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Abstract

The expectation of random determinants whose entries are real-valued, identically

distributed, mean zero, correlated Gaussian random variables are examined using

the Kronecker tensor products and some combinatorial arguments. This result is

used to derive the expected determinants of X + B and AX + X ′B.
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1 Introduction

We shall consider an n × n matrix X = (xij), where xij is a real-valued,

identically distributed Gaussian random variable with the expectation Exij =

0 for all i, j. The individual elements of the matrix are not required to be

independent. We shall call such matrix a mean zero Gaussian random matrix

and its determinant a Gaussian random determinant which shall be denoted

by |X|. We are interested in finding the expectation of the Gaussian random

determinant E|X|. When xij is independent identically distributed, the odd

order moments of |X|, E|X|2k−1, k = 1, 2, . . . are equal to 0 since |X| has
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a symmetrical distribution with respect to 0. The exact expression for the

even order moments E|X|2k, k = 1, 2, . . . is also well known in relation with

the Wishart distribution [8, p. 85-108]. Although one can study the moments

of the Gaussian random determinant through standard techniques of matrix

variate normal distributions [2,8], the aim of this paper is to examine the the

expected Gaussian random determinant whose entries are correlated via the

Kronecker tensor products which will be used in representing the covariance

structure of X.

When n is odd, the expected determinant E|X| equals to zero regardless of the

covariance structure of X. When n is even, the expected determinant can be

computed if there is a certain underlying symmetry in the covariance structure

of X. Let us start with the following well known Lemma [6].

Lemma 1 For mean zero Gaussian random variables Z1, . . . , Z2m+1,

E[Z1Z2 · · ·Z2m+1] = 0,

E[Z1Z2 · · ·Z2m] =
∑

i∈Qm

E[Zi1Zi2] · · ·E[Zi2m−1
Zi2m

],

where Qm is the set of the (2m)!/m!2m different ways of grouping 2m distinct

elements of {1, 2, . . . , 2m} into m distinct pairs (i1, i2), . . . , (i2m−1, i2m) and

each element of Qm is indexed by i = {(i1, i2), . . . , (i2m−1, i2m)}.

Lemma 1 is unique Gaussian property. For example,

E[Z1Z2Z3Z4] = E[Z1Z2]E[Z3Z4] + E[Z1Z3]E[Z2Z4] + E[Z1Z4]E[Z2Z3].

The determinant of the matrix X = (xij) can be expanded by

|X| =
∑

σ∈Sn

sgn(σ)x1σ(1) . . . xnσ(n),

where Sn is the set whose n! elements are permutations of {1, 2, . . . , n} and

sgn(σ) is the sign function for the permutation σ. Then applying Lemma 1

to this expansion, we have the expansion for E|X| in terms of the pair-wise

covariances E[xijxkl] [1].
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Lemma 2 For an n × n mean zero Gaussian random matrix X, For n odd,

E|X| = 0 and for n = 2m even,

E|X| =
∑

σ∈S2m

sgn(σ)
∑

i∈Qm

E[xi1σ(i1)xi2σ(i2)] · · ·E[xi2m−1σ(i2m−1)xi2mσ(i2m)].

Lemma 2 will be our main tool for computing E|X|. Before we do any compu-

tations, let us introduce some known results on the Kronecker products and

the vec operator which will be used in representing the covariance structures

of random matrices.

2 Preliminaries

The covariance structure of a random matrix X = (xij) is somewhat difficult

to represent. We need to know

cov(xij, xkl) = E[xijxkl] − ExijExkl

for all i, j, k, l which have 4 indexes and can be represented in terms of 4-

dimensional array or 4th order tensor but by vectorizing the matrix, we may

use the standard method of representing the covariance structure of random

vectors by a covariance matrix. Let vecX be a vector of size pq defined by

stalking the columns of the p× q matrix X one underneath the other. If xi is

the ith column of X, then vecX = (x′
1, . . . , x

′
q)

′.

The covariance matrix of a p× q random matrix X denoted by covX shall be

defined as the pq × pq covariance matrix of vecX:

covX ≡ cov(vecX) = E[vecX(vecX)′] − E[vecX]E[(vecX)′].

Following the convention of multivariate normal distributions, if the mean

zero Gaussian random matrix X has the covariance matrix Σ not necessarily

nonsingular, we shall denote X ∼ N(0, Σ). For example, if the components of

n× n matrix X are independent and identically distributed as Gaussian with
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zero mean and unit variance, X ∼ N(0, In2). Some authors have used vec(A′)

instead of vecA in defining the covariance matrix of random matrices [8, p. 79].

The pair-wise covariance E[xijxkl] is related to the covariance matrix covX

by the following Lemma via the Kronecker tensor product ⊗.

Lemma 3 For an n × n mean zero random matrix X = (xij),

covX =
n

∑

i,j,k,l=1

E[xijxkl]Ujl ⊗ Uik,

where Uij is an n×n matrix whose ijth entry is 1 and whose remaining entries

are 0.

Proof. Note that covX = E[vecX(vecX)′] =
∑n

j,l=1 Ujl ⊗ E[xjx
′
l] and

E[xjx
′
l] =

∑n
i,k=1 E[xijxkl]Uik. Combining the above two result proves the

Lemma. �

Hence, the covariance matrix of X is an n × n block matrix whose ijth sub-

matrix is the cross-covariance matrix between ith and jth columns of X. Now

we need to define two special matrices Kpq and Lpq.

For a p × q matrix X, vec(X ′) can be obtained by permuting the elements of

vecX. Then there exists a pq×pq orthogonal matrix Kpq called a permutation

matrix [4] such that

vec(X ′) = KpqvecX. (1)

The permutation matrix Kpq has the following representation [3]:

Kpq =
∑

i=1..p

j=1..q

Uij ⊗ U ′
ij, (2)

where Uij is an p×q matrix whose ijth entry is 1 and whose remaining entries

are 0. We shall define a companion matrix Lpq of Kpq as an p2 × q2 matrix
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given by

Lpq =
∑

i=1..p

j=1..q

Uij ⊗ Uij.

Unlike the permutation matrix Kpq, the matrix Lpq has not been studied much.

The matrix Lpp has the following properties:

Lpp = LppKpp = KppLpp =
1

p
L2

pp.

Let ei be the ith column of the p × p identity matrix Ip. Then Lpp can be

represented in a different way [7].

Lpp =
p

∑

i,j=1

(eie
′
j) ⊗ (eie

′
j) =

p
∑

i,j=1

(ei ⊗ ei)(e
′
j ⊗ e′j) = vecIp(vecIp)

′. (3)

Example 4 For p × p matrices A and B,

tr(A)tr(B) = (vecA)′LppvecB. (4)

To see this, use the identity tr(X) = (vecIp)
′vecX = vecX(vecIp)

′ and ap-

ply Equation (3). It is interesting to compare Equation (4) with the identity

tr(AB) = (vecA)′KppvecB.

Lemma 5 If p × q matrix X ∼ N(0, Ipq) then for s × p matrix A and q × r

matrix B,

AXB ∼ N(0, (B′B) ⊗ (AA′)) (5)

Proof. Since vec(AXB) = (B ′ ⊗ A)vecX [3, Theorem 16.2.1], cov(AXB) =

(B′ ⊗ A)covX(B′ ⊗ A)′ = (B′ ⊗ A)(B ⊗ A′) = (B′B) ⊗ (AA′). �

Lemma 6 If p × p matrix X ∼ N(0, Lpp), then for s× p matrix A and p× r

matrix B,

AXB ∼ N(0, vec(AB) ⊗ vec(AB)) (6)

Proof. We have cov(AXB) = (B ′⊗A)covX(B′⊗A)′. Using the identity (3),

cov(AXB) =
(

(B′ ⊗ A)vecIp

)(

(B′ ⊗ A)vecIp

)′
= vec(AB)

(

vec(AB)
)′

. �
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Note that for an orthogonal matrix Q and X ∼ N(0, Lpp), the above Lemma

shows Q′XQ ∼ N(0, Lpp).

3 3 Basic covariance structures

In this section, we will consider three specific covariance structures E[xijxkl] =

aijakl (Theorem 7), E[xijxkl] = ailajk (Theorem 8) and E[xijxkl] = aikajl

(Theorem 9). The results on these three basic types of covariance structures

will be the basis of constructing more complex covariance structures.

Theorem 7 For 2m× 2m Gaussian random matrix X ∼ N(0, vecA(vecA)′),

E|X| =
(2m)!

m!2m
|A|.

Proof. Let ai be the ith column of A = (aij) and ei be the ith column of I2m.

Then

vecA(vecA)′ =
(

2m
∑

j=1

ej ⊗ aj

)(

2m
∑

l=1

e′l ⊗ a′
l

)

=
2m
∑

j,l=1

(eje
′
l) ⊗ (aja

′
l). (7)

Substituting aja
′
l =

∑2m
i,k=1 aijaklUik into Equation (7) and applying Lemma 3,

we get E[xijxkl] = aijakl. Now apply Lemma 2 directly.

E|X| =
∑

i∈Qm

∑

σ∈S2m

sgn(σ)ai1σ(i1) . . . ai2mσ(i2m).

Note that {i1, . . . , i2m} = {1, 2, . . . , 2m}. Therefore, the inner summation is

the determinant of A and there are (2m)!
m!2m such determinant. �

When A = I2m, we have X ∼ N(0, L2m2m) and E|X| = (2m)!
m!2m .

One might try to generalize Theorem 7 to E[xijxkl] = aijbkl or covX =

vecA(vecB)′ but this case degenerates into E[xijxkl] = aijakl. To see this, note

that E[xijxkl] = E[xklxij] = aijbkl = aklbij. Then aij and bij should satisfy

aij = cbij for some constant c and for all i, j.
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The case when E[xijxkl] = εijkl − δijδkl, where εijkl is a symmetric function in

i, j, k, l and δij is the Kronecker’s delta, is given in [1, Lemma 5.3.2].

Theorem 8 For 2m×2m X = (xij) and symmetric A = (aij) with E[xijxkl] =

ailajk for all i, j, k, l,

E|X| = (−1)m (2m)!

m!2m
|A|.

Proof. The condition A = A′ is necessary. Too see this, note that E[xijxkl] =

E[xklxij] = ailajk = akjali. By letting j = k, we get ail = ali for all i, l. Then

by interchanging the order of the summations in Lemma 2.,

E|X| =
∑

i∈Qm

∑

σ∈S2m

sgn(σ)ai1σ(i2)ai2σ(i1) . . . ai2m−1σ(i2m)ai2mσ(i2m−1). (8)

There exists a permutation τ such that

τ(i1) = σ(i2), τ(i2) = σ(i1), . . . , τ(i2m−1) = σ(i2m), τ(i2m) = σ(i2m−1).

Then

σ−1τ(i1) = i2, σ
−1τ(i2) = i1, . . . , σ

−1τ(i2m−1) = i2m, σ−1τ(i2m) = i2m−1.

Note that σ−1τ is the product of m odd permutations called transposition

which interchanges two numbers and leaves the other numbers fixed. Hence

sgn(σ−1τ) = (−1)m. Then by changing the index from σ to τ in Equation (8)

with sgn(σ) = (−1)msgn(τ), we get

E|X| = (−1)m
∑

i∈Qm

∑

τ∈S2m

sgn(τ)ai1τ(i1)ai2τ(i2) . . . ai2mτ(i2m).

The inner summation is the determinant of A and there are (2m)!
m!2m such deter-

minant. �

Suppose X ∼ N(0, A ⊗ A) with A = (aij). Since covariance matrices are

symmetric, A⊗A = (A⊗A)′ = A′⊗A′. Then (aij) should satisfy aijakl = ajialk

for all i, j, k, l. By letting i = j, akl = alk for all l, k so A should be symmetric.
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Now let us find the pair-wise covariance E[xijxkl] when covX = A ⊗ A and

A = A′. Note that

covX = A ⊗ A = (
n

∑

j,l=1

ajlUjl) ⊗ (
n

∑

i,k=1

aikUik) =
n

∑

i,j,k,l=1

aikajlUjl ⊗ Uik.

Following Lemma 3, the covariance structure covX = A ⊗ A, A = A′ is

equivalent to E[xijxkl] = aikajl and aij = aji for all i, j, k, l. Then we have the

following Theorem for the case E[xijxkl] = aikajl.

Theorem 9 For 2m× 2m Gaussian random matrix X ∼ N(0, A ⊗A) and a

symmetric positive definite m × m matrix A, E|X| = 0.

Proof. Since A is symmetric positive definite, there exists A−1/2. Then fol-

lowing the proof of Lemma 5,

cov(A−1/2XA−1/2) = (A−1/2 ⊗ A−1/2)(A ⊗ A)(A−1/2 ⊗ A−1/2) = In2 .

Hence Y = A−1/2XA−1/2 ∼ N(0, In2). Since the components of Y are all

independent, trivially E|Y | = 0. Then it follows E|X| = |A|E|Y | = 0. �

4 The expected determinants of X + B and AX + X ′B

The results developed in previous sections can be applied to wide range of

Gaussian random matrices with more complex covariance structures. Since a

linear combination of Gaussian random variables is again Gaussian, X + B

and AX + X ′B will be also Gaussian random matrices if X is a Gaussian

random matrix when A and B are constant matrices. In this section, we will

examine the expected determinants of X + B and AX + X ′B.

Theorem 10 Let n = 2m. For n × n matrix X ∼ N(0, In2 + Knn),

E|X| = (−1)m (2m)!

m!2m
.
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Proof. Note that

In2 = In ⊗ In =
n

∑

i,j,j,l=1

δikδjlUjl ⊗ Uik (9)

and from Equation (2), Knn =
∑n

j,l=1 Ujl ⊗Ulj =
∑n

i,j,k,l=1 δjkδilUjl ⊗Uik. Then

from Lemma 3,

E[xijxkl] = δikδjl + δjkδil.

Now apply Lemma 2 directly.

E[xijσ(ij)xij+1σ(ij+1)] = δij ,ij+1
δσ(ij ),σ(ij+1) + δij ,σ(ij+1)δij+1,σ(ij).

Since ij 6= ij+1, the first term vanishes. Then we can modify the covariance

structure of X to E[xijxkl] = δjkδil and still get the same expected determi-

nant. Now apply Theorem 8 with A = I2m. �

Similarly we have the following.

Theorem 11 Let n = 2m. For n×n matrix X ∼ N(0, A⊗A+vecB(vecB)′)

and a symmetric positive definite n × n matrix A,

E|X| =
(2m)!

m!2m
|B|.

Proof. Since A is symmetric positive definite, there exists A−1/2. Let Y =

(yij) = A−1/2XA−1/2. Note that E|X| = |A|E|Y |. Now find the pair-wise

covariance E[yijykl] and apply Lemma 2. Following the proof of Theorem 9,

cov(Y ) = In2 + (A−1/2 ⊗ A−1/2)(vecB(vecB)′)(A−1/2 ⊗ A−1/2).

Since vec(A−1/2BA−1/2) = (A−1/2 ⊗ A−1/2)vecB,

cov(Y ) = In2 + vec(A−1/2BA−1/2)(vec(A−1/2BA−1/2))′. (10)

Then E[yijykl] = δikδjl + . . . , where δikδjl corresponds to the first term In2 in

Equation (10) and . . . indicates the second term which we do not compute.
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To apply Lemma 2, we need the pair-wise covariance E[yijσ(ij)yij+1σ(ij+1)] =

δij ij+1
δσ(ij)σ(ij+1) + . . .. Since ij 6= ij+1, the first term vanishes. Therefore, the

expectation E|Y | will not change even if we modify the covariance matrix from

Equation (10) to cov(Y ) = vec(A−1/2BA−1/2)(vec(A−1/2BA−1/2))′. Then by

applying Theorem 7, E|Y | = (2m)!
m!2m |A−1/2BA−1/2|. �

By letting A = B = In, we get

Corollary 12 Let n = 2m. For n × n matrix X ∼ N(0, In2 + Lnn),

E|X| =
(2m)!

m!2m
.

The following theorem is due to [9], where the covariance structure is slightly

different.

Theorem 13 For n × n matrix X ∼ N(0, Lnn) and a constant symmetric

n × n matrix B,

E|X + B| =
bn/2c
∑

j=0

(2j)!

2jj!
|B|n−2j,

where bn
2
c is the smallest integer greater than n

2
and |B|j is the sum of j × j

principal minors of B.

Proof. Let Q be an orthogonal matrix such that Q′BQ = D, where D =

Diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues of B. Then |X + B| =

|Q′XQ + D|. |Q′XQ + D| can be expanded in the following way [3, p. 196]:

|Q′XQ + D| =
∑

{i1,...,ir}

λi1 · · ·λir |Q
′XQ{i1,...,ir}|, (11)

where the summation is taken over all 2n subsets of {1, . . . , n} and Q′XQ{i1,...,ir}

is the (n− r)× (n− r) principal submatrix of Q′XQ obtained by striking out

the i1, . . . , irth rows and columns. From Lemma 6, Q′XQ ∼ N(0, Lnn). Then

it follows the distribution of any (n−r)×(n−r) principal submatrix of Q′XQ
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is N(0, L(n−r)(n−r)). Using Theorem 7, E|Q′XQ{i1,...,ir}| = (2j)!
j!2j for any i1, . . . , ir

if n − r = 2j. If n − r = 2j + 1, the principal minor equals 0. Therefore,

E|X + B| =
bn/2c
∑

j=0

(2j)!

j!2j

∑

{i1,...,ir}

λi1 · · ·λir ,

where the inner summation is taken over subsets of {1, . . . , n} with r = n−2j

fixed. The inner summation is called the rth elementary symmetric function

of the n numbers λ1, . . . , λn and it is identical to the sum of the r×r principal

minors of B. [5, Theorem 1.2.12]. �

Theorem 14 For n×n matrix X ∼ N(0, A⊗A) and n×n symmetric positive

definite A and symmetric n × n matrix B,

E|X + B| = |B|

Proof. Let Y = A−1/2XA−1/2. Then Y ∼ N(0, In2). Note that

E|X + B| = |A|E|Y + A−1/2BA−1/2|.

Following the proof of Theorem 13 closely,

E|Y + A−1/2BA−1/2| =
∑

i1,...,ir

λi1 · · ·λirE|Q′Y Q{i1,...,ir}|,

where λ1, . . . , λn are the eigenvalues of A−1/2BA−1/2. Since Q′Y Q{i1,...,ir} ∼

N(0, I(n−r)2), E|Q′Y Q{i1,...,ir}| = 0 if r < n while

E|Q′Y Q{i1,i2,...,in}| = E|Q′Y Q{1,2,...,n}| = 1.

Hence E|Y + A−1/2BA−1/2| = λ1 · · ·λn = |A−1||B|. �

Theorem 15 Let n = 2m. For n×n matrix X ∼ N(0, In2) and n×n constant

matrix A and B,

E|AX + X ′B| = (−1)mm!|AB|m,

where |AB|m is the sum of m × m principal minors of AB.
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Proof. Let Y = (yij) = AX + X ′B. we need to find the pair-wise covariance

E[yijykl] using E[xijxkl] = δikδjl. Note that yij =
∑

u(aiuxuj + bujxui). Let us

use the Einstein convention of not writing down the summation
∑

u. We may

write yij ≡ aiuxuj + bujxui. Then the pair-wise covariances of Y can be easily

computed.

E[yijykl] = aiuakvE[xujxvl] + aiubvlE[xujxvk] + bujakvE[xuixvl] + bujbvlE[xuixvk]

= aiuakuδjl + aiubulδjk + bujakuδil + bujbulδik.

Let a(i) be the ith row of A and bi be the ith column of B respectively. Then

aiuaku ≡
∑n

u=1 aiuaku = a′
(i)a(k) and the other terms can be expressed similarly.

E[yijykl] = a′
(i)a(k)δjl + a′

(i)blδjk + a′
(k)bjδil + b′jblδik. (12)

When we apply Equation (12) to Lemma 2, the first and the last term vanish.

E[yijσ(ij )yij+1σ(ij+1)] = a′
(ij)

bσ(ij+1)δij+1σ(ij ) + a′
(ij+1)bσ(ij )δijσ(ij+1)

Let τ be a permutation satisfying τ(i1) = σ(i2), τ(i2) = σ(i1), . . . , τ(i2m−1) =

σ(i2m), τ(i2m) = σ(i2m−1). Then

E[yijσ(ij )yij+1σ(ij+1)] = a′
(ij)

bτ(ij )δij+1τ(ij+1) + a′
(ij+1)bτ(ij+1)δijτ(ij)

and sgn(σ) = (−1)msgn(τ). By changing the summation index from σ to τ in

Lemma 2,

E|Y |=(−1)m
∑

τ∈S2m

sgn(τ)
∑

i∈Qm

(

a′
(i1)bτ(i1)δi2τ(i2) + a′

(i2)bτ(i2)δi1τ(i1)

)

· · ·

(

a′
(i2m−1)bτ(i2m−1)δi2mτ(i2m) + a′

(i2m)bτ(i2m)δi2m−1τ(i2m−1)

)

.

The product term inside the inner summation can be expanded by

∑

j1,...,jm

k1,...,km

δj1τ(j1) · · · δjmτ(jm)a
′
k1

bτ(k1) · · ·a
′
km

bτ(km), (13)

where the summation is taken over 2m possible ways of choosing (jl, kl) ∈

{(i2l−1, i2l), (i2l, i2l−1)} for all l = 1, . . . , m. In order to have a non-vanishing
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term in Equation (13), τ(j1) = j1, . . . , τ(jm) = jm. Let ρ ∈ S ′
m be a per-

mutation of m numbers {k1, . . . , km}. Then by changing the index from τ to

ρ,

E|Y |=(−1)m
∑

i∈Qm

∑

k1,...,km

∑

ρ∈S′

m

sgn(ρ)a′
(k1)bρ(k1) · · ·a

′
(km)bρ(km)

=(−1)m
∑

i∈Qm

∑

k1,...,km

|AB{k1,...,km}|,

where AB{k1,...,km} is the m×m principal submatrix consisting of k1, . . . , kmth

rows and columns of AB. Note that there are (2m)!
m!2m × 2m = (2m)!

m!
terms of

principal minors |AB{k1,...,km}| in the summation
∑

i∈Qm

∑

k1,...,km
but there

are only
(

2m
m

)

unique principal minors of AB. Then there must be repeti-

tions of principal minors in the summation. Because of symmetry, the num-

ber of repetition for each principal minor must be (2m)!
m!

/
(

2m
m

)

= m!. Hence
∑

i∈Qm

∑

k1,...,km
|AB{k1,...,km}| = m!|AB|m. �

Corollary 16 Let n = 2m. For n × n matrix X ∼ N(0, In2),

E|X + X ′| = (−1)m (2m)!

m!

Proof. Let A = B = I2m in Theorem 15. Use the fact that the sum of m×m

principal minors of I2m is
(

2m
m

)

. �

Finally we propose an open problem. The difficulty of this problem arises from

the restriction m > n.

Problem 17 Let m > n. An m × n random matrix X ∼ N(0, A ⊗ In),

where the m×m matrix A is symmetric non-negative definite. For an m×m

symmetric matrix C, determine E|X ′CX|.
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