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Abstract

Understanding the topological characteristics of the brain network across a population
is central to understanding brain functions. The abstraction of human connectome as a
graph has been pivotal in gaining insights on the topological features of the brain
network. The development of group-level statistical inference procedures in brain graphs
while accounting for the heterogeneity and randomness still remains a difficult task. In
this study, we develop a robust statistical framework based on persistent homology
using the order statistics for analyzing brain networks. The use of order statistics
greatly simplifies the computation of the persistent barcodes. We validate the proposed
methods using comprehensive simulation studies and subsequently apply to the
resting-state functional magnetic resonance images. We conclude a statistically
significant topological difference between the male and female brain networks.

Author summary

We fit a random graph model to the brain network and compute the expected persistent
barcodes using order statistics. This novel approach significantly simplifies the
computation of expected persistent barcodes, which otherwise requires complex
theoretical constructs. Subsequently, the proposed statistical framework is used to
discriminate if two groups of brain networks are topologically different. The method is
applied in determining the sexual dimorphism in the shape of resting-state functional
magnetic resonance images.

Introduction

Modeling the human brain connectome as graphs has become the cornerstone of
neuroscience, enabling an efficient abstraction of the brain regions and their
interactions [1, 2]. Graphs offer the simplistic construct with only a set of nodes and
edges to describe the connectivity of the brain network [3]. The generalizability of graph
representation allows one to obtain quantitative measures across multiple
spatio-temporal scales ranging from the node level up to the whole network level [4, 5].
To build the graph representation of brain networks, the whole brain is usually
parcellated into hundreds of disjoint regions, which serves as nodes and the edges are
associated with weights that indicate the strength of connection between the brain
regions [6]. The graph theory based models provide reliable measures such as
small-worldness, modularity, centrality and hubs [7–9]. However, these measures are
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often affected by the choice of arbitrary thresholds on the edge weights and thus make
comparisons across networks difficult [10,11]. To overcome this issue, the topological
data analysis (TDA) has emerged to be a powerful method to systematically extract
information from hierarchical layers of abstraction [12–15].

Persistent homology (PH), one of the TDA techniques, provides a coherent
framework for obtaining topological invariants or features such as connected
components and cycles at different spatial resolutions [16–19]. These topological
invariants are often used to provide robust quantification measures to assess the
topological similarity between networks [6]. Mostly the persistent barcodes are
represented as persistent landscapes or diagrams and their distributions are used to
compute a topological distance measure [20]. The PH based topological distances are
found to consistently outperform traditional graph based metrics [21]. The main idea of
using PH to brain networks is to generate a sequence of nested networks over every
possible threshold through a graph filtration, which builds the hierarchical structure of
the brain networks at multiple scales [10,22–24].

In the graph filtration, a series of nested graphs containing topological information
at different scales are produced. During the graph filtration, some topological features
may live longer, whereas others die quickly. The filtration process tracks the birth,
death and persistence of the topological features. The lifespans or persistence of these
features are directly related to the topological properties of networks. The collection of
intervals from births to deaths that defines persistences are called the barcodes which
completely characterizes the topology of an underlying dataset [14]. The persistent
diagram displays the paired births and deaths as scatter points [16,20,25,26,26–29].
The Betti curves, which counts the number of such features over filtrations, provide
comprehensive visualizations of these intervals [6]. Thus, it is instructive to develop a
statistical inference procedure using the persistent barcodes in order to compare across
different groups and achieve meaningful inferences.

Since the real brain networks are often affected by heterogeneity and intrinsic
randomness [30,31], it is challenging to build a coherent statistical framework to
transform these topological features as quantitative measures to compare across different
brain networks by averaging or matching [32]. The brain networks are inherently noisy
which makes it even harder to establish similarity across networks. Thus, there is a need
to develop a statistical model that accounts for the randomness and provides consistent
results across networks. The statistical models based on the distributions are expected
to be more robust and less affected by the presence of outliers. To this end, we use the
concept of random graph to analyze brain networks across a population.

Recently, there is a resurge of interest on using random graphs for network analysis.
A graph whose features related to nodes and edges are determined in a random fashion
is called a random graph. The theory of random graphs lies at the intersection between
graph theory and probability theory. They are usually described using a probability
distribution or a stochastic process that generates them [33,34]. Analogous to the
persistent barcodes, we also have their stochastic versions referred as the expected
persistent barcodes for the random graphs. However, computing them requires complex
theoretical constructs and they are generally approximated [35–37].

In this paper, we propose a more adaptable random graph model for brain networks.
We consider a random complete graph, where all the nodes are connected with its edge
weights randomly drawn from a continuous distribution. The consideration of a
complete graph model simplifies building graph filtration straightforward [22,32]. We
then compute the expected 0D and 1D barcodes through the order statistics [38–43].
The use of order statistics in computing persistent homology features such as persistent
barcodes and Betti numbers can drastically speed up the computation. Further, we
propose the expected topological loss (ETL), which quantifies the 0D and 1D barcodes
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obtained through order statistics. We use the ETL as a test statistic to determine the
topological similarity and dissimilarity between networks. The proposed random graph
model and corresponding ETL methods are validated using extensive simulation studies
with the ground truths. Subsequently, the method is applied to the resting-state
functional magnetic resonance images (rs-fMRI) of the human brain.

Materials and Methods

Data

We considered a resting-state fMRI dataset collected as part of the Human Connectome
Project (HCP) [44,45]. The dataset consisted of the subset of fMRI scans of 400
subjects (168 males and 232 females) over approximately 14.5 minutes using a
gradient-echoplanar imaging sequence with 1200 time points [24,32]. Informed consent
was obtained from all participants by the Washington University in St. Louis
institutional review board [46]. The ethics approval for using the HCP data was
obtained from the local ethics committee of University of Wisconsin-Madison.

The human brain can be viewed as a weighted network with its neurons as nodes.
However, considering a high number of neurons

(
∼ 1012

)
in a human brain, the

traditional brain imaging studies parcellate the brain into a manageable number of
mutually exclusive regions [47–49]. These regions are then considered as nodes while the
strength of connectivity between these regions are edges. For the considered dataset,
the Automated Anatomical Labeling (AAL) template was employed to parcellate the
brain volume into 116 non-overlapping anatomical regions [50] and the fMRI across
voxels within each brain parcellation were averaged. This resulted 116 average fMRI
time series with 1200 time points for each subject. Further, we removed fMRI volumes
with significant head movements [51] because such movements are shown to produce
spatial artifacts in functional connectivity [52–54].

Simplicial complex

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary
dimensions. A 0-simplex is a point, a 1-simplex is a line segment, and a 2-simplex is a
triangle. In general, a k-simplex Sk is a convex hull of k + 1 affinely independent points
u0, u1, . . . , uk ∈ Rk:

Sk =

{
θ0u0 + · · ·+ θkuk

∣∣∣∣∣
k∑
i=0

θi = 1, θi ≥ 0 for i = 0, . . . , k

}
.

Whereas, a simplicial complex K is a set of simplices that satisfies the following two
conditions. (1) Every face of a simplex from K is also in K. (2) The non-empty
intersection of any two simplices S1, S2 ∈ K is a shared face [55]. We call a simplicial
complex consisting of up to k-simplices a k-skeleton. Since graphs are a collection of
nodes (0-simplices) and edges (1-simplices), they are 1-skeleton simplicial complexes.

Graph and graph filtration

Consider a weighted graph G(p,w), where p is the number of nodes and
w = (w1, . . . , wq)

> is a q-dimensional vector of edge weights with q = (p2 − p)/2. The
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binary graph Gε(p,wε) of G(p,w) has binary edge weight wε,i:

wε,i =

{
1, if wi > ε,

0, otherwise.

The binary network Gε(p,wε) is a 1-skeleton. In 1-skeleton, 0-dimensional (0D) holes
are connected components while the 1-dimensional (1D) holes are cycles. There is no
higher dimensional homology beyond dimensions 0 and 1 in 1-skeleton. The number of
connected components and the number of independent cycles in a graph are referred to
as the 0th Betti number (β0) and 1st Betti number (β1), respectively. For 1-skeletons,
there is an efficient 1D filtration method called the graph filtration, which filters at the
edge weights from −∞ to ∞ in a sequentially increasing manner [6, 32]. The graph
filtration of G is defined as a collection of nested binary networks

Gε0 ⊃ Gε1 ⊃ · · · ⊃ Gεk ,

where ε0 < ε1 < · · · < εk are filtration values. We consider the edge weights as the
filtration values to make the graph filtration unique.

Birth and death decomposition

When we increase the filtration value ε, either one new connected component appears or
one cycle disappears [6]. Once a connected component is born, it never dies implying an
infinite death value. On the other hand, all the cycles are considered to be born at −∞.
Thus, the number of connected components (or cycles) is non-decreasing (or
non-increasing) as ε increases. Subsequently, the 0D barcode is given by a set of
increasing birth values:

B(G) : εb1 < · · · < εbm0
,

and the 1D barcode is given by a set of increasing death values:

D(G) : εd1 < · · · < εdm1
.

The 0D and 1D barcodes are often visualized using persistent diagrams [16,25–27] and
Betti curves. The Betti curves plot the Betti numbers with respect to the filtration
values. Since the Betti numbers are monotonic, the Betti curve is a step function with a
one-unit jump (or drop) at every birth (or death) values. We can show that the total
number of finite birth values of connected components and the total number of death
values of cycles are

m0 = p− 1 and m1 =
(p− 1) (p− 2)

2
,

respectively [32]. The number of connected components (β0) and cycles (β1) in a
complete graph G0 are equal to 1 and m1, respectively. We note that every edge weight
must be in either 0D barcode or 1D barcode as summarized in the following
theorem [32].

Theorem 1 (Birth-death decomposition). The set of 0D birth values B(G) and
1D death values D(G) partition the edge weight vector w such that B(G) ∪D(G) = w
and B(G) ∩D(G) = φ. The cardinalities of B(G) and D(G) are p− 1 and
(p− 1) (p− 2)/2, respectively.
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Wasserstein distance on barcodes

Since the barcodes completely characterize the topology of a network [14], the
topological similarity between two such networks can be quantified using a distance
metric between the corresponding 0D or 1D barcodes [56]. Often used metric is the
Wasserstein distance [23,57–59]. Let G1 (p,u) and G2 (p,v) be two networks and the
corresponding barcodes (or persistent diagrams) be P1 and P2. Then, the 2-Wasserstein
distance on barcodes is given by

D(P1, P2) = inf
τ :P1→P2

( ∑
x∈P1

‖x− τ(x)‖2
)1/2

over every possible bijection τ between P1 and P2 [23, 60,61]. For graph filtrations,
barcodes are 1D scatter points. Therefore, the bijection τ can be simplified to the L2

norm between the sorted birth values of connected components or the sorted death
values of cycles [23].

Theorem 2 Let G1 and G2 be two networks with p nodes and{
ε
(k)
b1

< · · · < ε
(k)
bm0

}
and

{
ε
(k)
d1

< · · · < ε
(k)
dm1

}
be the birth and death sets of the network Gk, k = 1, 2. Then, the 2-Wasserstein
distance between the 0D barcodes for graph filtration is given by

D2
0(P1, P2) =

[
m0∑
i=1

(
ε
(1)
bi
− ε(2)

bi

)2
]1/2

,

and the 2-Wasserstein distance between the 1D barcodes is

D2
1(P1, P2) =

[
m1∑
i=1

(
ε
(1)
di
− ε(2)

di

)2
]1/2

.

Expected persistent barcodes of random graph

We consider a random graph G(p,W ), where its edge weights are drawn independent
and identically from a distribution function FW . Here, p is the number of nodes and
W = (W1, . . . ,Wq)

> is a q dimensional vector of random weights with q = (p2 − p)/2.
Fig 1 displays weighted brain networks randomly drawn from Beta distributions. The
considered graph is complete and its edge weights are drawn randomly from a
continuous distribution. To be mathematically precise, the considered random graph is
almost surely complete. Since we assume the edge weights to be drawn from a
continuous distribution, the probability of a certain edge weight being zero is nil.

If we apply a graph filtration on the random weighted graph G(p,WWW ), we have a set
of random birth values of connected components (or random 0D barcode) and a set of
random death values of cycles (or random 1D barcode). Since the notions of random
birth and death values are abstract, it is important to turn them into deterministic
topological descriptors. As often, one of the simplest way to turn a random object into
a deterministic summary is to consider its average behavior. To that end, we study the
expected birth and death values (or expected persistent barcodes) as follows.

Expected birth and death values: Let G(p,W ) be a random graph and its sorted
random edge weights be

W(1) < W(2) < · · · < W(q),
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Fig 1. Visualization of simulated brain networks with 116 nodes. Left: The empirical
density functions of simulated edge weights from Beta(2, 5) (top) and Beta(5, 2)
(bottom) distributions. Middle: The 116× 116 correlation matrices constructed using
the simulated edge weights. Right: Human brain networks with the simulated edge
weights. Since correlation networks are too dense for visualization, we only displayed
edges with values below 0.1 and above 0.9.

where the subscript (i) indicates the ith smallest random edge weight. Let the random
birth and death values of the connected components and cycles be

B(G) : W(i1) < W(i2) < · · · < W(im0
) and D(G) : W(j1) < W(j2) < · · · < W(jm1

),

where m0 = p− 1 and m1 = (p− 1)(p− 2)/2. Then, the expected birth and death
values are given by

B(G) : E
(
W(i1)

)
< E

(
W(i2)

)
< · · · < E

(
W(im0

)

)
and

D(G) : E
(
W(j1)

)
< E

(
W(j2)

)
< · · · < E

(
W(jm1

)

)
,

where E indicates the standard expectation operator on a random weight. �
In order to compute the expected birth and death values, we provide an explicit

expression for E
(
W(k)

)
, for k = 1, . . . , q, through Theorem 3 below.

Theorem 3 Let the edge weights W = {W1,W2, . . . ,Wq} of a random graph G(p,W )
be drawn from a distribution with cumulative distribution function (cdf) FW and
probability density function (pdf) fW . Then, the expectation of the kth order statistic
can be approximated by

E
(
W(k)

)
≈ F−1

W

(
k

q + 1

)
, k = 1, . . . , q.

Proof Since the edge weights W1,W2, . . . ,Wq are drawn from a distribution with a cdf
FW and a pdf fW , the pdf of the kth order statistic W(k) is given by

W(k) ∼
q!

(k − 1)!(q − k)!
fW (x){FW (x)}k−1{1− FW (x)}q−k. (1)

April 5, 2022 6/23



Fig 2. Schematic of graph filtration and persistent barcodes computation. We consider
a random weighted graph with p = 4 nodes, where the number of edges is
q = p(p− 1)/2 = 6. The random edge weights are {W1,W2, . . . ,W6}. We order them
using the order statistic as W(1) < W(2) < · · · < W(6). We remove each edge of the
random graph one at a time in the graph filtration and construct the random birth and
death sets of the connected components and cycles, respectively. The Betti-0 (lower
right) and Betti-1 (lower left) curves are drawn using the birth and death sets. The blue
and green shaded areas represent the areas under Betti-0 and Betti-1 curves. Later, we
will consider the area under Betti-0 curve to quantify the curve and construct a test
statistic to discriminate between two groups of networks.

W(k) does not follow a well-known distribution and, therefore, the computation of its
mean and variance is difficult. However, [62] showed that the rth sample quantile of
{W1,W2, . . . ,Wq} is asymptotically normally distributed:

W([(q+1)r]) ∼ AN
(
F−1
W (r),

r(1− r)
(q + 1)[fW {F−1

W (r)}]2

)
(2)

for large q, where AN stands for asymptotic normal distribution. Thus, the
approximate mean and variance of W(k) can be found from (2) by letting r = k/(q + 1):

E
(
W(k)

)
≈ F−1

W

(
k

q + 1

)
and var

(
W(k)

)
≈

k
q+1

(
1− k

q+1

)
(q + 1)

[
fW

{
F−1
W

(
k
q+1

)}]2 .
(Here we also compute the variance as we shall use that later while computing
confidence intervals.) Hence, the proof is complete. �

Now, we use Theorem 3 and provide expressions for the expected birth and death
values in Theorem 4 below.
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Theorem 4 Let G(p,W ) be a random graph, where its edge weights are drawn from a
cdf FW . Then, the expected birth values of the connected components of G(p,W ) are
given by

F−1
W

(
i1

q + 1

)
< · · · < F−1

W

(
im0

q + 1

)
and the expected death values of the cycles of G(p,W ) are given by

F−1
W

(
j1

q + 1

)
< · · · < F−1

W

(
jm1

q + 1

)
.

Proof The proof is trivial as the expected birth and death values are defined as

B(G) : E
(
W(i1)

)
< · · · < E

(
W(im0 )

)
and

D(G) : E
(
W(j1)

)
< · · · < E

(
W(jm1

)

)
,

and Theorem 3 suggests

E
(
W(k)

)
≈ F−1

W

(
k

q + 1

)
, k = 1, . . . , q.

�

Below we present a corollary, where we consider a particular scenario of Theorem 4.
We show that, if the edge weights follow a uniform distribution, then the expected birth
and death values have a more simplified and an exact form.

Corollary Let G(p,W ) be a random graph with its edge weights drawn from a
Uniform(0, 1) distribution. Then, the expected birth values of the connected
components of G(p,W ) are given by

i1
q + 1

< · · · < im0

q + 1

and the expected death values of the cycles of G(p,W ) are given by

j1
q + 1

< · · · < jm1

q + 1
.

Proof If the weight distribution is Uniform(0, 1), then the pdf (1) of the kth order
statistic simplifies to

W(k) ∼
q!

(k − 1)!(q − k)!
wk−1(1− w)q−k,

which turns out to be the pdf of the well-known Beta distribution with parameters k
and q + 1− k. Since the mean of a Beta(k, q + 1− k) distribution has an exact form of
k/(q + 1), we have

E
(
W(k)

)
=

k

q + 1
, k = 1, . . . , q.

This completes the proof. �

Once the expected birth and death values are computed, we use them to plot Betti
curves as illustrated in Fig 3. For this purpose, we consider two random graphs with
p = 150 nodes and their edge weights drawn from Beta(2, 2) and Beta(2, 3) distributions.
We observe that a slight change in distribution significantly affects the topology of a
network.
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Fig 3. Plots of Betti-0 (left) and Betti-1 (right) curves of random networks with edges
drawn from Beta(2, 2) (in dotted red line) and Beta(2, 3) (in solid black line)
distributions. We observe that a slight change in distribution significantly affects the
topology of a network.

Estimation of birth and death values and their confidence bands

Given a set of n samples from a random graph G(p,W ), we present a statistical
methodology to estimate expected birth and death values, and the corresponding
confidence bands. The methodology is later validated using a simulation study. Let the
random weights of the n sampled graphs be w1,w2, . . . ,wn, where
wi = (wi1, wi2, . . . , wiq)

> and wij∼FW for all i = 1, . . . , n and j = 1, . . . , q.
From the previous section, we know that W(k) follows a asymptotic Gaussian

distribution with its mean and variance being

E
(
W(k)

)
≈ F−1

W

(
k

q + 1

)
(= µk, say)

and

var
(
W(k)

)
≈

k
q+1

(
1− k

q+1

)
(q + 1)

[
fW

{
F−1
W

(
k
q+1

)}]2 = (σ2
k, say).

Thus, computing the mean and variance requires estimating the pdf fW and the inverse
cdf F−1

W . To estimate fW , we average the n graphs (with respect to their weights) and
consider the Gaussian kernel density estimate (KDE) of the averaged weights. Let the

average weight vector be w = 1
n

n∑
i=1

wi = (w1, w2, . . . , wq)
>. Then, the KDE of the pdf

fW is given by [63]

f̂W (x) =
1

qh

q∑
i=1

K

(
x− wi
h

)
,

where K is a non-negative kernel and h > 0 is a smoothing parameter called bandwidth.
For the current purpose, we assume the kernel to be Gaussian, i.e., K(·) = φ(·).

To estimate F−1
W , we first find the empirical cdf of FW based on the averaged weight

vector w:

F̂W (x) =
1

q

q∑
i=1

Iwi≤x.

Here, IA is an indicator function that takes value 1 if the event A is true and 0
otherwise. Then, we calculate the inverse cumulative distribution of F̂W (x):

F̂−1
W (x) = inf{t ∈ R : F̂W (t) ≥ x}.
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Once fW and F−1
W are estimated, we plug-in the corresponding estimates in µk and

σ2
k to have µ̂k and σ̂2

k, for k = 1, . . . , q. Finally, we calculate the α% confidence intervals
as

(µ̂k − zασ̂k, µ̂k + zασ̂k) ,

where zα is such that

P (Z ≥ zα|Z ∼ N (0, 1)) = α/2 = P (Z ≤ −zα|Z ∼ N (0, 1)).

In particular, if α = 95, we have zα = 1.96.

Inference on expected birth and death values

Since a graph can be topologically characterized by 0D and 1D barcodes, the
topological similarity and dissimilarity between two graphs can be measured using the
differences of such barcodes. To quantify these differences, we propose expected
topological loss (ETL) as follows.

Let G1(p,U) and G2(p,V ) be two random graphs, where the random weights
U = {U1, . . . , Uq} and V = {V1, . . . , Vq} are drawn from distribution functions FU and
FV , respectively. Further, let the expected birth and death values of G1(p,U) be

F−1
U

(
i1

q + 1

)
< · · · < F−1

U

(
im0

q + 1

)
and F−1

U

(
j1

q + 1

)
< · · · < F−1

U

(
jm1

q + 1

)
.

Similarly, let the expected birth and death values of G2(p,V ) be

F−1
V

(
î1

q + 1

)
< · · · < F−1

V

(
îm0

q + 1

)
and F−1

V

(
ĵ1

q + 1

)
< · · · < F−1

V

(
ĵm1

q + 1

)
.

Then, the ETL is given by

ETL (G1,G2)

=

m0∑
k=1

[
F−1
U

(
ik

q + 1

)
− F−1

V

(
îk

q + 1

)]2

+

m1∑
k=1

[
F−1
U

(
jk
q + 1

)
− F−1

V

(
ĵk
q + 1

)]2

. (3)

In most real life scenarios, the distribution functions FU and FV are unknown. In
such scenarios, we plug-in the corresponding empirical distribution function estimates,
F̂−1
U and F̂−1

V , in (3).

Application of ETL in discriminating two groups

The ETL can be used to topologically discriminate between two groups of brain
networks. Let Ω = {Ω1, . . . ,Ωm} and Ψ = {Ψ1, . . . ,Ψn} be two sets consisting of m
and n complete networks each comprising p number of nodes. Further, let the empirical
distribution functions of the edge weights of the graphs in group Ω be{

F̂Ω1
, . . . , F̂Ωm

}
and the expected birth and death values for Ωi, i = 1, . . . ,m, be

F̂−1
Ωi

(
i1

q + 1

)
< · · · < F̂−1

Ωi

(
im0

q + 1

)
and F̂−1

Ωi

(
j1

q + 1

)
< · · · < F̂−1

Ωi

(
jm1

q + 1

)
,
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which, for simplicity, we denote by

uΩ
1i < · · · < uΩ

m0i and vΩ
1i < · · · < vΩ

m1i,

respectively. Thus, the average (standard mean) of expected birth and death values for
the group Ω are given by

uΩ
1 < · · · < uΩ

m0
and vΩ

1 < · · · < vΩ
m1
.

Similarly, for the second group Ψ, let the average of expected birth and death values be

uΨ
1 < · · · < uΨ

m0
and vΨ

1 < · · · < vΨ
m1
.

Now, we consider a statistic based on ETL to discriminate between groups:

L(Ω,Ψ) =

m0∑
j=1

(
uΩ
j − uΨ

j

)2
+

m1∑
j=1

(
vΩ
j − vΨ

j

)2
. (4)

A “large” L(Ω,Ψ) shall indicate a significant topological difference between the two
groups whereas a “small” value shall suggest that there is no significant topological
group differences. Considering the probability distribution of the test statistic L(Ω,Ψ)
is unknown, we use the permutation test [64–67]. In this study, we use 100000
permutations. The p-values are computed after 10 such independent simulations.

A similar widely-used statistic is the maximum gap statistics. On a similar line to
L(Ω,Ψ), the statistic is given by:

L1(Ω,Ψ) = max
1≤j≤m0

∣∣uΩ
j − uΨ

j

∣∣+ max
1≤j≤m1

∣∣vΩ
j − vΨ

j

∣∣. (5)

We will use L1(Ω,Ψ) to compare with the ETL statistic L(Ω,Ψ) in the simulation
study section.

Area under Betti-0 curve in discriminating groups

The characteristics of β0 can be quantified using the area under the Betti-0 curve
(AUC) [68]. Using the notations of the previous subsection, the AUC for Ωi of the
group Ω and for Ψj of the group Ψ are given by

AUCΩi
=

m0∑
k=2

k
(
uΩ
ki − uΩ

(k−1)i

)
and AUCΨj

=

m0∑
k=2

k
(
uΨ
kj − uΨ

(k−1)j

)
,

for i = 1, . . . ,m and j = 1, . . . , n. We compute the AUC by summing up the areas of
rectangular blocks formed by the expected persistent barcodes. For example, if we
consider Fig 2, the area under the Betti-0 curve is

2 ·
(
W(5) −W(3)

)
+ 3 ·

(
W(6) −W(5)

)
.

In this scenario, we only have two terms because m0 = p− 1 = 3.
To determine if AUC is significantly different between the groups Ω and Ψ, we

consider the Wilcoxon rank sum test [69]. The Wilcoxon rank sum test is a
nonparametric test of the null hypothesis that, for randomly selected values X and Y
from two populations, the probability of X being greater than Y is equal to the
probability of Y being greater than X. This is unlike the previous situation, where we
considered a ETL or a max-gap statistic. In those scenarios, since we are considering
the distance between increasing births (or deaths) of two networks (with equal number
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of nodes), the consideration of L1 or L2 norm in the statistic is meaningful. Whereas, in
the current scenario, we have two samples of AUC of networks of size m and n.
Therefore, a distance statistic cannot be employed.

The Wilcoxon rank sum test places ranks to the aggregated sample (combined first
and second sample) and considers the sum of ranks for both the samples. For p > 4, the
number of cycles increases in power scale compared to the number of connected
components. Since the number of cycles is generally quite higher than the number of
connected components, the area under β1 curve dominates the total area. Also, while
comparing two samples coming from two different distributions, the areas under β1

curves differ significantly. Thus, the Wilcoxon rank sum test puts all the lower ranks
(say, 1 to m) to one of the samples and the remaining ranks to the other (say, m+ 1 to
m+ n). This makes the statistic constant even if we vary the distributions. This implies
the sum of ranks are same as long as we are considering two significantly different
distributions. Therefore, the results are robust (the test can identify difference as long
as there is a difference in distributions) but the p-values are always same for different
set of distributions (because the sum of ranks are same). For example, the p-value is
always exactly 0.0022 if we test the difference between two groups with 6 networks each,
where the edge weights are drawn from “Beta(1,1) & Beta(5,2)” or “Beta(1,5) &
Beta(5,2)” or “Beta(1,1) & Beta(1,5).” To make the test more unpredictable, we are
only considering the area under β0 curve. However, one may always incorporate the
area under β1 curve as it is more robust and the results are stable.

Simulation study

Validation of birth and death value estimates We validate the method to
estimate expected birth and death values. We consider a (non-stochastic) graph G(p,w)
with given edge weights and calculate its birth and death values using the standard
method [32]. On the other hand, we simulate n vectors of q-variate Gaussian noises and
add them to the edge weights w of G(p,w) to have a set of n graphs

G(p,wi) = G(p,w + εi), i = 1, . . . , n,

where εi ∼ Nq(0, σ2I). We consider the hence produced set of graphs

{G(p,w1), . . . , G(p,wn)}

as realizations from a random graph G(p,W ) and apply the proposed method to
calculate the expected birth and death values along with their corresponding confidence
bands. Then, we compare them with the initially calculated birth and death values of
G(p,w). A schematic of the validation procedure is presented in Fig 4.

To generate the graph G(p,w), we considered p = 10 number of nodes. That is, the
weight vector w is of dimension q = p(p− 1)/2 = 45. We drew the q variate random
weights w from the Uniform(0, 1) distribution. We simulated n = 15 noise vectors from
Nq(0, σ2I) of dimension q with σ = 0.02. The original and expected birth (left panel)
and death (right panel) values are plotted in Fig 5. The black line represents the
original birth (or death) values, the dashed red line indicates the estimated birth (or
death) values, and the dashed blue lines indicate the corresponding 95% upper and
lower confidence bands. We observe that the dashed red lines almost overlap the black
lines of the original birth and death values. In addition, the original birth (or death)
values almost always lie within the confidence bands supporting the reliability of the
proposed methodology.
Analyzing topological similarity between two groups of brain networks
Using expected topological loss: We provide a toy example to illustrate whether the
topological similarity (or dissimilarity) of two groups of networks, drawn from two
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Fig 4. Schematic to validate the proposed method to compute expected birth and
death values and, hence, the Betti curves. The graph G is a non-stochastic graph, which
we used to calculate the Betti curves (solid black line) in the standard way. On the
other hand, we added 15 Gaussian noise-graphs to the main graph G to have a set of 15
graphs. These 15 graphs are assumed to be sampled from a random weighted graph.
Then, we apply the proposed method on this set of sampled graphs and estimate the
expected birth and death values and, hence, the Betti curves (dotted red line).

Fig 5. Plots of the original and expected birth (left) and death (right) values. The
black line represents the original birth (or death) values, the dashed red line indicates
the expected birth (or death) values, and the dashed blue lines indicate the
corresponding 95% confidence intervals.

different distributions (or the same distribution), can be identified using the ETL
statistic (4). To that end, we consider the Uniform(0, 1) and Beta(a, b) distributions.
Both the distributions are defined on the domain (0, 1). The shape parameters a and b
of the beta distribution allow it to take a variety of shapes including the shape of a
uniform pdf when a = b = 1. We consider two different shapes, other than the uniform
one, for validation. The top panel of Fig 6 demonstrates these shapes of the beta
density functions.

For both the groups, we simulated n = 6, 8, 10, and 12 networks. Each network was
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Table 1. The average p-values obtained using the ETL statistic for various pairs of
distributions considered for drawing edge weights of networks. Here, the columns 6
networks, 8 networks, 10 networks, and 12 networks indicate the number of networks
that we considered for both the groups. The p-values smaller than 0.01 indicate that
our method can identify network differences at a 99% confidence level.

Distribution 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0017 1.00× 10−5 0.0000 0.0000

Beta(1, 1) vs. Beta(1, 5) 0.0022 1.00× 10−4 1.00× 10−5 0.0000

Beta(5, 2) vs. Beta(1, 5) 0.0011 1.30× 10−4 0.0000 0.0000

Beta(1, 1) vs. Beta(1, 1) 0.2478 0.6784 0.6859 0.8264

Beta(5, 2) vs. Beta(5, 2) 0.2393 0.4497 0.7836 0.8772

Beta(1, 5) vs. Beta(1, 5) 0.2721 0.6847 0.7585 0.7573

constructed using p = 10 nodes. That is, we had q = p(p− 1)/2 = 45 number of edges,
m0 = p− 1 = 9, and m1 = (p− 1)(p− 2)/2 = 36. For the permutation test, we
considered 100000 permutations and repeated that 10 times to compute the average
p-values. Table 1 tabulates the p-values for different pairs of considered distributions. In
all the scenarios, networks drawn from the same distribution produced large p-values
and networks drawn from different distributions had p-values smaller than 0.01.
Therefore, we conclude that the proposed ETL statistic, based on expected birth and
death values, can discriminate networks drawn from different distributions at 99%
confidence level. The middle panel of Fig 6 plots the histograms of the ETL test
statistic and the corresponding observed test statistics (in dotted red) for two specific
scenarios: (i) Beta(1, 1) vs. Beta(5, 2) (left) and (ii) Beta(1, 1) vs. Beta(1, 1) (right)
with 12 networks in each group.
Comparison of expected topological loss with baseline approaches: We compared the
proposed ETL with several other widely-used baseline topological distances such as
bottleneck, Gromov-Hausdorff (GH), and Kolmogorov-Smirnov (KS)
distances [21,70,71]. We also compared the results with the maximum gap statistic
defined earlier in (5). In all the scenarios, we considered two groups of networks each of
size n = 6. The remaining simulation setting is similar to the above. The corresponding
p-values are presented in Table 2. From the table, we observe that the ETL performs
well in most scenarios. In particular, we note that the KS based methods do not
perform well whereas the maximum gap based method is quite competitive. Further, for
testing no network differences, all the distances perform well.

Since the maximum gap based method exhibits a competitive performance with the
ETL based method, we plot the histograms of the maximum gap statistics obtained
over different permutations and the corresponding observed test statistics (in dotted
red) for two specific scenarios: (i) Beta(1, 1) vs. Beta(5, 2) (left) and (ii) Beta(1, 1) vs.
Beta(1, 1) (right) with 6 networks in each group; see the bottom panel of Fig 6.
Although both the methods (ETL and maximum-gap) perform well, the ETL generally
produces better results (i.e., its p-value is closer to 0 when there is a network difference
and closer to 1 when there is no network difference).
Using area under Betti-0 curve: Finally, we conducted a simulation study for the method
based on the area under β0 curve. The considered simulation layout was the same as
before. The obtained p-values are tabulated in Table 3. Networks drawn from the same
distribution produced large p-values and networks drawn from different distributions
had p-values smaller than 0.01. Therefore, similar to the ETL, this approach can
discriminate networks drawn from different distributions at a 99% confidence level.
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Fig 6. Top panel: Probability density functions of Beta(1, 1) or Uniform(0, 1) (in solid
line), Beta(5, 2) (in dash-dotted line), and Beta(1, 5) (in dotted line). We sample the
edge weights of random graphs from these three different distributions for validation
purpose. Middle and bottom panel: Histogram plots of the ETL (middle) and
maximum gap (bottom) test statistics and the corresponding observed test statistics (in
dotted red lines) for the scenarios: Beta(1, 1) vs. Beta(5, 2) (left) and Beta(1, 1) vs.
Beta(1, 1) (right) with 6 networks in each group.

Results

For each of the 400 subjects, we computed the whole-brain functional connectivity by
calculating the Pearson correlation matrix over 1200 time points across 116 anatomical
regions resulting in 400 correlation matrices of dimension 116× 116. Therefore, using
our notations, we have p = 116 nodes, q = p(p− 1)/2 = 6670 edges, m0 = p− 1 = 115,
and m1 = (p− 1)(p− 2)/2 = 6555.

Two-sample test using ETL statistic

Given the 400 correlation matrices of 168 males and 232 females, we aim to check
whether the proposed ETL statistic can determine the difference between the groups of
males and females. We assume that the male and female edge weights are coming from
distributions with cdfs FU and FV , respectively. However, these distribution functions
are unknown. Therefore, we need to estimate them because the ETL statistic is
constructed using these cdfs. To estimate the cdf, we average the male (female)
correlation matrices across 168 subjects (232 subjects) and find the empirical cdf based
on the averaged 6670 edge weights. The empirical cdfs of the average edge weights of
females (in solid black line) and males (in dashed red line) are presented in the left
panel of Fig 8. We observe that the empirical cdf corresponding to female is slightly
higher than that of male. This suggests a relatively more number of edge weights with

April 5, 2022 15/23



Table 2. The average p-values obtained using bottleneck, GH, KS, maximum gap, and
ETL based statistics for various pairs of distributions considered for drawing edge
weights of networks. There were 6 networks in each group for all the scenarios. The
p-values smaller than 0.01 indicate that the corresponding method can identify network
differences at a 99% confidence level.

Distribution Bottleneck GH KS(β0) KS(β1) Maximum gap ETL

Beta(1, 1) vs. Beta(5, 2) 0.0035 0.0028 0.4667 0.3438 0.0022 0.0014

Beta(1, 1) vs. Beta(1, 5) 0.0190 0.0692 0.3804 0.6406 0.0016 0.0022

Beta(5, 2) vs. Beta(1, 5) 0.0026 0.3345 0.2885 0.5177 0.0021 0.0011

Beta(1, 1) vs. Beta(1, 1) 0.2255 0.4385 0.2591 0.6893 0.1013 0.3136

Beta(5, 2) vs. Beta(5, 2) 0.3046 0.2346 0.1991 0.6035 0.1446 0.2393

Beta(1, 5) vs. Beta(1, 5) 0.3351 0.5392 0.1217 0.4172 0.1058 0.2721

Table 3. The average p-values obtained using Wilcoxon rank sum test on the areas
under β0 curves for various pairs of distributions considered for drawing edge weights of
networks. Here, the columns 6 networks, 8 networks, 10 networks, and 12 networks
indicate the number of networks that we considered for both the groups. The p-values
smaller than 0.01 indicate that our method can identify network differences at a 99%
confidence level.

Distribution 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0087 3.10× 10−4 7.68× 10−4 0.0014

Beta(1, 1) vs. Beta(1, 5) 0.0022 6.21× 10−4 0.0017 0.0061

Beta(5, 2) vs. Beta(1, 5) 0.0043 0.0030 1.82× 10−4 3.65× 10−5

Beta(1, 1) vs. Beta(1, 1) 0.6991 0.7209 0.4727 0.8852

Beta(5, 2) vs. Beta(5, 2) 0.4848 0.2786 0.2413 0.9770

Beta(1, 5) vs. Beta(1, 5) 0.8182 0.2786 0.7337 0.5444

smaller values for the female, and a relatively more number of edge weights with bigger
values for the male. In other words, the distribution of the female edge weights is
slightly positively skewed than the male edge weights. Fig 9 plots the β0 and β1 curves
of the average female and male networks (calculated in the standard way) and their
corresponding estimated counterparts (computed using the expected birth and death
values). We observe that the estimated Betti curves well approximate the original Betti
curves.

To conduct the test, we used the permutation test with 500000 random
permutations. The observed test statistic is 4.9372 and the p-value is 0.0134. The
histogram of test statistic is plotted in the right panel of Fig 8. We conclude that,
although the weight distributions of the males and females are very close, the proposed
ETL statistic can still discriminate them at a 95% confidence level.

Two-sample test using AUC statistic

We conducted a two-sample test using the method based on the area under β0 curve.
The observed value of the Wilcoxon rank-sum statistic is 48374. The statistic
corresponds to the p-value of 0.1036. That is, the test fails to discriminate male and
female subjects if we use the traditional values of α, the level of significance, to be 0.05
or 0.1. However, if we relax this assumption a bit, the test can discriminate males and
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Fig 7. Visualization of the fMRI brain data. Left panel: The average female brain
network (top) and the corresponding correlation matrix (bottom). Middle panel: The
average male brain network (top) and the corresponding correlation matrix (bottom).
Right panel: The β0 (top) and β1 (bottom) curves for female (in solid black) and male
(in dashed red) brain networks. For a better visualization, we consider a threshold value
of 0.5 while plotting the brain networks so that they contain fewer number of edges.

Fig 8. Left: Plot of the empirical cdfs of the average edge weights of females (in solid
black line) and males (in dashed red line). Right: Histogram plot of the ETL statistic
based on the resting-state fMRI dataset. The dotted red line represents the observed
value of the ETL statistic.

females at a confidence level of 89.5%.

Conclusion

The concept of random graphs was first proposed in mid-twentieth century [72] and has
been of many researchers’ interest ever since [73–77]. The concepts of TDA tools such
as persistent barcodes were extended to handle stochastic cases, which triggered the
computation of expected persistent barcodes. However, such computation may require
complex theoretical constructs. In this article, we considered a random graph model for
which the computation of expected persistent barcodes became simplified by using the
order statistic.

[32] formulated a topological loss based on the birth and death values of connected
components and cycles of a network that provided an optimal matching and alignment

April 5, 2022 17/23



Fig 9. Plots of the original (solid black line) and estimated (dashed red line) β0 (top)
and β1 (bottom) curves using expected birth and death values for the female (left) and
male (right) brain networks.

at the edge level. In this article, we extended this formulation to a random graph
scenario and proposed the expected topological loss (ETL) based on the expected birth
and death values. We use the ETL as a test statistic to discriminate between two groups
of networks. We validated this method using a simulation study. We showed that the
ETL can identify group differences at a 99% confidence level whereas it produces large
p-values when there is no network differences. We compared the proposed approach with
baseline approaches and established an overall superior performance of the proposed
method. Further, we considered the area under the Betti curves [68]. This resulted a
scalar quantification of the curves which was used to discriminate between the groups.
A respective simulation study showed its successful discriminative ability whenever there
are network differences. We also applied the developed tools in a resting-state brain
fMRI dataset and showed that they can differentiate male and female brain networks.

To calculate the expected persistent barcodes, we computed the unknown
distribution using the nonparametric empirical distribution function. However, one may
also consider hierarchical or Bayesian parametric models for the edge weights instead.
For example, one may consider the edge weights to be drawn from a N (µ, σ2)
distribution, where the location parameter µ and the dispersion parameter σ2 have a
Gaussian and an inverse gamma conjugate prior, respectively. The parameters of the
prior distributions will allow flexibility while we can still enjoy the advantages of a
parametric model. This direction can be pursued in the future.
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