
Resting-state	fMRI	Segmentation	in	Spatio-temporal	Domain	Using	Supervoxels	

	

Submission	No:	
2440	
	
Submission	Type:	
Abstract	Submission	
	
Authors:	
Andrey	Gritsenko1,	Gregory	R.	Kirk1,	Moo	K.	Chung1	
	
Institutions:	
1University	of	Wisconsin,	Madison,	WI	
	
Introduction:	
Functional	segmentation	of	human	brain	in	resting	state	is	an	important	task.	It	can	be	used	as	a	
baseline	 for	 constructing	 brain	 networks	 as	 well	 as	 diagnosing	 diseases.	 State-of-the-art	
methods	 that	are	used	 for	 this	 task	are	usually	computationally	expensive	 (Thirion,	2014).	We	
propose	 a	 computationally	 more	 efficient	 framework	 (Fig.1)	 for	 functional	 segmentation	 and	
validate	 it	 by	 comparing	 to	 AAL	 parcellation	 both	 visually	 and	 by	 measuring	 in-cluster	 and	
between-cluster	 correlations,	where	 larger	 in-cluster	 and	 smaller	between-cluster	 correlations	
indicates	better	segmentation	performance.	
	
Methods:	
Temporal	smoothing	of	4D	fMRI	data	is	performed	using	cosine	series	representation	(CSR)	-	a	
Fourier	transform	involving	only	orthonormal	cosine	basis	in	[0,1]	(Chung,	2010).	Fig.1b	depicts	
two	 fMRI	 signals	 from	 different	 voxels	 (Fig.1a)	 and	 their	 resampling	 with	 120	 cosine	 basis	
functions	(Fig.1c,	solid	lines).	
	
In	 image	segmentation,	 supervoxel	algorithms	group	voxels	 into	meaningful	atomic	regions	 to	
replace	 rigid	 structure	 of	 voxel	 grid.	 Simple	 Linear	 Iterative	 Clustering	 (SLIC)	 supervoxel	
algorithm	 adopts	 k-means	 clustering	 but	 has	 lower	 computational	 complexity	 O(k)	 (Achanta,	
2011).	 First,	3D	 image	of	N	voxels	 is	divided	 in	k	equal	 size	 supervoxels	by	a	 regular	grid	with	
interval	 S=(N/k)1⁄3.	A	 search	 for	 similar	 voxels	 is	done	 in	a	 region	2Sx2Sx2S	around	 supervoxel	
center.	 In	 practice,	 each	 voxel	 falls	 in	 the	 local	 neighborhood	 of	 at	 most	 26	 cluster	 centers.	
Algorithm	 uses	 distance	 D=	 ((ds⁄3S)2+((1-ρ)/2)2)1⁄2∈[0,1],	 where	 ds	 is	 a	 Euclidean	 distance	 in	
spatial	domain,	and	ρ	is	correlation	between	a	voxel	and	a	supervoxel's	center.	Clusters	smaller	
than	S3/10	are	merged	to	the	closest	cluster.	
	
Given	sample	correlations	ρi,	 i=1...n,	we	are	 interested	 in	 the	average	of	 correlations	ρ0.	 First,	
transform	ρi	using	Fisher's	z-transform	zi=arctanh(ρi).	Then,	 inverse	Fisher	transform	applied	to	
the	mean	of	zi	will	give	an	estimate	of	the	population	correlation	coefficient	(Corey,	1998).	
	



	
	
Results:	
The	proposed	framework	(Fig.1)	is	applied	to	a	subset	of	100	BOLD	resting-sate	fMRI	scans	from	
the	Human	Connectome	Project	dataset	(Van	Essen,	2012).	The	data	is	preprocessed	using	CSR	
with	120	cosine	basis	functions	(to	reduce	size	of	data	to	10%).	
	
Correlation	between	fMRI	signals	is	used	as	a	measure	of	closeness	to	evaluate	the	quality	of	
segmentation.	Fig.2	shows	how	in-cluster	and	between-cluster	correlations	are	calculated	from	
correlation	matrices	employing	Fisher	direct	and	inverse	transformations.	Using	AAL	as	a	
ground-truth	we	consider	only	positive	correlation	coefficients	corresponding	to	voxels	from	
AAL	regions	to	compute	in-cluster	and	between-cluster	correlations.	From	resulting	clusters	
correlation	matrix,	average	in-cluster	and	between-cluster	correlation	coefficients	are	
calculated.	For	100	subjects,	sample	in-cluster	and	between-cluster	correlation	coefficients	are	
0.249±1.9*10-5	and	0.186±9.8*10-7	for	SLIC	algorithm	with	1000	supervoxels,	and	0.205±1.1*10-5	
and	0.187±1.2*10-6	for	AAL	parcellation.	We	performed	two-sample	t-test	separately	for	in-
cluster	and	between-cluster	correlations	under	the	null	hypothesis	H0:	µSV-µAAL=0,	where	µSV,	
µAAL	are	average	correlation	coefficients	for	SLIC	and	AAL.	Obtained	p-values	are	0.0002	and	
0.027,	respectively.	Additionally,	Fig.3	presents	corresponding	test	results	for	300,	500,	700	and	
1000	supervoxels.	
	



Conclusions:	
Although	 segmentation	 obtained	with	 proposed	 framework	 doesn't	 follow	macroscopic	 brain	
structures	 perfectly	 (compared	 to	 AAL	 parcellation),	 there's	 a	 well-marked	 correspondence	
between	 them	 (Fig.4).	 SLIC	 segmentation	 tends	 to	 retain	 similar	 structure	 across	 different	
subjects	that	can	be	used	to	construct	resting-state	brain	activity	network	for	the	whole	dataset.	
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