the
number of independent 𝑘-cycles. During the Rips filtration, the 𝑖th 𝑘-
cycle is born at filtration value 𝑏𝑖 and dies at 𝑑𝑖. The collection of all
paired filtration values

𝑃 () = {(𝑏1, 𝑑1),… , (𝑏𝑞 , 𝑑𝑞)}

displayed as 1D intervals is called the barcode, and when displayed as
scatter points in a 2D plane, it is called the persistence diagram. Since
𝑏𝑖 < 𝑑𝑖, the scatter points in the persistence diagram are displayed
above the line 𝑦 = 𝑥 by placing births on the 𝑥-axis and deaths on
the 𝑦-axis. Any 𝑘-cycle can be represented as a linear combination of
basis 𝑘-cycles. The Betti number 𝛽𝑘 counts the number of independent
𝑘-cycles. During the Rips filtration, the 𝑖th 𝑘-cycle is born at filtration
value 𝑏𝑖 and dies at 𝑑𝑖. The collection of all the paired filtration values

𝑃 () = {(𝑏1, 𝑑1),… , (𝑏𝑞 , 𝑑𝑞)}

displayed as 1D intervals is called the barcode and displayed as scatter
points in 2D plane is called the persistence diagram. Since 𝑏𝑖 < 𝑑𝑖, the
scatter points in the persistence diagram are displayed above the line
𝑦 = 𝑥 line by taking births in the 𝑥-axis and deaths in the 𝑦-axis.

2.2. Graph filtration

As the number of nodes 𝑝 grows, the resulting Rips complex be-
comes overly dense, making it less effective for representing brain
networks at higher filtration values. The computational complexity of
Rips filtration grows exponentially with the number of nodes making it
impractical for large datasets (Topaz et al., 2015; Solo et al., 2018). To
address this, graph filtration, a special case of Rips filtration, was first
introduced (Lee et al., 2011a, 2012).

Consider weighted graph  = (𝑉 ,𝑤) with edge weight 𝑤 = (𝑤𝑖𝑗 ). If
we order the edge weights in the increasing order, we have the sorted
edge weights:

min
𝑗,𝑘

𝑤𝑗𝑘 = 𝑤(1) < 𝑤(2) < ⋯ < 𝑤(𝑞) = max
𝑗,𝑘

𝑤𝑗𝑘,

where 𝑞 ≤ (𝑝2 − 𝑝)∕2. The subscript ( ) denotes the order statistic. In
terms of sorted edge weight set 𝑊 = {𝑤(1),… , 𝑤(𝑞)}, we may also write
the graph as  = (𝑉 ,𝑊 ).
3

We define binary network 𝜖 = (𝑉 ,𝑤𝜖) consisting of the node set 𝑉
and the binary edge weights 𝑤𝜖 = (𝑤𝜖,𝑖𝑗 ) given by

𝑤𝜖,𝑖𝑗 =

{

1 if 𝑤𝑖𝑗 > 𝜖;
0 otherwise.

Note 𝑤𝜖 is the adjacency matrix of 𝜖 , which is a simplicial complex
consisting of 0-simplices (nodes) and 1-simplices (edges) (Ghrist, 2008).
While the binary network 𝜖 has at most 1-simplices, the Rips complex
can have at most (𝑝 − 1)-simplices. By choosing threshold values at
sorted edge weights 𝑤(1), 𝑤(2),… , 𝑤(𝑞) (Chung et al., 2013), we obtain
the sequence of nested graphs:

𝑤(1)
⊃ 𝑤(2)

⊃ ⋯ ⊃ 𝑤(𝑞)
.

The sequence of such a nested multiscale graph is called as the graph
filtration (Lee et al., 2011a, 2012). Fig. 2 illustrates a graph filtration in
a 4-nodes example. Note that 𝑤(1)−𝜖 is the complete weighted graph
for any 𝜖 > 0. On the other hand, 𝑤(𝑞)

is the node set 𝑉 . By increasing
the threshold value, we are thresholding at higher connectivity so more
edges are removed.

Graph filtration is a special case of Rips filtration

𝑤(𝑗)
= 𝑤(𝑞)−𝑤(𝑗)

restricted to 1-skeletons (Chung et al., 2013). Fig. 3 compares the
two filtrations. Both utilize Euclidean distance as edge weights and
have monotone 𝛽0-curve. However, only the graph filtration has a
monotone 𝛽1-curve making it more suitable for scalable Wasserstein
distance computations (Chung et al., 2019b; Songdechakraiwut and
Chung, 2023).

2.3. Birth-death decomposition

Unlike the Rips complex, there are no higher dimensional topo-
logical features beyond the 0D and 1D topology in graph filtration.
The 0D and 1D persistence diagrams (𝑏𝑖, 𝑑𝑖) tabulate the life-time of
0-cycles (connected components) and 1-cycles (loops) that are born at
the filtration value 𝑏𝑖 and die at value 𝑑𝑖. The 0th Betti number 𝛽0(𝑤(𝑖))
counts the number of 0-cycles at filtration value 𝑤(𝑖) and shown to be
non-decreasing over filtration (Fig. 2) (Chung et al., 2019a): 𝛽0(𝑤(𝑖)) ≤
𝛽0(𝑤(𝑖+1)). On the other hand the 1st Betti number 𝛽1(𝑤(𝑖)) counts the
number of independent loops and shown to be non-increasing over
filtration (Fig. 2) (Chung et al., 2019a): 𝛽1(𝑤(𝑖)) ≥ 𝛽1(𝑤(𝑖+1)). Fig. 4
displays the Betti curves plotting 𝛽 and 𝛽 values over filtration values.
0 1
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Fig. 2. Graph filtrations are obtained by sequentially thresholding graphs in increasing edge weights. The 0th Betti number 𝛽0 (number of connected components) and the first
Betti number 𝛽1 (number of cycles) are then plotted over the filtration values. The Betti curves are monotone over graph filtrations. However, different graphs (top vs. middle) can
yield identical Betti curves. As the number of nodes increases, the chance of obtaining the identical Betti curves exponentially decreases. The edges that increase 𝛽0 (red) forms
the birth set while the edge that decrease 𝛽0 (blue) forms the death set. The birth and death sets partition the edge set.
Fig. 3. The comparison between the Rips and graph filtrations performed on 50 scatter points randomly sampled in a unit cube. The Euclidean distance between points are used
as edge weights. Unlike Rips filtrations, 𝛽0 and 𝛽1 curves for graph filtrations are always monotone making the subsequent statistical analysis far more stable.
During the graph filtration, when new components are born, they
never die. Thus, 0D persistence diagrams are completely characterized
by birth values 𝑏𝑖 only. Loops are viewed as already born at −∞. Thus,
1D persistence diagrams are completely characterized by death values
𝑑𝑖 only. We can show that the edge weight set𝑊 can be partitioned into
0D birth values and 1D death values (Songdechakraiwut et al., 2021):
4

Theorem 1 (Birth-Death Decomposition). The edge weight set 𝑊 =
{𝑤(1),… , 𝑤(𝑞)} has the unique decomposition

𝑊 = 𝑊𝑏 ∪𝑊𝑑 , 𝑊𝑏 ∩𝑊𝑑 = ∅ (1)

where the birth set 𝑊𝑏 = {𝑏(1), 𝑏(2),… , 𝑏(𝑞0)} is the collection of 0D sorted
birth values, and the death set 𝑊 = {𝑑 , 𝑑 ,… , 𝑑 } is the collection of
𝑑 (1) (2) (𝑞1)
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Fig. 4. Betti-0 and Betti-1 curves obtained in graph filtrations on 50 healthy controls (HC) and 101 temporal lobe epilepsy (TLE) patients. TLE has more disconnected subnetworks
(𝛽0) compared to HC while having compatible higher order cyclic connectivity (𝛽1). The statistical significance of Betti curve shape difference is quantified through the proposed
Wasserstein distance.
1D sorted death values, with 𝑞0 = 𝑝 − 1 and 𝑞1 = (𝑝−1)(𝑝−2)
2 . Furthermore,

𝑊𝑏 forms the 0D persistence diagram, while 𝑊𝑑 forms the 1D persistence
diagram.

Proof. During the graph filtration, when an edge is deleted, either a
new component is born or a cycle dies (Chung et al., 2019a). These
events are disjoint and cannot occur simultaneously. We prove the
claim by contradiction. Assume, contrary to the claim, that both events
happen at the same time. Then 𝛽0 increases by 1, while 𝛽1 decreases by
1. As an edge is deleted, the number of nodes 𝑝 remains fixed, while the
number of edges 𝑞 is reduced to 𝑞−1. Thus, the Euler characteristic 𝜒 =
𝑝− 𝑞 of the graph increases by 1. However, the Euler characteristic can
also be expressed as an alternating sum 𝜒 = 𝛽0−𝛽1 (Adler et al., 2010).
As a result, the Euler characteristic would increase by 2, contradicting
our previous computation. Therefore, both events cannot occur at the
same time, establishing the decomposition 𝑊 = 𝑊𝑏 ∪𝑊𝑑 ,𝑊𝑏 ∩𝑊𝑑 = ∅.

In a complete graph with 𝑝 nodes, there are 𝑞 = 𝑝(𝑝−1)
2 unique edge

weights. There are 𝑞0 = 𝑝 − 1 edges that produce 0-cycles, equivalent
to the number of edges in the maximum spanning tree (MST) of the
graph. Since 𝑊𝑏 and 𝑊𝑑 partition the set, there are

𝑞1 = 𝑞 − 𝑞0 =
(𝑝 − 1)(𝑝 − 2)

2
edges that destroy 1-cycles. The 0D persistence diagram of the graph
filtration is given by {(𝑏(1),∞),… , (𝑏(𝑞0),∞)}. Ignoring ∞, 𝑊𝑏 is the 0D
persistence diagram. The 1D persistence diagram of the graph filtration
is given by {(−∞, 𝑑(1)),… , (−∞, 𝑑(𝑞1))}. Ignoring −∞, 𝑊𝑑 is the 1D
persistence diagram. □

Numerical implementation. The algorithm for decomposing the birth
and death set is as follows. As the corollary of Theorem 1, we can
show that the birth set is the maximum spanning tree (MST). The
identification of 𝑊𝑏 is based on the modification to Kruskal’s or Prim’s
algorithm and identify the MST (Lee et al., 2012). Then 𝑊𝑑 is identified
as 𝑊 ∕𝑊𝑑 . Fig. 2 displays graph filtration on 2 different graphs with 4
nodes, where the birth sets consists of 3 red edges and the death sets
consist of 3 blue edges. Fig. 5 displays how the birth and death sets for
151 brain networks used in the study. Given edge weight matrix 𝑊 as
an input, Matlab function WS_decompose.m outputs the birth set 𝑊𝑏
and the death set 𝑊𝑑 . Fig. 6 displays the MST of healthy controls (HC)
and temporal epilepsy (TLE) patients. 0D topology (topology of MST)
is mainly characterized by the left and right hemisphere connections.

2.4. Wasserstein distance between graph filtrations

The Wasserstein Distance provides a method to quantify the simi-
larity between brain networks. Consider persistence diagrams 𝑃1 and
𝑃2 given by 2D scatter points

𝑃 ∶ 𝑥 = (𝑏1, 𝑑1),… , 𝑥 = (𝑏1, 𝑑1), 𝑃 ∶ 𝑦 = (𝑏2, 𝑑2),… , 𝑦 = (𝑏2, 𝑑2).
5

1 1 1 1 𝑞 𝑞 𝑞 2 1 1 1 𝑞 𝑞 𝑞
Their empirical distributions are given in terms of Dirac-Delta functions

𝑓1(𝑥) =
1
𝑞

𝑞
∑

𝑖=1
𝛿(𝑥 − 𝑥𝑖), 𝑓2(𝑦) =

1
𝑞

𝑞
∑

𝑖=1
𝛿(𝑦 − 𝑦𝑖).

Then we can show that the 2-Wasserstein distance on persistence dia-
grams is given by

𝐷𝑊 (𝑃1, 𝑃2) = inf
𝜓∶𝑃1→𝑃2

(

∑

𝑥∈𝑃1

‖𝑥 − 𝜓(𝑥)‖2
)1∕2

(2)

over every possible bijection 𝜓 between 𝑃1 and 𝑃2 (Vallender, 1974).
Optimization (2) is the standard assignment problem, which is usually
solved by Hungarian algorithm in (𝑞3) (Edmonds and Karp, 1972).
However, for graph filtration, the distance can be computed in (𝑞 log 𝑞)
by simply matching the order statistics on birth or death sets (Rabin
et al., 2011; Songdechakraiwut et al., 2021):

Theorem 2. The 2-Wasserstein distance between the 0D persistence dia-
grams for graph filtration is given by

𝐷𝑊 0(𝑃1, 𝑃2) =
[

𝑞0
∑

𝑖=1
(𝑏1(𝑖) − 𝑏

2
(𝑖))

2
]1∕2

,

where 𝑏𝑗(𝑖) is the 𝑖th smallest birth values in persistence diagram 𝑃𝑗 . The
2-Wasserstein distance between the 1D persistence diagrams for graph
filtration is given by

𝐷𝑊 1(𝑃1, 𝑃2) =
[

𝑞1
∑

𝑖=1
(𝑑1(𝑖) − 𝑑

2
(𝑖))

2
]1∕2

,

where 𝑑𝑗(𝑖) is the 𝑖th smallest death values in persistence diagram 𝑃𝑗 .

Proof. 0D persistence diagram is given by {(𝑏(1),∞), ⋯, (𝑏(𝑞0),∞)}.
Ignoring ∞, the 0D Wasserstein distance is simplified as

𝐷2
𝑊 0(𝑃1, 𝑃2) = min

𝜓

𝑞0
∑

𝑖=1
|𝑏1𝑖 − 𝜓(𝑏

1
𝑖 )|

2,

where the minimum is taken over every possible bijection 𝜓 from
{𝑏11,… , 𝑏1𝑞0} to {𝑏21,… , 𝑏2𝑞0}. Note ∑𝑞0

𝑖=1 |𝑏
1
𝑖 − 𝜓(𝑏

1
𝑖 )|

2 is minimum only if
∑𝑞0
𝑖=1 𝑏

1
𝑖 𝜓(𝑏

1
𝑖 ) is maximum. Rewrite ∑𝑞0

𝑖=1 𝑏
1
𝑖 𝜓(𝑏

1
𝑖 ) in terms of the order

statistics as ∑𝑞0
𝑖=1 𝑏

1
(𝑖)𝜓(𝑏

1
(𝑖)). Now, we prove by induction. When 𝑞 = 2,

there are only two possible bijections:

𝑏1(1)𝑏
2
(1) + 𝑏

1
(2)𝑏

2
(2) and 𝑏1(1)𝑏

2
(2) + 𝑏

1
(2)𝑏

2
(1).

Since 𝑏1(1)𝑏
2
(1) + 𝑏1(2)𝑏

2
(2) is larger, 𝜓(𝑏1(𝑖)) = 𝑏2(𝑖) is the optimal bijection.

When 𝑞0 = 𝑘, assume 𝜓(𝑏1(𝑖)) = 𝑏2(𝑖) is the optimal bijection. When
𝑞0 = 𝑘 + 1,

max
𝜓

𝑘+1
∑

𝑏1(𝑖)𝜓(𝑏
2
(𝑖)) ≤ max

𝜓

𝑘
∑

𝑏1(𝑖)𝜓(𝑏
1
(𝑖)) + max

𝜓
𝑏1(𝑘+1)𝜓(𝑏

1
(𝑘+1)).
𝑖=1 𝑖=1
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Fig. 5. The birth and death sets of 50 healthy controls (HC) and 101 temporal lobe epilepsy (TLE) patients. The Wasserstein distance between the birth sets measures 0D topology
difference while the Wasserstein distance between the death sets measures 1D topology difference.
Fig. 6. Maximum spanning trees (MST) of the average correlation of HC and TLE. MST are the 0D topology while none-MST edges not shown here are 1D topology. MST forms
the birth set. MST of rs-fMRI is mainly characterized by the left–right connectivity.
The first term is maximized if 𝜓(𝑏1(𝑖)) = 𝑏2(𝑖). The second term is
maximized if 𝜓(𝑏1(𝑘+1)) = 𝑏2(𝑘+1). Thus, we proved the statement.

1D persistence diagram of graph filtration is given by {(−∞, 𝑑(1)),…,
(−∞, 𝑑(𝑞))}. Ignoring −∞, the Wasserstein distance is given by

𝐷2
𝑊 1(𝑃1, 𝑃2) = min

𝜓

𝑞1
∑

𝑖=1
|𝑑1𝑖 − 𝜓(𝑑

1
𝑖 )|

2.

Then we follow the similar inductive argument as the 0D case. □

Using the Wasserstein distance between two graphs, we can match
graphs at the edge level. In the usual graph matching problem, the
node labels do not have to be matched and thus, the problem is
different from simply regressing brain connectivity matrices over other
brain connectivity matrices at the edge level (Becker et al., 2018;
Surampudi et al., 2018). Existing geometric graph matching algorithms
have been previously used in matching and averaging heterogeneous
tree structures (0D topology) such as brain artery trees and neuronal
trees (Guo and Srivastava, 2020; Zavlanos and Pappas, 2008; Babai
6

and Luks, 1983). But rs-fMRI networks are dominated by 1-cycles (1D
topology) and not necessarily perform well in matching 1D topology.

Suppose we have weighted graphs 1 = (𝑉1, 𝑤1) and 1 = (𝑉2, 𝑤2),
and corresponding 0D persistence diagrams 𝑃 0

1 and 𝑃 0
2 and 1D persis-

tence diagrams 𝑃 1
1 and 𝑃 1

2 . We define the Wasserstein distance between
graphs 1 and 2 as the Wasserstein distance between corresponding
persistence diagrams 𝑃1 and 𝑃2:

𝐷𝑊 𝑗 (1,2) = 𝐷𝑊 𝑗 (𝑃
𝑗
1 , 𝑃

𝑗
2 ).

The 0D Wasserstein distance matches birth edges while the 1D Wasser-
stein distance matches death edges. We need to use both distances
together to match graphs. Thus, we use the squared sum of 0D and
1D Wasserstein distances

(1,2) = 𝐷2
𝑊 0(1,2) +𝐷2

𝑊 1(1,2)

as the Wasserstein distance between graphs in the study. Then we can
show the distance is translation and scale invariant in the following
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sense:

(𝑐 + 1, 𝑐 + 2) = (1,2),
1
𝑐2

(𝑐1, 𝑐2) = (1,2).

Unlike existing computationally demanding graph matching algorithms,
the method is scalable at (𝑞 log 𝑞) run time. The majority of runtime
is on sorting edge weights and obtaining the corresponding maximum
spanning trees (MST).

2.4.1. Gromov-Hausdorff distance
In comparison to the Wasserstein distance, the Gromov–Hausdorff

(GH) and bottleneck distances have previously been used for infer-
ence on brain networks. The GH distance for brain networks was
introduced in Lee et al. (2011a, 2012). The GH distance measures
the difference between networks by embedding each network into an
ultrametric space that represents the hierarchical clustering structure
of the network (Carlsson and Mémoli, 2010).

The Single Linkage Distance (SLD) is defined as the shortest distance
between two connected components that contain nodes 𝑖 and 𝑗. SLD is
an ultrametric, satisfying the stronger form of the triangle inequality
𝑠𝑖𝑗 ≤ max(𝑠𝑖𝑘, 𝑠𝑘𝑗 ) (Carlsson and Mémoli, 2010). Thus, a dendrogram
an be represented as an ultrametric space, which is also a metric
pace. The GH-distance between networks is then defined through the
H-distance between corresponding dendrograms as

𝐺𝐻 (1,2) = max
𝑖,𝑗

|𝑠1𝑖𝑗 − 𝑠
2
𝑖𝑗 |. (3)

The edges that yield the maximum SLD is the GH-distance between the
two networks.

2.4.2. Bottleneck distance
The bottleneck distance for graph filtration reduces to matching

sorted birth values or sorted death values. Given networks 𝑖 = (𝑉 ,𝑤𝑖),
he corresponding persistence diagrams 𝑃𝑖 are obtained through the
raph filtration (Lee et al., 2012; Chung et al., 2019b). The bottleneck
istance between persistence diagrams 𝑃𝑖 and 𝑃𝑗 is given by

𝐵(𝑃𝑖, 𝑃𝑗 ) = inf
𝜓

sup
𝑥𝑖∈𝑃𝑖

‖𝑥𝑖 − 𝜓(𝑥𝑖)‖∞, (4)

here and 𝜓 is a bijection from 𝑃𝑖 to 𝑃𝑗 (Cohen-Steiner et al., 2007;
delsbrunner and Harer, 2008). Since 0D persistence diagram consists
f sorted birth values 𝑏𝑖(𝑘) and 𝑏𝑗(𝑘), we have the 0D bottleneck distance

𝐵0(𝑃𝑖, 𝑃𝑗 ) = max
𝑘

|

|

|

𝑏𝑖(𝑘) − 𝑏
𝑗
(𝑘)
|

|

|

,

he largest gap in the order statistics difference (Das et al., 2022).
imilarly, for 0D persistence diagram consists of sorted death values
𝑖
(𝑘) and 𝑑𝑗(𝑘), we have the 1D bottleneck distance

𝐵1(𝑃𝑖, 𝑃𝑗 ) = max
𝑘

|

|

|

𝑑𝑖(𝑘) − 𝑑
𝑗
(𝑘)
|

|

|

.

2.5. Topological inference

There are a few studies that used the Wasserstein distance (Mi et al.,
2018; Yang et al., 2020). The existing methods are mainly applied to
geometric data without topological consideration. It is not obvious how
to apply the method to perform statistical inference for a population
study. We will present a new statistical inference procedure for testing
the topological inference of two groups, the usual setting in brain
network studies.

2.5.1. Topological mean of graphs
Given a collection of graphs 1 = (𝑉 ,𝑤1),… ,𝑛 = (𝑉 ,𝑤𝑛) with edge

weights 𝑤𝑘 = (𝑤𝑘 ), the usual approach for obtaining the
7

𝑖𝑗 h
average network ̄ is simply averaging the edge weight matrices in
an element-wise fashion

̄ =
(

𝑉 , 1
𝑛

𝑛
∑

𝑘=1
𝑤𝑘𝑖𝑗

)

.

owever, such average is the average of the connectivity strength. It is
ot necessarily the average of underlying topology. Such an approach
s usually sensitive to topological outliers (Chung et al., 2019a). We ad-
ress the problem through the Wasserstein distance. A similar concept
as proposed in persistent homology literature through the Wasserstein
arycenter (Agueh and Carlier, 2011; Cuturi and Doucet, 2014), which
s motivated by Fréchet mean (Le and Kume, 2000; Turner et al.,
014; Zemel and Panaretos, 2019; Dubey and Müller, 2019). However,
he method has not seen many applications in modeling graphs and
etworks.

With Theorem 6 (Appendix), we define the Wasserstein graph sum
f graphs 1 = (𝑉 ,𝑤1) and 2 = (𝑉 ,𝑤2) as 1 + 2 = (𝑉 ,𝑤) with the

birth–death decomposition 𝑊𝑏 ∪𝑊𝑑 satisfying

𝑊𝑏 ∪𝑊𝑑 = (𝑊1𝑏 +𝑊2𝑏) ∪ (𝑊1𝑑 +𝑊2𝑑 ).

with

𝑤 =  (𝑊𝑏 ∪𝑊𝑑 ).

owever, the sum is not uniquely defined. Thus, the average of two
raphs is also not uniquely defined. The situation is analogous to
réchet mean, which often does not yield the unique mean (Le and
ume, 2000; Turner et al., 2014). However, this is not an issue since

heir topology is uniquely defined and produces identical persistence di-
grams. Now, we define the topological mean of graphs E of 1,… ,𝑛
s

 = 1
𝑛
∑𝑛

𝑘=1
𝑘. (5)

The topological mean of graphs is the minimizer with respect to the
Wasserstein distance, which is analogous to the sample mean as the
minimizer of Euclidean distance. However, the topological mean of
graphs is not unique in geometric sense. It is only unique in topological
sense.

Theorem 3. The topological mean of graphs 1,…𝑛 is the graph given
by

E = argmin
𝑋

𝑛
∑

𝑘=1
(𝑋,𝑘).

roof. Since the cost function is a linear combination of quadratic
unctions, the global minimum exists and unique. Let 𝑋 = (𝑉 ,𝑊𝑏 ∪𝑊𝑑 )
e the birth–death decomposition with 𝑊𝑏 = {𝑏(1),… , 𝑏(𝑞0)} and 𝑊𝑑 =
𝑑(1),… , 𝑑(𝑞1)}. From Theorem 2,

𝑛
∑

=1
(𝑋,𝑖) =

𝑛
∑

𝑘=1

[

𝑞0
∑

𝑖=1
(𝑏(𝑖) − 𝑏𝑘(𝑖))

2 +
𝑞1
∑

𝑖=1
(𝑑(𝑖) − 𝑑𝑘(𝑖))

2
]

.

his is quadratic so the minimum is obtained by setting its partial
erivatives with respect to 𝑏(𝑖) and 𝑑(𝑖) equal to zero:

(𝑖) =
1
𝑛

𝑛
∑

𝑘=1
𝑏𝑘(𝑖), 𝑑(𝑖) =

1
𝑛

𝑛
∑

𝑘=1
𝑑𝑘(𝑖).

Thus, we obtain

𝑊𝑏 =
1
𝑛

𝑛
∑

𝑘=1
𝑊𝑘𝑏, 𝑊𝑑 = 1

𝑛

𝑛
∑

𝑘=1
𝑊𝑘𝑑 .

This is identical to the birth–death decomposition of 1
𝑛
∑𝑛
𝑘=1𝑘 and

ence proves the statement. □
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Fig. 7. Pairwise Wasserstein distance between 50 healthy controls (HC) and 101 temporal lobe epilepsy (TLE) patients. There are subtle pattern difference in the off-diagonal
patterns (between group distances 𝐵) compared to diagonal patterns (within group distances 𝑊 ). The permutation test with 100 million permutations was used to determine
the statistical significance using the ratio statistic. The red line is the observed ratio. The histogram is the empirical null distribution obtained from the permutation test.
The topological variance of graphs V is defined in a similar fashion:

V = 1
𝑛

𝑛
∑

𝑘=1
(E ,𝑘),

which is interpreted as the variability of graphs from the Wasserstein
graph mean E . We can rewrite the topological variance of graphs as

V = 1
𝑛

𝑛
∑

𝑘=1

( 1
𝑛

𝑛
∑

𝑗=1
𝑗 ,𝑘

)

= 1
𝑛2

𝑛
∑

𝑗,𝑘=1
(𝑗 ,𝑘). (6)

The formulation (6) compute the variance using the pairwise distances
without the need for computing the topological mean of graphs.

2.5.2. Distance-based topological inference
Consider a collection of graphs 1,… ,𝑛 that are grouped into two

groups 𝐶1 and 𝐶2 such that

𝐶1 ∪ 𝐶2 = {1,… ,𝑛}, 𝐶1 ∩ 𝐶2 = ∅.

We assume there are 𝑛𝑖 graphs in 𝐶𝑖 and 𝑛1+𝑛2 = 𝑛. In topological infer-
ence, we are interested in testing the null hypothesis of the equivalence
of topological summary  :

𝐻0 ∶  (𝐶1) =  (𝐶2).

Under the null, there are
( 𝑛
𝑛1

)

number of permutations to permute
𝑛 graphs into two groups, which is an extremely large number and
most computing systems including MATLAB/R cannot compute them
exactly if the sample size is larger than 50 in each group. If 𝑛1 = 𝑛2,
the total number of permutations is given asymptotically by Stirling’s
formula (Feller, 2008)
(

𝑛
𝑛1

)

∼ 4𝑛1
√

𝜋𝑛1
.

The number of permutations exponentially increases as the sample size
increases, and thus it is impractical to generate every possible permuta-
tion. In practice, up to hundreds of thousands of random permutations
are generated using the uniform distribution on the permutation group
with probability 1∕

( 𝑛
𝑛1

)

. The computational bottleneck in the permu-
tation test is mainly caused by the need to recompute the test statistic
for each permutation (Chung et al., 2018). This usually cause a serious
computational bottleneck when we have to recompute the test statistic
for large samples when more than million permutations are needed. We
propose a more scalable approach.

Define the within-group distance 𝑊 as (Songdechakraiwut et al.,
2021)

2𝑊 =
∑

(𝑖,𝑗 ) +
∑

(𝑖,𝑗 ).
8

𝑖 ,𝑗∈𝐶1 𝑖 ,𝑗∈𝐶2
The within-group distance corresponds to the sum of all the pair-
wise distances in the block diagonal matrices in Fig. 7. The average
within-group distance is then given by

𝑊 =
𝑊

𝑛1(𝑛1 − 1) + 𝑛2(𝑛2 − 1)
.

The between-group distance 𝐵 is defined as

2𝐵 =
∑

𝑖∈𝐶1

∑

𝑗∈𝐶2

(𝑖,𝑗 ) +
∑

𝑖∈𝐶2

∑

𝑗∈𝐶1

(𝑖,𝑗 ).

The between-group distance corresponds to the off-diagonal block ma-
trices in Fig. 7. The average between-group distance is then given
by

𝐵 =
𝐵
𝑛1𝑛2

.

The sum of within-group (or within-cluster) and between-group (or
between-cluster) distances is the sum of all pairwise distances:

2𝑊 + 2𝐵 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑖,𝑗 ) = 2𝑐

for some constant 𝑐 that is invariant over permutations of group labels.
When we permute the group labels, the total sum of all the pairwise
distances remains unchanged. If the group difference is large, the
between-group distance 𝐵 will be large, and the within-group distance
𝑊 will be small. Thus, we measure the disparity between groups as
the ratio (Songdechakraiwut and Chung, 2023),

𝜙 =
𝐵
𝑊

=
𝑐 − 𝑊
𝑊

.

If 𝜙 is large, the groups differ significantly in network topology. If
𝜙 is small, it is likely that there is no group differences. The ratio
statistic is used in topological inference in the two-sample test but can
be easily extended to 𝑘-sample tests. The ratio statistic is related to
the elbow method in clustering and behaves like traditional 𝐹 -statistic,
which is the ratio of squared variability of model fits. The 𝑝-value is
then computed as the probability

𝑝-value = 𝑃
(

𝜙 > 𝜙
observed


)

= 𝑃
(

𝑊 < 𝑐
1 + 𝜙observed



)

with the observed statistic value 𝜙observed
 .

Since the ratio is always positive, its probability distribution cannot
follow Gaussian and unknown, the permutation test can be used to
determine its empirical distributions. Fig. 7-right displays the empirical
distribution of 𝜙. The 𝑝-value is the area of the right tail, thresholded
by the observed ratio 𝜙observed

 (dotted red line) in the empirical dis-
tribution. In the permutation test, we compute the pairwise distances
only once and shuffle each entry across permutations. This is equivalent
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Fig. 8. The plot of ratio statistic 𝜙 (top) over 100 million transpositions in testing the topological difference between HC and TLE. The plot is only shown at every 10000
transposition. The redline is the observed ratio static 0.9541. The estimated 𝑝-value (middle) converges to 0.0086 after 100 million transpositions. The CPU time (bottom) is linear
and takes 102 s for 100 million transpositions.
to rearranging the rows and columns of entries corresponding to the
permutations, as shown in Fig. 7. The permutation test is applicable
to various two-sample comparison settings where group labels are
permutable, such as the t-statistic. Simple rearrangement of rows and
columns, followed by block-wise summation, should generally be faster
than performing the permutation test on the conventional two-sample
𝑡-statistic, which requires recalculation for each permutation (Chung
et al., 2018; Nichols and Holmes, 2002).

To speed up the permutation further, we adapted the transposition
test, the online version of permutation test (Chung et al., 2019c). In the
transposition test, we only need to work out how 𝐵 and 𝑊 changes
over a transposition, a permutation that only swaps one entry from
each group. When we transpose 𝑘th and 𝑙th graphs between the groups
(denoted as 𝜏𝑘𝑙), all the 𝑘th and 𝑖th rows and columns will be swapped.
The within-group distance after the transposition 𝜏𝑘𝑙 is given by

𝜏𝑘𝑙(𝑊 ) = 𝑊 + 𝛥𝑊 ,

where 𝛥𝑊 is the terms in the 𝑘th and 𝑖th rows and columns that are
required to swapped. We only need to swap up to (2𝑛) entries while
the standard permutation test that requires the computation over (𝑛2)
entries. Similarly we have incremental changes

𝜏𝑘𝑙(𝐵) = 𝐵 + 𝛥𝐵 .

The ratio statistic over the transposition is then sequentially updated
over random transpositions. To further accelerate the convergence and
avoid potential bias, we introduce one permutation to the sequence of
1000 consecutive transpositions. Fig. 8 displays the convergence plot of
the transposition test. Our procedure does not rely on distributional
assumptions about the test statistic, making it robust to varying levels
of variance between groups. The transposition test, akin to the standard
permutation test, approximates the sampling distribution of the test
statistic under the null hypothesis of equal distributions (Bullmore
et al., 1999; Chung et al., 2018; Hayasaka et al., 2004; Nichols and
Holmes, 2002). The method then quantifies how the observed data
deviate from this null distribution. Therefore, the method is expected
to be robust even when the groups have unequal variances.

3. Validation

We validate the proposed topological distances in simulations with
the ground truth in a clustering setting. The Wasserstein distance was
previously used for clustering for geometric objects without topology in
(𝑞3) (Mi et al., 2018; Yang et al., 2020). The proposed topological
9

method builds the Wasserstein distances on persistence diagrams in
(𝑞 log 𝑞) making our method scalable.

Consider a collection of graphs 1,… ,𝑛 that will be clustered into
𝑘 clusters 𝐶 = (𝐶1,… , 𝐶𝑘). Let 𝜇𝑗 = E𝐶𝑗 be the topological mean of 𝐶𝑗
computing using the Wasserstein distance. Let 𝜇 = (𝜇1,… , 𝜇𝑘) be the
cluster mean vector. The within-cluster Wasserstein distance is given
by

𝑙𝑊 (𝐶;𝜇) =
𝑘
∑

𝑗=1

∑

𝑋∈𝐶𝑗

(𝑋, 𝜇𝑗 ) =
𝑘
∑

𝑗=1
|𝐶𝑗 |V𝐶𝑗

with the topological variance V𝐶𝑗 of cluster 𝐶𝑗 . The within-cluster
Wasserstein distance generalizes the within-group distance defined on
two groups to 𝑘 number of groups (or clusters). When 𝑘 = 2, we have
𝑙𝑊 (𝐶;𝜇) = 2𝑊 .

The topological clustering through the Wasserstein distance is then
performed by minimizing 𝑙𝑊 (𝐶) over every possible 𝐶. The Wasser-
stein graph clustering algorithm can be implemented as the two-step
optimization often used in variational inferences (Bishop, 2006). The
algorithm follows the proof below.

Theorem 4. Topological clustering with the Wasserstein distance converges
locally.

Proof. (1) Expectation step: Assume 𝐶 is estimated from the previous
iteration. In the current iteration, the cluster mean 𝜇 corresponding to
𝐶 is updated as 𝜇𝑗 ← E𝐶𝑗 for each 𝑗. From Theorem 3, the cluster mean
gives the lowest bound on distance 𝑙𝑊 (𝐶; 𝜈) for any 𝜈 = (𝜈1,… , 𝜈𝑘):

𝑙𝑊 (𝐶;𝜇) =
𝑘
∑

𝑗=1

∑

𝑋∈𝐶𝑗

(𝑋, 𝜇𝑗 ) ≤
𝑘
∑

𝑗=1

∑

𝑋∈𝐶𝑗

(𝑋, 𝜈𝑗 ) = 𝑙𝑊 (𝐶; 𝜈). (7)

(2) We check if the cluster mean 𝜇 is changed from the previous
iteration. If not, the algorithm simply stops. Thus we can force 𝑙𝑊 (𝐶; 𝜈)
to be strictly decreasing over each iteration. (3) Minimization step: The
clusters are updated from 𝐶 to 𝐶 ′ = (𝐶 ′

𝐽1
,… , 𝐶 ′

𝐽𝑘
) by reassigning each

graph 𝑖 to the closest cluster 𝐶𝐽𝑖 satisfying 𝐽𝑖 = argmin𝑗 (𝑖, 𝜇𝑗 ).
Subsequently, we have

𝑙𝑊 (𝐶 ′;𝜇) =
𝑘
∑

𝐽𝑖=1

∑

𝑋∈𝐶′
𝐽𝑖

(𝑋, 𝜇𝐽𝑖 ) ≤
𝑘
∑

𝑗=1

∑

𝑋∈𝐶𝑗

(𝑋, 𝜇𝑗 ) = 𝑙𝑊 (𝐶;𝜇). (8)

From (7) and (8), 𝑙𝑊 (𝐶;𝜇) strictly decreases over iterations. Any
bounded strictly decreasing sequence converges. □
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Just like 𝑘-means clustering that converges only to local minimum,
there is no guarantee the Wasserstein distance based clustering con-
verges to the global minimum (Huang et al., 2020). This is remedied
by repeating the algorithm multiple times with different random seeds
and identifying the cluster that gives the minimum over all possible
seeds.

3.1. Topological clustering as a linear assignment problem

Let 𝑦𝑖 be the true cluster label for the 𝑖th data. Let 𝑦𝑖 be the estimate
of 𝑦𝑖 we determined from topological clustering. Let 𝑦 = (𝑦1,… , 𝑦𝑛)
and 𝑦 = (𝑦1,… , 𝑦𝑛). There is no direct association between true
clustering labels and predicted cluster labels and they are independent.
Given 𝑘 clusters 𝐶1,… , 𝐶𝑘, its permutation 𝜋(𝐶1),…, 𝜋(𝐶𝑘) is also a
valid cluster for 𝜋 ∈ S𝑘, the permutation group of order 𝑘. There are
𝑘! possible permutations in S𝑘 (Chung et al., 2019c). The clustering
accuracy 𝐴(𝑦, 𝑦) is then defined as

𝐴(𝑦, 𝑦) = 1
𝑛
max
𝜋∈S𝑘

𝑛
∑

𝑖=1
𝟏(𝜋(𝑦) = 𝑦).

This is a modification to an assignment problem and can be solved
using the Hungarian algorithm in (𝑘3) run time (Edmonds and Karp,
1972). Let 𝐹 (𝑦, 𝑦) = (𝑓𝑖𝑗 ) be the confusion matrix of size 𝑘×𝑘 tabulating
the correct number of clustering in each cluster. The diagonal entries
show the correct number of clustering while the off-diagonal entries
show the incorrect number of clusters. To compute the clustering
accuracy, we need to sum the diagonal entries. Under the permutation
of cluster labels, we can get different confusion matrices. For large
𝑘, it is prohibitive expensive to search for all permutations. Thus we
need to maximize the sum of diagonals of the confusion matrix under
permutation:
1
𝑛
max
𝑄∈S𝑘

tr(𝑄𝐶) = 1
𝑛
max
𝑄∈S𝑘

∑

𝑖,𝑗
𝑞𝑖𝑗𝑓𝑖𝑗 , (9)

here 𝑄 = (𝑞𝑖𝑗 ) is the permutation matrix consisting of entries 0 and
such that there is exactly single 1 in each row and each column.

his is a linear sum assignment problem (LSAP), a special case of linear
ssignment problem (Duff and Koster, 2001; Lee et al., 2018b).

In random assignment, each subject has an equal chance 1
𝑘 of being

laced in any of the 𝑘 clusters. This is true for both 𝑦𝑖 and 𝑦𝑖. Therefore,
he expected clustering accuracy for each subject is

𝟏(𝜋(𝑦𝑖) = 𝑦𝑖) =
1
𝑘
.

Then the expected clustering accuracy in the random assignment is

E[𝐴(𝑦, 𝑦)] = 1
𝑛

𝑛
∑

𝑖=1
E𝟏(𝜋(𝑦𝑖) = 𝑦𝑖) =

1
𝑘
. (10)

3.2. Relation to topological inference

The topological clustering used in validation is directly related to
topological inference. A larger ratio statistic (or equivalently, a smaller
𝑊 ) implies a smaller 𝑝-value. Thus, 𝑝 would be a decreasing function
of 𝜙:
𝑑𝑝
𝑑𝜙

≤ 0,

r equivalently 𝑑𝜙
𝑑𝑝 ≤ 0. On the other hand, topological clustering

is performed by minimizing 𝑊 over cluster (group) labels, which is
equivalent to maximizing the ratio statistic 𝜙. Thus, an increase in
the ratio statistic corresponds to an increase in clustering accuracy 𝐴:
𝑑𝐴
𝑑𝜙

≥ 0.

ubsequently,
𝑑𝐴 = 𝑑𝐴

⋅
𝑑𝜙 ≤ 0,
10

𝑑𝑝 𝑑𝜙 𝑑𝑝
and we conclude that a decrease in 𝑝-value directly corresponds to
an increase in clustering accuracy. Thus, there exists a monotonically
decreasing function 𝑓 satisfying 𝑝-value = 𝑓 (𝐴).

3.3. Simulation with the ground truth

The proposed method is validated in a random network simulation
with the ground truth against 𝑘-means and hierarchical clustering (Lee
et al., 2011a). We generated 4 circular patterns of identical topology
(Fig. 9-top) and different topology (Fig. 9-bottom). Along the circles,
we uniformly sampled 400 (200 nodes per circle or arc) nodes and
added Gaussian noise 𝑁(0, 𝜎2) on the coordinates. We generated 5
random networks per group. The Euclidean distance between randomly
generated points are used in the clustering task. Fig. 9 shows the
superposition of nodes of all 5 networks.

We compared the proposed Wasserstein distance against two estab-
lished topological distances: bottleneck and Gromov–Hausdorff (GH).
The bottleneck distance is perhaps the most often used distance in
persistent homology (Cohen-Steiner et al., 2007; Edelsbrunner and
Harer, 2008). The Gromov–Hausdorff (GH) distance is possibly the
most popular distance that is originally used to measure distance
between metric spaces (Tuzhilin, 2016). It was later adapted to measure
distances in persistent homology, dendrograms (Carlsson and Memoli,
2008; Carlsson and Mémoli, 2010; Chazal et al., 2009) and brain
networks (Lee et al., 2011a, 2012). The distances are used in two
different clustering tasks with the known ground truths. In the first task,
we determined if the distance can incorrectly discriminate topologically
equivalent patterns (Fig. 9-top). In the second task, we determined if
the distance can correctly discriminate topologically different patterns
(Fig. 9-bottom). We compared distances in three different noise settings
(𝜎 = 0.1, 0.2, 0.3). The average result of 10 independent clustering task
is then reported in Table 1.

3.3.1. False positives
We conducted tests for false positives (Fig. 9-top), where all groups

were generated from the Group 1 pattern through rotations. Since
all these groups are topologically invariant, no topological differences
should be detected; any signals identified would be false positives.
In all noise settings, both the bottleneck distances and our proposed
Wasserstein distance reported the lowest clustering accuracy, making
them the best-performing methods (Table 1). In contrast, 𝑘-means and
GH-distance incorrectly clustered the groups too well. The 𝑘-means
clustering, which uses Euclidean distance, fails to recognize topological
equivalence. GH distance, based on the single linkage matrix (Carls-
son and Mémoli, 2010; Lee et al., 2011a, 2012), tends to cluster
indiscriminately, thereby overfitting and inflating the rate of false
positives.

In an ideal scenario where cluster assignments are random, the
best performance would correspond to a 25% clustering accuracy.
Therefore, the average false positive (FP) error rate is calculated as
the mean of clustering accuracies minus 0.25. This serves as an overall
performance metric for the method across different noise settings.

3.3.2. False negatives
We also tested for false negatives when there is a topological

difference (Fig. 9-bottom), where all the groups have different numbers
of connected components or cycles. All the groups are topologically
different, and thus we should detect these differences. However, 𝑘-
means clustering and bottleneck distances do not necessarily perform
as well as the GH- and Wasserstein distances. GH-distance is related
to hierarchical clustering, which always cluster regardless if there are
clusters or not. Therefore, GH-distance is always expected to perform
well if there are topological differences. Conversely, GH-distance may
do not perform well when there is no topological difference. Bottleneck
distances are only aware of 0D or 1D topology but not both at the
same time, and their performance begins to suffer as the level of noise
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Fig. 9. Simulation study testing topological equivalence (top) and difference (bottom) in three noise settings: 𝜎 = 0.1 (left), 0.2 (middle), 0.3 (right). We should not cluster
topologically equivalent patterns while we should cluster topologically different patterns well.
Table 1
Clustering accuracy in false positive (top five rows) and false negative (bottom five rows) settings. We used Euclidean distance (𝑘-means), Bottleneck distance for 0D topology
(Bottleneck-0) and 1D topology (Bottleneck-1), Gromov–Hausdorff (GH), and Wasserstein distances. The averages of 10 independent simulation results in three different noise settings
are reported. Lower clustering accuracy is better for the false positive setting, while higher clustering accuracy is preferred for the false negative setting. The best-performing
methods are marked in bold. Overall, the Wasserstein distance showed the best performance.

Noise 𝜎 𝑘-means Bottleneck-0 Bottleneck-1 GH Wasserstein

Small 0.1 0.75 ± 0.02 0.42 ± 0.04 0.46 ± 0.05 0.81 ± 0.08 0.45 ± 0.04
Medium 0.2 0.74 ± 0.01 0.44 ± 0.05 0.47 ± 0.06 0.75 ± 0.07 0.44 ± 0.02
Large 0.3 0.74 ± 0.01 0.43 ± 0.09 0.42 ± 0.05 0.78 ± 0.07 0.44 ± 0.01
FP error rate 0.49 ± 0.01 0.18 ± 0.06 0.20 ± 0.05 0.53 ± 0.07 0.19 ± 0.19
Small 0.1 0.78 ± 0.02 0.85 ± 0.11 0.88 ± 0.12 1.00 ± 0.00 0.97 ± 0.02
Medium 0.2 0.71 ± 0.02 0.63 ± 0.10 0.63 ± 0.09 0.97 ± 0.04 0.89 ± 0.03
Large 0.3 0.65 ± 0.02 0.56 ± 0.09 0.59 ± 0.09 0.88 ± 0.08 0.80 ± 0.05
FN error rate 0.29 ± 0.02 0.32 ± 0.10 0.30 ± 0.10 0.05 ± 0.04 0.11 ± 0.03
Total error 0.78 ± 0.02 0.50 ± 0.08 0.50 ± 0.08 0.58 ± 0.06 0.30 ± 0.11
increases. For false negative tests, higher clustering accuracy is better.
Thus, the average false negative (FN) error rate is computed as one
minus the average of clustering accuracies, which measures the overall
performance of the method across different noise settings. We then
computed the total error, measuring the sum of FP and FN error rates.
The total error rate for the Wasserstein distance is 20% smaller than
that for the bottleneck distance and 28% smaller than that for the GH
distance. In summary, the proposed Wasserstein distance performed
the best across most test settings. Compared to other distances, the
Wasserstein distance is less likely to report false positives or false
negatives.

A simulation study on the performance of topological inference
using the Wasserstein distance, compared against other topological
distances (GH, bottleneck), and graph theory features (Q-modularity
and betweenness), is presented in Anand and Chung (2023). Our re-
sults align with these findings, demonstrating that approaches based
on the Wasserstein distance consistently outperform those based on
graph theory features and other topological distances. A similar con-
clusion is reached in Songdechakraiwut and Chung (2023), where the
Wasserstein distance is compared against 𝐿1, 𝐿2, 𝐿∞ matrix norms, GH-
distance, and bottleneck distance, as well as various graph matching
algorithms. While certain distances may outperform others in spe-
cific simulations, the Wasserstein distance consistently outperforms
11
other metrics across a range of simulations, on average. One key
factor contributing to this performance is the multi-scale nature of
the Wasserstein distance in measuring topological discrepancies across
filtrations. This makes it particularly robust against large perturbations
and noise, outperforming existing uni-scale approaches. Furthermore,
the Wasserstein distance is expected to have higher discriminative
power compared to the bottleneck distance or other topological met-
rics. This is due to the fact that the bottleneck and GH-distances are all
upper bounds for the Wasserstein distance (Dłotko and Hellmer, 2023;
Chung et al., 2019b).

4. Application

4.1. Dataset

The method is applied the functional brain networks of 151 subjects
in the Epilepsy Connectome Project (ECP) database (Hwang et al.,
2020). We used 50 healthy controls (mean age 31.78 ± 10.32 years)
and 101 chronic temporal lobe epilepsy (TLE) patients (mean age
40.23 ± 11.85). The resting-state fMRI were collected on 3T Gen-
eral Electric 750 scanners at two institutes (University of Wisconsin-
Madison and Medical College of Wisconsin). T1-weighted MRI were
acquired using MPRAGE (magnetization prepared gradient echo se-
quence, TR/TE = 604 ms/2.516 ms, TI = 1060.0 ms, flip angle =
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8◦, FOV = 25.6 cm, 0.8 mm isotropic) (Hwang et al., 2020). Resting-
state functional MRI (rs-fMRI) were collected using SMS (simultaneous
multi-slice) imaging (Moeller et al., 2010) (8 bands, 72 slices, TR/ TE =
802 ms/33.5 ms, flip angle = 50◦, matrix = 104 . 104, FOV = 20.8 cm,
voxel size 2.0 mm isotropic) and a Nova 32-channel receive head coil.
The participants were asked to fixate on a white cross at the center of a
black screen during the scans (Patriat et al., 2013). 40 healthy controls
(HC) were scanned at the University of Wisconsin-Madison (UW) while
10 healthy controls were scanned at the Medical College of Wisconsin
(MCW). 39 TLE patients were scanned at the University of Wisconsin-
Madison while 62 TLE patients were scanned at the Medical College of
Wisconsin.

MRIs were processed following Human Connectome Project (HCP)
minimal processing pipelines (Glasser et al., 2013). Additional prepro-
cessing was performed on the rs-fMRI using AFNI (Cox, 1996) and
included motion regression using 12 motion parameters and band-pass
filtering (0.01–0.1 Hz) (Hwang et al., 2020). We used 360 Glasser
parcellations (Glasser et al., 2016) and additional 19 FreeSurfer sub-
cortical regions (Fischl et al., 2002) in computing pairwise Pearson
correlation between brain regions over the whole time points. This
results in 379 by 379 connectivity matrix per subject. 180 brain regions
reported in Glasser et al. (2013) are indexed between 1 to 180 for
the left hemisphere and 181 to 360 for the right hemisphere. The 19
subcortical structures from FreeSurfer are indexed between 361 to 379.
Fig. 1 displays the average connectivity in HC and TLE. TLE shows far
sparse more fractured network topology compared to HC.

4.2. Topological difference in temporal lobe epilepsy

The Wasserstein distance provides a method to quantify the sim-
ilarity between networks. The inferential ratio statistic 𝜙 uses the
Wasserstein distance to quantify within-group versus between-group
likelihood. This methodology employed a meaningful statistical frame-
work and proved reliably characterize differences between the patterns
of rs-fMRI connectivity in TLE versus HC. As the topological latent
space is only dependent on the relative strength of connections of
nodes or loops via rank-order, it is potentially more robust to scanner
and institutional differences. There is no need to account for site as a
confounding factor (Jovicich et al., 2006; Gunter et al., 2009).

Since the images were collected in two different sites, we tested
if there is any site effect. Using the proposed ratio statistic on the
Wasserstein distance, we compared 40 healthy controls from UW and
10 healthy controls from MCW. We obtained the 𝑝-value of 0.62 with
one million transpositions indicating there is no site effect observed in
HC. We also compared 39 TLE from UW and 62 TLE from MCW. We
obtained the 𝑝-value of 0.58 with one million transpositions indicating
there is no site effect observed in TLE as well. Thus, we did not account
for site effects in comparing healthy controls and TLE. The topological
method does not penalize the geometric differences such as correlation
differences but only topological differences and should be very robust
for site differences.

We also tested for a sex effect. There are 25 males and 25 females
in HC. We obtained a 𝑝-value of 0.70 with one million transpositions,
indicating that no sex effect was observed in HC. There are 39 males
and 62 females in TLE. We obtained a 𝑝-value of 1.00 with one million
transpositions, indicating that no sex effect was observed in TLE. Thus,
we did not account for the sex effect when comparing HC and TLE. Our
topological method appears to be very robust to sex differences. Since
older TLE patients have been suffering from TLE for a longer duration
compared to younger TLE patients, it is unclear whether the age effect
is due to the duration of exposure to TLE or to actual age differences.
Thus, we did not test for an age effect.

The proposed method is subsequently applied in comparing 50
healthy and 101 TLE patients. The pairwise distance within TLE is
114.62 ± 147.67 while the pairwise distance within HC is 110.65 ±
12

T

124.78. The average pairwise distance within a group is not too differ-
ent between TLE and HC. What separates TLE and HC is the between-
group distance which measures the sum of all possible pairwise distance
between a TLE subject and a HC subject. From the ratio statistic of
the between-group over within-group distance, we obtained the 𝑝-value
of 0.0086 after 100 million transpositions for 100 s computation in a
desktop (Fig. 7).

This can be easily interpreted if we spread 151 subject as scatter
points in topological embedding (Fig. 10-left). The figure displays the
spread of each subject with respect to the group topological mean
(blue square for HC and red square for TLE), where the 𝑥-axis shows
the spread with respect to the 0D topology and the 𝑦-axis shows the
spread with respect to the 1D topology. Given sorted birth values
𝑏𝑘(1), 𝑏

𝑘
(2),… , 𝑏𝑘(𝑞0) for the 𝑘th subject, the 𝑥-coordinates of the group

opological mean is given by

𝑏 =
1
𝑞0

𝑞0
∑

𝑘=1
𝑏𝑘(𝑖).

The 𝑦-coordinates of the group topological mean is obtained similarly
using death values. The embedding 𝑥-coordinate of the 𝑘th subject is
then

1
𝑞0

𝑞0
∑

𝑘=1
(𝑏𝑘(𝑖) − 𝜇𝑏).

he embedding 𝑦-coordinate of the 𝑘th subject is similarly given us-
ng the death values. The embedding shows the relative topological
istance with respect to the topological center of each group. We can
learly see more spread for TLE compared to HC. We also can see that
D topology is the main topological discriminator separating the two
roups while 1D topology may not be able to discriminate the groups.
imilar observation was made in the huge 𝛽0-curve shape difference
hile there is almost no shape difference in 𝛽1-curve.

From the ratio statistic of the between-group over within-group
istance, we obtained the 𝑝-value of 0.0086 after 100 million trans-
ositions for 100 s computation in a desktop (Fig. 7). The sample size
s significantly larger so need more transpositions for the converging
esult (Fig. 8). The primary topological differences between TLE and
C were found in the Betti-0 (nodes) as compared to the Betti-1 (loops)

Fig. 4). The TLE patients had more sparse connections (Fig. 1). Essen-
ially there were weaker connections between nodes in TLE patients.
his result was most evident in the regions associated with the epileptic
egion. This result is anticipated from more traditional global graph
heory approaches to rs-fMRI (Struck et al., 2021; Mazrooyisebdani
t al., 2020; Liao et al., 2010; Lopes et al., 2017).

We compared our findings against our previous graph theory-
ased analysis in Garcia-Ramos et al. (2022), where Q-modularity and
lobal efficiency were used to quantify the TLE network (Fig. 10). Q-
odularity determines the strength of the division of a network into
odules (Newman and Girvan, 2004). Networks with high modularity
ave dense connections within modules but sparse connections across
odules. The TLE networks have smaller Q-modularity, indicating

hat modules are somewhat fractured, with fewer connections across
ifferent modules, which is also evident in Fig. 1. Global efficiency
easures the efficiency of a network in terms of the average inverse

hortest path length (Latora and Marchiori, 2001). A higher global
fficiency indicates a more interconnected, tightly knit network, where
nformation can flow rapidly and directly between nodes. The TLE net-
orks have higher global efficiency but lower Q-modularity compared

o the HC networks. A network with high modularity might have lower
lobal efficiency if the separation into distinct modules leads to longer
aths between nodes in different modules. This inverse relationship
etween modularity and global efficiency in TLE networks aligns with
indings reported in our previous study (Garcia-Ramos et al., 2022). We
onclude that there is a strong topological difference between HC and

LE that is also consistent with findings from graph theory features.
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Fig. 10. Left: Topological embedding of 151 subjects. Green circles are HC and yellow circles are TLE. The blue square is the topological center of HC while the red square is the
topological center of TLE. The horizontal axis represents 0D topology (connected components) through birth values while the vertical axis represents 1D topology (circles) through
death values. The embedding shows that the topological separation is mainly through 0D topology. Right: Embedding through graph theory features global efficiency at vertical
and Q-modularity at horizontal axes.
4.2.1. Localizing topological signals
In traditional Topological Data Analysis (TDA), it is often chal-

lenging to identify the specific brain regions responsible for observed
topological differences. In contrast, our method enables the localization
of such differences. Utilizing a node attack strategy (Bullmore and
Sporns, 2012; Lee et al., 2018a), we assessed the impact of excluding
each node on the ratio statistic 𝜙 (Fig. 11). Specifically, we computed
the difference in 𝜙 with and without each node, denoted as 𝛥𝜙.
A larger 𝛥𝜙 indicates a more discriminative subnetwork without the
node. The 20 most influential brain regions, as reflected by their effect
on 𝛥𝜙, are illustrated in Fig. 11 and highlighted in teal in Fig. 12.

Among 20 regions, ten regions that increase the ratio statistic most
are listed here: the left fundus of the superior temporal visual area
(L-Area FST), brain stem, right frontal operculum area 1 (R-Frontal
OPercular Area 1), right subgenual anterior cingulate cortex s32 (Right-
Area s32), left temporal gyrus dorsal (L-Area TG dorsal), the middle
of the left primary auditory cortex (L-Area TE1 Middle), the posterior
of the right auditory cortex TE2 (R-Area TE2 posterior), right superior
temporal area (R-Area FST), left subgenual anterior cingulate cortex
s32 (L-Area s32), right temporo-parieto-occipital junction (R-Area Tem-
poroParietoOccipital Junction 3). These regions are 10 most influential
brain regions that are responsible for the topological difference against
HC. These regions are all associated with the extended network of
temporal lobe epilepsy. These regions are within the bilateral temporal
regions or in close proximity, both structurally and functionally (right
frontal operculum area 1, right subgenual anterior cingulate cortex or
right temporal-parieto-occipital junction). The one potentially surpris-
ing result was the brainstem. The brainstem is integral to the process
of losing awareness during a temporal lobe seizure and is thereby
implicated in the symptomogenic zone of TLE (Mueller et al., 2018).
The work of Blumenfeld, Englot and others highlights the importance
of examining the connectivity of the brainstem in TLE, a result that is
only starting to be explored by the larger epilepsy community (Englot
et al., 2008, 2009, 2018). Finding the importance of the brainstem in
fMRI connectivity difference between TLE and controls is an exciting
result from this topological approach to brain networks.

5. Discussion

5.1. Unaddressed challenges in Wasserstein distance

In this study, we proposed the unified topological inference frame-
work for discriminating the topological difference between healthy
controls (HC) and temporal lobe epilepsy (TLE) patients. The method is
based on computing the Wasserstein distance, the probabilistic version
of optimal transport, which can measure the topological discrepancy in
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persistence diagrams. We developed a coherent statistical framework
based on persistent homology and presented how such method is
applied to the resting state fMRI data in localizing the brain regions af-
fecting topological difference in TLE. An alternative approach for local-
izing the brain regions in persistent homology is to use ∞-Wasserstein
distance which is the bottleneck distance given by

∞0(𝑃1, 𝑃2) = max
𝑖

|𝑏1(𝑖) − 𝑏
2
(𝑖)|

for 0D topology and

∞1(𝑃1, 𝑃2) = max
𝑖

|𝑑1(𝑖) − 𝑑
2
(𝑖)|

for 1D topology (Das et al., 2022). Due to the birth–death decompo-
sition, the 𝑖th largest birth edges and death edges that optimize the
∞-Wasserstein distance can be easily identifiable. This is left as a future
study.

The Wasserstein distance can also be used as a metric for unsuper-
vised machine-learning to characterize latent phenotypes. In simulated
data, it performed better than 𝑘-means clustering and hierarchical
clustering in not detecting false positives. Although we did not explore
the problem of determining optimal number of clusters, the Wasserstein
distance can handle such a problem through the elbow method (Allen
et al., 2014; Rashid et al., 2014; Ting et al., 2018; Huang et al., 2020).
For each cluster number 𝑘, we compute the ratio 𝜓𝑙 of the within-cluster
𝑙𝑊 to between-cluster distance 𝑙𝐵 , i.e.,

𝜓𝑙 =
𝑙𝑊
𝑙𝐵
.

The within-cluster distance generalizes the within-group distance 𝑊
between two groups to 𝑘 groups while the between-cluster distance
generalizes the between-group distance 𝐵 between two groups to 𝑘
groups. Thus, when 𝑘 = 2, we have the inverse relation with the ratio
static we used in the two group discrimination task

𝜓𝑙 =
1
𝜙

.

The ratio shows the goodness-of-fit of the cluster model. Fig. 13 plots
the ratio over different number of 𝑘 for a controlled experiment. The
optimal number of clusters were determined by the elbow method,
gives the largest slope change in the ratio in the plot. 𝑘 = 3 gives
the largest slope in the both methods and we determine 𝑘 = 3 is the
optimal number of clusters. The performance of the elbow method is
well understood in traditional 𝑘-means clustering, but its performance
using the Wasserstein distance has not yet been quantified. Other
methods such as the gap-statistic, silhouette or graphical methods are
possible. This approach could be fruitful as TLE is a heterogeneous
disease with varying etiologies, differing responses to anti-seizure med-
ications, differing propensity to secondary generalized tonic clonic
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Fig. 11. The plot of the Wasserstein distance based ratio static 𝜙 under the node
attack. The red line is the ratio statistic of the whole brain network without any node
attack. After deleting each parcellation under the node attack, we recomputed the ratio
statistic (black dots). The biggest drop in the ratio statistic corresponds to the biggest
topological difference for TLE. Listed 20 regions that decrease the ratio statistic and in
turn decreases the discrimination power the most.
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Fig. 12. 20 localized brain regions (teal color) identified under node attack on the ratio
statistic 𝜙 displayed over Glasser pacellated brain regions. The results are overlaid on
top of average correlation map of TLE patients.

seizures, laterality, and psychosocial outcomes including cognition and
psychopathology (Garcia-Ramos et al., 2021; Hermann et al., 2020,
2021). Further uses of 𝛥𝜓 could be to find the regions that drive the
differences between latent TLE phenotypes or as metrics for supervised
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Fig. 13. The ratio 𝜓𝑙 of the within-cluster distance over the between-cluster distance.
The topological approach using the Wasserstein distance usually gives far smaller ratio
compared to the traditional 𝑘-means clustering. In the elbow method, the largest slope
change occurs at 𝑘 = 3 and we determine 𝑘 = 3 is the optimal number of clusters.

machine learning classification problems and regional association with
cognitive or disease variables of interest, both undertakings for future
studies.

5.2. Sex differences might be geometric but not topological

As supported by a substantial body of literature, sex differences in
brain networks are well-established (Ingalhalikar et al., 2014; Jahan-
shad et al., 2011; Rubin et al., 2017). Similarly, the influence of scanner
(or site) differences in brain imaging studies has long been a significant
consideration (Gunter et al., 2009; Jovicich et al., 2006). However,
our topological method did not detect effects related to either sex or
site. If such differences are primarily geometric in nature, our topo-
logical approach would be robust against them, thereby not detecting
variations attributable to sex or site. The nature of these differences,
whether geometric or topological, remains unclear, as comprehensive
research on this topic is limited. Most existing studies that report sex
or site differences rely on geometric methods, such as traditional t-
tests and ANOVA. We hypothesize that sex differences are primarily
geometric. It is likely that the strength of connectivity in specific brain
regions varies between males and females, without significant topolog-
ical differences. Unlike biological sex differences, scanner differences
are physical; therefore, the signal differences are somewhat artificial,
and the nature of these differences remains very unclear. These issues
warrant further study.

5.3. Topological characterization in focal epilepsy

Further development of topological approaches is needed to repli-
cate some of the other key findings in rs-fMRI in focal epilepsy. It is
proposed that the seizure generating region is often internally hyper-
connected. Independent component analysis (Boerwinkle et al., 2016)
and graph theory measure like the rich club (Lopes et al., 2017)
have been used to support this hypothesis. Further methodological
and empiric work is needed to developed the topological equivalents.
Techniques to define the expected functional networks in topological
space like the default and attention networks are needed to measure
the impact of epilepsy on these networks. Additional areas for further
investigation are to apply these techniques in task-related, morpholog-
ical, and DWI connectivity matrices and further exploration in EEG
bands for multimodal network analysis. Further the clinical, cognitive,
15
and psychological consequences of the differing functional topology
should be explored. The potential benefits of topological approaches
warrant further methodological development and clinical investigation
on epilepsy patients.
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Appendix A. Algebra on birth–death decompositions

We cannot build coherent statistical inference framework if we
cannot even compute the sample mean and variance. Thus, we need
to define valid algebraic operations on the birth–death decomposition
and check if they are even valid operations. Here addition + is defined
in an element-wise fashion in adding matrices while ∪ is defined for
the birth–death decomposition.

Consider graph  = (𝑉 ,𝑤) with the birth–death decompositions
𝑊 = 𝑊𝑏 ∪𝑊𝑑 :

𝑊𝑏 = {𝑏(1),… , 𝑏(𝑞0)}, 𝑊𝑑 = {𝑑(1),… , 𝑑(𝑞1)}.

Let  (𝑊 ) = 𝑤 be the function that maps each edge in the ordered edge
set 𝑊 back to the original edge weight matrix 𝑤. −1(𝑤) = 𝑊 is the
function that maps each edge in the edge weight matrix to the birth
death decomposition. Such maps are one-to-one. Since 𝑊𝑏 and 𝑊𝑑 are
disjoint, we can write as

 (𝑊𝑏 ∪𝑊𝑑 ) =  (𝑊𝑏) +  (𝑊𝑑 ).

Define the scalar multiplication on the ordered set 𝑊 as

𝑐𝑊 = (𝑐𝑊 ) ∪ (𝑐𝑊 ) = {𝑐𝑏 ,… , 𝑐𝑏 } ∪ {𝑐𝑑 ,… , 𝑐𝑑 }
𝑏 𝑑 (1) (𝑞0) (1) (𝑞1)

https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
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for 𝑐 ∈ R. Then we have  (𝑐𝑊 ) = 𝑐 (𝑊 ) for 𝑐 ≥ 0. The relation does
not hold for 𝑐 < 0 since it is not order preserving. Define the scalar
addition on the ordered set 𝑊 as

𝑐+𝑊 = (𝑐+𝑊𝑏)∪(𝑐+𝑊𝑑 ) = {𝑐+𝑏(1),… , 𝑐+𝑏(𝑞0)}∪{𝑐+𝑑(1),… , 𝑐+𝑑(𝑞1)}

for 𝑐 ∈ R. Since the addition is order preserving,  (𝑐 +𝑊 ) = 𝑐 +  (𝑊 )
for all 𝑐 ∈ R.

Define scalar multiplication of 𝑐 to graph  = (𝑉 ,𝑤) as 𝑐 =
𝑉 , 𝑐 (𝑊 )). Define the scalar addition of 𝑐 to graph  as 𝑐 +  =
𝑉 , 𝑐 +  (𝑊 )). Let 𝑐 = 𝑐𝑏 ∪ 𝑐𝑑 be an ordered set with 𝑐𝑏 = (𝑐𝑏(1),… , 𝑐𝑏(𝑞0))
nd 𝑐𝑑 = (𝑐𝑑(1),… , 𝑐𝑑(𝑞1)). Define the set addition of 𝑐 to the ordered set 𝑊
s

+𝑊 = (𝑐𝑏 +𝑊𝑏) ∪ (𝑐𝑑 +𝑊𝑑 )

ith 𝑐𝑏 + 𝑊𝑏 = {𝑐𝑏(1) + 𝑏(1),… , 𝑐𝑏(𝑞0) + 𝑏(𝑞0)} and 𝑐𝑑 + 𝑊𝑑 = {𝑐𝑑(1) +

(1),… , 𝑐𝑑(𝑞1) + 𝑑(𝑞1)}. Then we have the following decomposition.

heorem 5. For graph  = (𝑉 ,𝑤) with the birth–death decompositions
= 𝑊𝑏 ∪𝑊𝑑 and positive ordered sets 𝑐𝑏 and 𝑐𝑑 , we have

 ((𝑐𝑏 +𝑊𝑏) ∪𝑊𝑑 ) = (𝑐𝑏 +  (𝑊𝑏)) +  (𝑊𝑑 ) (11)
(𝑊𝑏 ∪ (𝑐𝑑 − 𝑐∞ +𝑊𝑑 )) =  (𝑊𝑏) +  (𝑐𝑑 − 𝑐∞ +𝑊𝑑 ), (12)

here 𝑐∞ is a large number bigger than any element in 𝑐𝑑 .

roof. Note 𝑐𝑏 + 𝑊𝑏 is order preserving. 𝑊𝑏 is the MST of graph  .
he total edge weights of MST does not decrease if we change all the
dge wights of MST from 𝑊𝑏 to 𝑐𝑏 +𝑊𝑏. Thus 𝑐𝑏 +𝑊𝑏 will be still MST
nd  (𝑐𝑏 +𝑊𝑏) = 𝑐𝑏 +  (𝑊𝑏). The death set 𝑊𝑑 does not change when
he edges in MST increases. This proves (11).

The sequence (𝑎1,… , 𝑎𝑞1) = 𝑐𝑑 − 𝑐∞ with 𝑎𝑖 = 𝑐𝑑(𝑖) − 𝑐∞ < 0 is
ncreasing. Adding (𝑎1,… , 𝑎𝑞1) to 𝑊𝑑 is order preserving. Decreasing
dge weights in 𝑊𝑑 will not change the total edge weights of MST. Thus
he birth set is still identical to 𝑊𝑏. Then the death set is 𝑐𝑑 − 𝑐∞ +𝑊𝑑 .

This proves (12). □

The decomposition (12) does not work if we simply add an arbitrary
ordered set to 𝑊𝑑 since it will change the MST. Numerically the above
algebraic operations are all linear in run time and will not increase the
computational load. So far, we demonstrated what the valid algebraic
operations are on the birth–death decompositions. Now we address the
question of if the birth–death decomposition is additive.

Given graphs 1 = (𝑉 ,𝑤1) and 2 = (𝑉 ,𝑤2) with corresponding
irth–death decompositions 𝑊1 = 𝑊1𝑏 ∪ 𝑊1𝑑 and 𝑊2 = 𝑊2𝑏 ∪ 𝑊2𝑑 ,
efine the sum of graphs 1+2 as a graph  = (𝑉 ,𝑤) with birth–death
ecomposition

𝑏 ∪𝑊𝑑 = (𝑊1𝑏 +𝑊2𝑏) ∪ (𝑊1𝑑 +𝑊2𝑑 ). (13)

owever, it is unclear if there even exists a unique graph with de-
omposition (13). Define projection  (𝑊1|𝑊2) as the projection of edge
alues in the ordered set 𝑊1 onto the edge weight matrix  (𝑊2) such
hat the birth values 𝑊1𝑏 are sequentially mapped to the 𝑊2𝑏 and
he death values 𝑊1𝑑 are sequentially mapped to the 𝑊2𝑑 . Trivially,
(𝑊1|𝑊1) =  (𝑊1). In general,  (𝑊1|𝑊2) ≠  (𝑊2|𝑊1). The projection
an be written as

(𝑊1|𝑊2) =  (𝑊1𝑏|𝑊2𝑏) +  (𝑊1𝑑 |𝑊2𝑑 ).

Theorem 6. Given graphs 1 = (𝑉 ,𝑤1) and 2 = (𝑉 ,𝑤2) with correspond-
ing birth–death decompositions 𝑊1 = 𝑊1𝑏∪𝑊1𝑑 and 𝑊2 = 𝑊2𝑏∪𝑊2𝑑 , there
exists graph  = (𝑉 ,𝑤) with birth–death decomposition 𝑊𝑏 ∪𝑊𝑑 satisfying

𝑊𝑏 ∪𝑊𝑑 = (𝑊1𝑏 +𝑊2𝑏) ∪ (𝑊1𝑑 +𝑊2𝑑 ).

with

𝑤 =  (𝑊𝑏 ∪𝑊𝑑 ) =  (𝑊1𝑏 +𝑊2𝑏|𝑊1𝑏) +  (𝑊1𝑑 +𝑊2𝑑 |𝑊1𝑑 ).
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Proof. We prove by the explicit construction in a sequential manner
by applying only the valid operations.

(1) Let 𝑐∞ be some fixed number larger than any edge weights in
𝑤1 and 𝑤2. Add 𝑐∞ to the decomposition 𝑊1𝑏 ∪ 𝑊1𝑑 to make all the
edges positive:

𝑐∞ + (𝑊1𝑏 ∪𝑊1𝑑 ) = (𝑐∞ +𝑊1𝑏) ∪ (𝑐∞ +𝑊1𝑑 ). (14)

The edge weight matrix is given by

 ((𝑐∞ +𝑊1𝑏) ∪ (𝑐∞ +𝑊1𝑑 )) = 𝑐∞ +  (𝑊1).

(2) We add the ordered set 𝑊2𝑏 to decomposition (14) and obtain

𝑐∞ + (𝑊1𝑏 +𝑊2𝑏) ∪𝑊1𝑑 = (𝑐∞ +𝑊1𝑏 +𝑊2𝑏) ∪ (𝑐∞ +𝑊1𝑑 ). (15)

We next determine how the corresponding edge weight matrix changes
when the birth–death decomposition changes from (14) to (15). In-
creasing birth values from 𝑐∞ + 𝑊1𝑏 to 𝑐∞ + 𝑊1𝑏 + 𝑊2𝑏 increases the
total edge weights in the MST of 𝑐∞ + 1. Thus, 𝑐∞ +𝑊1𝑏 +𝑊2𝑏 is still
MST. The death set does not change from 𝑐∞ +𝑊1𝑑 . The edge weight
matrix is then given by

 ((𝑐∞ +𝑊1𝑏 +𝑊2𝑏) ∪ (𝑐∞ +𝑊1𝑑 ))

=  (𝑐∞ +𝑊1𝑏 +𝑊2𝑏|𝑊1𝑏) +  (𝑐∞ +𝑊1𝑑 ). (16)

(16) can be also derived from (11) in Theorem 5 as well.
(3) Add ordered set 𝑊2𝑑 − 𝑐∞ to the death set in the decomposition

(15) and obtain

(𝑐∞ +𝑊1𝑏 +𝑊2𝑏) ∪ (𝑊1𝑑 +𝑊2𝑑 ). (17)

Decreasing death values from 𝑐∞ +𝑊1𝑑 to 𝑊1𝑑 +𝑊2𝑑 does not affect
the total edge weights in the MST of (16). There is no change in MST.
The birth set does not change from 𝑐∞ +𝑊1𝑏 +𝑊2𝑏. Thus,

 ((𝑐∞ +𝑊1𝑏 +𝑊2𝑏) ∪ (𝑊1𝑑 +𝑊2𝑑 ))

=  (𝑐∞ +𝑊1𝑏 +𝑊2𝑏|𝑊1𝑏) (𝑊1𝑑 +𝑊2𝑑 |𝑊1𝑑 )

= (𝑐∞ +  (𝑊1𝑏 +𝑊2𝑏|𝑊1𝑏)) +  (𝑊1𝑑 +𝑊2𝑑 |𝑊1𝑑 ) (18)

Since edge weights in 𝑊2𝑑 − 𝑐∞ are all negative, we can also obtain the
above result from Theorem 5.

(4) Finally we subtract 𝑐∞ from the birth set in (17) and obtain the
projection of sum onto 𝑊1.

 (𝑊1𝑏 +𝑊2𝑏|𝑊1𝑏) +  (𝑊1𝑑 +𝑊2𝑑 |𝑊1𝑑 ). □ (19)

Remark. Theorem 6 does not guarantee the uniqueness of edge weight
matrices. Instated of projecting birth and death values onto the first
graph, we can also project onto the second graph

 (𝑊1𝑏 +𝑊2𝑏|𝑊2𝑏) +  (𝑊1𝑑 +𝑊2𝑑 |𝑊2𝑏).

or any other graph. Different graphs can have the same birth–death
sets. Fig. 14 shows two different graphs with the identical birth and
death sets.

Appendix B. Matlab implementation

We made MATLAB codes used in the study as part of PH-STAT
(Statistical Inference on Persistent Homology): https://github.com/
laplcebeltrami/PH-STAT. Simply run Matlab live script SCRIPT.mlx.

Graph filtration

Graph filtration is performed using the function PH_betti.m
that inputs connectivity matrix C and the range of filtration values
thresholds. It outputs Betti-curves as structured array beta.zero
and beta.one, which can be displayed using PH_betti_
display.m:

thresholds=[0:0.01:1];
beta = PH_betti(w, thresholds);

PH_betti_display(beta,thresholds)

https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
https://github.com/laplcebeltrami/PH-STAT
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Fig. 14. Schematic of Theorem 6 with 4-nodes examples. Each step of operations yield graphs with valid birth–death decompositions. The first row is the construction of sum
operation by projecting to 𝑊1. The second row is the construction of sum operation by projecting to 𝑊2. Red colored edges are the maximum spanning trees (MST). Each addition
operation will not change MST. Eventually, we can have two different graphs with the identical birth–death decomposition.
Wasserstein distance

The 2-Wasserstein distances are computed using WS_pdist2.m,
which inputs a collection of connectivity matrices con_i of size 𝑝 ×
𝑝 × 𝑚 and con_j of size 𝑝 × 𝑝 × 𝑚 (𝑝 number of nodes and 𝑚 and 𝑛
samples). Then the function outputs structured array lossMtx, where
lossMtx.D0, lossMtx.D1 and lossMtx.D01 are (𝑚 + 𝑛) × (𝑚 +
𝑛) pairwise distance matrix for 0D distance 𝐷2

𝑊 0, 1D distance 𝐷2
𝑊 1,

combined distance  = 𝐷2
𝑊 0 +𝐷

2
𝑊 1 respectively:

lossMtx = WS_pdist2(con_i,con_j);
WS_pdist2_display(con_i,con_j)

WS_pdist2_display.m displays the comparison between the
Euclidean distance and the Wasserstein distances.

Topological inference

The observed ratio statistic 𝜙 is computed using WS_ratio.m,
which inputs one of distance matrices, such as lossMtx.D0 or
lossMtx.D01, and sample size in each group:

observed = WS_ratio(lossMtx.D01, nGroup_i, nGroup_j);

The transposition test on the ratio statistic is implemented as
WS_transpositions.m and takes less than one second in a desktop
computer for million permutations. The function inputs one of distance
matrices such as lossMtx.D01, sample size in each group, number of
transpositions and the number of permutations that are interjected into
transpositions:

nTrans = 1000000;
permNo = 1000;
[transStat, ~] = WS_transpositions(lossMtx.D01,
nGroup_i, nGroup_j, nTrans, permNo);

In this example, we are intermixing 1000 permutations (permNo)
in 1000000 transpositions (nTrans). This produces a sequence of ratio
statisticstransStat that is updated over transpositions. 𝑝-value pval
is then computed in an iterative fashion:

transPval = online_pvalues(transStat’, ratio);
pval = transPval(end)
17
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