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Abstract. Heat diffusion has been widely used in image processing for
surface fairing, mesh regularization, surface data smoothing. We present
a new fast and accurate numerical method to solve heat diffusion on
curved surfaces. This is achieved by approximating heat kernel using
high degree orthogonal polynomials in the spectral domain. The pro-
posed polynomial expansion method avoids solving for the eigenfunctions
of the Laplace-Beltrami operator, which are computationally costly for
large mesh size, and the numerical instability associated with the finite
element method based diffusion solvers. We apply the proposed method
in localizing the male and female difference in cortical brain sulcal and
gyral curve patterns.

1 Introduction

Heat diffusion has been widely used in image processing as a form of smoothing
and noise reduction starting with Perona and Malik’s ground breaking study [10].
Many techniques have been developed for surface fairing, mesh regularization,
and surface data smoothing [1, 2, 3]. The diffusion equation has been solved by
various numerical techniques. In [1, 2], the isotropic heat equation was solved by
the least squares estimation of the Laplace-Beltrami (LB) operator and the fi-
nite difference method (FDM). In [3], the heat diffusion was solved iteratively by
the discrete estimate of the LB-operator using the finite element method (FEM)
and an FDM scheme. However, FDM schemes are known to suffer numerical
instability if the sufficiently small step size is not chosen in the forward Euler
scheme. In [11, 14], the LB-operator was used in the heat kernel convolution [3].
By constructing the heat kernel as a series expansion of the LB-eigenfunctions,
the solution of the heat diffusion can be represented as a series expansion in-
volving the LB-eigenfunctions. Although the LB-eigenfunction approach avoids
the numerical instability associated with the FEM based diffusion solvers [3],
the computational complexity is very high for large-scale surface meshes.

We propose a new fast and accurate numerical method to solve the heat
diffusion by expanding the heat kernel using orthogonal polynomials. Taking
advantage of recurrence relations of orthogonal polynomials [9], the computa-
tional run time of the proposed method is substantially reduced. We present
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three examples of the proposed methods based on the Chebyshev, Hermite and
Laguerre polynomials. The proposed method is significantly faster than the LB-
eigenfunction approach and FEM based diffusion solvers [3]. As an application,
the proposed method is applied to a large number of magnetic resonance images
(MRIs) to localize the sex differences in the sulcal and gyral patterns of the
human cortical brain.

2 Preliminary

Suppose functional data f on surface M ∈ R3 belong to L2(M), the space of
square integrable functions onM with inner product 〈f, h〉 =

∫
M f(p)h(p)dµ(p).

µ(p) is the Lebesgue measure such that µ(M) is the total area of M. Let ∆
denote the LB-operator defined on M. The isotropic heat diffusion equation on
M with initial condition f is given by

∂g(p, σ)

∂σ
+∆g = 0, g(p, σ = 0) = f(p), (1)

where σ is the diffusion time. It has been shown that the convolution of f with
heat kernel Kσ is the unique solution of (1) [3],

g(p, σ) = Kσ ∗ f(p) =

∫
M
Kσ(p, q)f(q)dq.

Let ψj be the eigenfunctions of the LB-operator with eigenvalues λj , i.e., ∆ψj =
λjψj . If we order the eigenvalues as 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · , the heat kernel can
be expanded with exponential weight e−λσ [3]:Kσ(p, q) =

∑∞
j=0 e

−λjσψj(p)ψj(q).
Then, the heat diffusion can be expressed as

Kσ ∗ f(p) =

∞∑
j=0

e−λjσfjψj(p)

with coefficients fj =
∫
M f(p)ψj(p)dµ(p).

3 Methods

We propose a new fast numerical method to solve the heat diffusion equation,
bypassing the LB-eigenfunction computation and maintaining high accuracy.
This is done by expanding the heat kernel using orthogonal polynomials such as
the Chebyshev polynomials and their recurrence relations [9].

3.1 Heat diffusion using polynomial expansion

Consider an orthogonal polynomial basis Pn such as Chebyshev, Hermite and
Laguerre polynomials, which is often defined by the following second order re-
currence [9],

Pn+1(λ) = (αnλ+ βn)Pn(λ) + γnPn−1(λ), n ≥ 0, (2)
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with initial conditions P−1(λ) = 0 and P0(λ) = 1. Assume Pn are orthogonal over

interval [a, b] with inner product
∫ b
a
Pn(λ)Pk(λ)dµ(λ) = δnk, the Dirac delta. We

expand the exponential weight e−λσ of the heat kernel as

e−λσ =

∞∑
n=0

cσ,nPn(λ), cσ,n =

∫ b

a

e−λσPn(λ)dµ(λ). (3)

Using (3), the heat kernel convolution becomes

Kσ ∗ f =

∞∑
j=0

e−λjσfjψj =

∞∑
n=0

cσ,n

∞∑
j=0

Pn(λj)fjψj .

Since Pn(λ) is a polynomial of degree n, we have Pn(λj)ψj = Pn(∆)ψj , and

Kσ ∗ f =
∞∑
n=0

cσ,nPn (∆) f. (4)

The direct computation of Pn (∆) f requires the computation of ∆f, · · · , ∆nf ,
which is costly. Instead, we compute Pn (∆) f by the following recurrence

Pn+1 (∆) f = (αn∆+ βn)Pn (∆) f + γnPn−1 (∆) f, n ≥ 0,

with initial conditions P−1(∆)f = 0 and P0(∆)f = f . In the numerical imple-
mentation, we discretized the LB-operator using the cotan formulation [3, 14].

Chebyshev, Hermite and Laguerre expansion methods. We present
three examples of the polynomial expansion methods based on the Chebyshev,
Hermite and Laguerre polynomials, denoted by Tn, Hn and Ln respectively.
The Chebyshev polynomials were used in the diffusion wavelet transform [7] and
convolutional neural network on graphs [4]. Using the orthogonal conditions of
the polynomials (Table. 1), we derive the closed-form expressions of the coeffi-
cients cσ,n (Table. 2) [6]. Note that Tn are orthogonal over the interval [−1, 1],
but e−λσ ranges over [0,∞]. Hence, in numerical implementation, given upper
bound λmax on the eigenvalues of the LB-operator, we expand e−λσ for the

interval λ ∈ [0, λmax] by Tn(λ) = Tn

(
2λ
λmax

− 1
)

[7, 4]. From the recurrence

relations (Table. 1), Tn(∆)f , Hn(∆)f and Ln(∆)f used in heat diffusion can be
recursively computed by the relations given in Table. 2.

Figure 1 is an illustration of the heat diffusion of the left hippocampus surface
mesh coordinates (σ = 1.5, m = 100). The reconstruction error is measured by
the mean squared error (MSE) between the polynomial expansion method and
the original surface mesh. Since the Chebyshev expansion method converges the
fastest with the smallest error in various surface meshes, it will be used through
the paper but other polynomial methods can be similarly applicable.

Iterative convolution. In the case we need the solutions of heat diffusion
at multiple time points, instead of applying the polynomial expansion method
with different σ, we can perform the iterative heat kernel convolution [3],

Kσ ∗ f = Kσ/m ∗ · ∗Kσ/m︸ ︷︷ ︸
m times

∗f.
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Table 1: Orthogonal conditions and recurrence relations of polynomials [9].

Polynomials Orthogonal conditions Recurrence relations‡

Chebyshev
1∫
−1

Tn(λ)Tk(λ) 1√
1−λ2

dλ =
(1 + δn0)π

2
δnk Tn+1(λ)= (2− δn0)λTn(λ)− Tn−1(λ)

Hermite
∞∫
−∞

Hn(λ)Hk(λ)e−λ
2
dλ =

√
π2nn!δnk Hn+1(λ)= 2λHn(λ)− 2nHn−1(λ)

Laguerre
∞∫
0

Ln(λ)Lk(λ)e−λdλ = δnk Ln+1(λ)=
(2n+ 1− λ)Ln(λ)− nLn−1(λ)

n+ 1
‡The initial conditions of all polynomials are P−1(λ) = 0 and P0(λ) = 1, where P = T , H or L.

Table 2: Coefficients and recurrence relations of polynomial expansion methods.

Method Coefficients cσ,n Recurrence relations‡

Chebyshev† (−1)n(2− δn0)e−
λmax

2
σ

·In(λmaxσ/2)
Tn+1(∆)f = (2− δn0)

(
2∆

λmax

− 1

)
Tn(∆)f − Tn−1(∆)f

Hermite
1

n!

(−σ
2

)n
e
σ2

4 Hn+1(∆)f = 2∆Hn(∆)f − 2nHn−1(∆)f .

Laguerre
σn

(σ + 1)n+1
Ln+1(∆)f =

(2n+ 1−∆)Ln(∆)f − nLn−1(∆)f

n+ 1
†In are the modified Bessel functions of the first kind [9].
‡The initial conditions of all methods are P−1(∆)f = 0 and P0(∆)f = f , where P = T , H or L.

Fig. 1: Left: heat diffusion with σ = 1.5 using the Chebyshev, Hermite and Laguerre
polynomial expansion methods with degree m = 100. Right: MSE between the original
surface mesh and the polynomial expansion methods for different m. The Chebyshev
method converges the fastest in general.

Fig. 2: Sequential application of
Chebyshev expansion method with
σ = 0.25 four times.

For example, if we computed K0.25 ∗ f , then
K0.5 ∗ f is simply computed as two repeated
kernel convolution K0.25 ∗ (K0.25 ∗ f), and dif-
fusion with much larger diffusion time can be
done similarly. Figure 2 displays heat diffu-
sion with σ = 0.25, 0.5, 0.75 and 1 realized by
iteratively applying the Chebyshev expansion
method with σ = 0.25 sequentially four times.

3.2 Validation

We compared the Chebyshev expansion method against the FEM based dif-
fusion solver and the LB-eigenfunction approach [3] on the unit spheres with
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Fig. 3: Reconstructed signal and ground truth of heat diffusion with σ = 0.01 are
constructed by the SPHARM representation with degree 100. The LB-eigenfunction
approach with 210 eigenfunctions, FEM based diffusion solver with 405 iterations, and
Chebyshev expansion method with degree 45 have similar accuracy, MSE at around
10−5 against the ground truth.

2562, 10242, 40962 and 163842 mesh vertices. On the unit spheres, the ground
truth of heat diffusion can be analytically constructed by the spherical harmon-
ics (SPHARM), which is the LB-eigenfunctions [3]. Consider the surface signal
consisting of values 1, −1 and 0 that was expanded by the SPHARM [12] with
degree 100, which is taken as the initial condition of heat diffusion. The ground
truth was then constructed using the SPHARM coefficients. The Chebyshev ex-
pansion method along with LB-eigenfunction approach and FEM-based diffusion
solvers were applied to the spherical mesh in solving the heat diffusion. Figure
3 shows the result with σ = 0.01 on the unit sphere with 163842 vertices.

Run time over mesh sizes. For fixed σ, the FEM based diffusion solver
and Chebyshev expansion method need more iterations and higher degree for
larger meshes, while the LB-eigenfunction approach is nearly unaffected by the
mesh sizes (Figure 4-left). Since there is a trade-off between the accuracy and
computational run time, we fixed the numerical accuracy with MSE at around
10−5 and compared the run time (Figure 4-right).

Run time over diffusion times. For fixed mesh resolution, the FEM
based diffusion solver and Chebyshev expansion method need more iterations
and higher degree for larger σ, while the LB-eigenfunction approach requires
less number of eigenfunctions (Figure 5-left). Figure 5-right displays the compu-
tational run time versus σ with MSE at around 10−7.

From Figure 4-left and Figure 5-left, we can see that the accuracy of the
proposed method and LB-eigenfunction approach increases gradually with the
expansion degree and number of eigenfunctions, while the FEM based diffusion
solver remains a low accuracy until the number of iterations is large enough. At
similar accuracy, the LB-eigenfunction approach is the slowest, and the proposed
method is up to 12 times faster than the FEM based diffusion solver (Figures
4-right and 5-right).

4 Application

The proposed method was applied to perform heat diffusion on the inner brain
surface to measure the relative distance between sulcal and gyral curves. If sulcal
and gyral curves are in close proximity, heat will diffuse faster.



6

100 101 102

Number of eigenfunctions / iterations / expansion degree

0

0.002

0.004

0.006

0.008

0.01
Mean squared error

LB-eig (2652)
LB-eig (10242)
LB-eig (40962)
LB-eig (163842)
FEM (2652)
FEM (10242)
FEM (40962)
FEM (163842)
Chebyshev (2652)
Chebyshev (10242)
Chebyshev (40962)
Chebyshev (163842)

2 4 6 8 10 12 14 16
Number of mesh vertices 104

10-3

10-2

10-1

100

101

102
Computational time (logarithmic scale of seconds)

LB-eig
FEM
Chebyshev

Fig. 4: Left: MSE of the LB-eigenfunction approach, FEM based diffusion solver and
Chebyshev expansion method against the ground truth with different number of eigen-
functions, iterations and expansion degree respectively. Unit spheres with 2562, 10242,
40962 and 163842 mesh vertices and fixed σ = 0.01 were used. Right: computational
run time versus mesh size for MSE at around 10−5.
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Fig. 5: Left: MSE of the LB-eigenfunction approach, FEM based diffusion solver and
Chebyshev expansion method against the ground truth with different number of eigen-
functions, iterations and expansion degree respectively. Diffusion times σ = 0.005, 0.01,
0.02 and 0.05 and fixed mesh resolution (40962 vertices) were used. Right: computa-
tional run time versus σ for MSE at around 10−7.

Preprocessing. We used the T1-weighted MRI dataset consisting of 269
females and 177 males. The MRI data underwent structural preprocessing in-
cluding distortion correction, image alignment and nonlinear registration to the
MNI template, and white matter and pial surface mesh extractions by FreeSurfer.

The automatic sulcal curve extraction method [8] was used to detect concave
regions (sulcal fundi). Sulcal points were determined by the line simplification
method [5] that denoises the sulcal regions. A partially connected graph was con-
structed by the sulcal points, where edge weights are assigned based on geodesic
distances. Finally, the sulcal curves were traced over the graph. Similarly, gyral
curves were extracted by finding convex regions.

Diffusion maps. We assigned the gyral curves value 1, sulcal curves value
-1, and all other parts value 0 (Figure 6). We used the Chebyshev expansion
method with diffusion time σ = 0.001 and expansion degree m = 1000. On
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Fig. 6: Left: sulcal (blue) and gyral (red) curves are extracted and displayed along the
white matter surface. Middle: heat diffusion using the Chebyshev expansion method
with expansion degree 1000 and diffusion time 0.001. Right: diffusion map was flattened
to show the pattern of diffusion.

Fig. 7: Left and middle: average diffusion maps of 269 females and 177 males displayed
on the average surface template. Right: t-statistic map shows localized sulcal and gyral
pattern differences (female-male) thresholded at −4.51 and 4.49.

average, the construction of the discrete LB-operator took 3.19 seconds and the
Chebyshev expansion method took 1.78 seconds resulting in a total run time of
4.97 seconds per subject in a computer.

Statistical analysis. The average diffusion maps of females and males in
Figure 7 show major differences in the temporal lobe among other regions, which
is responsible for processing sensory input into derived meanings for the appro-
priate retention of visual memory, language comprehension, and emotion associ-
ation [13]. The two-sample t-statistic map was constructed on the diffusion maps
(max. t-stat 7.14, min. t-stat -6.99). We performed permutation test with half
million permutations and obtained the empirical null distribution of maximum
and minimum t-statistics for multiple comparisons. t-statistic values larger than
4.49 and smaller than −4.51 give the corrected p-values below 0.05.

5 Conclusion

In this paper, we proposed a new fast and accurate numerical method to solve
heat diffusion on curved surfaces by expanding the heat kernel in the spectral
domain by orthogonal polynomials. The proposed method avoids the compu-
tation of LB-eigenfunctions, which are computationally costly for large scale
meshes and the numerical instability in FEM based diffusion solvers with the
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forward scheme. At the similar high numerical accuracy, the proposed method
is significantly faster than the LB-eigenfunction approach and even faster than
the FEM based diffusion solver. The proposed method was applied to compute
heat diffusion on the brain surfaces, requiring only 4.97 seconds per subject in
localizing the male and female difference in sulcal and gyral curve patterns.
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