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Abstract

In brain imaging analysis, there is a need for analyzing datacollected on the corti-
cal surface of the human brain. Gaussian kernel smoothing has been widely used
in this area in conjunction with random field theory for analyzing data residing in
Euclidean spaces. The Gaussian kernel is isotropic in Euclidian space so it assigns
the same weights to observations equal distance apart. However, when we smooth
data residing on a curved surface, it fails to be isotropic. On the curved surface,
a straight line between two points is not the shortest distance so one may assign
smaller weights to closer observations. For this reason smoothing data residing
on manifolds requires constructing a kernel that is isotropic along the geodesic
curves. With this motivation in mind, we construct the kernel of a heat equation
on manifolds that should be isotropic in the local conformalcoordinates and de-
velop a framework for heat kernel smoothing and statisticalinference is performed
on manifolds. As an illustration, we apply our approach in comparing the cortical
thickness of autistic children to that of normal children.
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1 Introduction

The cerebral cortex has the topology of a 2D highly convoluted sheet. Most of the
anatomical features that distinguish these cortical regions can only be measured
relative to the cortical surface. It is likely that different clinical population will
show different brain surface shape differences. By measuring the cortical thick-
ness difference among groups, brain shape differences can be quantified locally.

The cortical surface is usually represented as a triangularmesh with average
inter nodal distance of 1-3mm (Figure 1). The most widely used method for trian-
gulating the cortical surface is the deformable surfaces method (MacDonaldet al.,
2000). It can generate cortical triangular meshes that has the topology of a sphere
consisting of 40,962 vertices and 81,920 triangles with theaverage internodal dis-
tance of 3 mm. Once we have a triangular mesh as the realization of the cortical
surface, we can compute the distance between two cortical boundaries (Figure 2).
It is natural to assume the cortical surfaces to be a smooth 2-dimensional Rieman-
nian manifold (Dale and Fischl, 1999; Joshiet al., 1995).

To increase the signal to noise ratio and smoothness, diffusion smoothing,
which generalizes Gaussian kernel smoothing to an arbitrary manifolds, has been
developed and have been used in brain imaging (Andradeet al. 2001; Cachia
et al., 2003; Chunget al., 2003). Due to huge noise on the cortical thickness
measurements, it is necessary to smooth it along the cortical surface (Figure 3).
The smoothing is also necessary to grantee the smoothness inthe random fields
theory.

Consider following stochastic model for thickness on the cortex∂Ω:

Y (p) = θ(p) + ǫ(p), p ∈ ∂Ω (1)

whereY is thickness measurement,θ true unknown thickness andǫ is a zero mean
Gaussian random field. Then the solution to a diffusion equation is used as an esti-
mate ofθ. The drawback of this method is the complexity of the settingup a finite
element method (FEM) for solving the diffusion equation numerically. To over-
come this shortcoming associated with solving diffusion equation on manifolds,
we have developed a much simpler method based on the heat kernel convolution
which generalizes Gaussian kernel smoothing in Euclidean space to arbitrary Rie-
mannian manifolds.
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Figure 1: Right: Typical triangular surface representationof the brain cortex. Left:
Typical triangular surface withm = 6 neighboring vertices aroundp = q0

2 Heat Kernel Smoothing

We defineheat kernel smoothing estimatorof dataθ to be the convolution

θ̂(p) = Kσ ∗ Y (p) =

∫

∂Ω

Kσ(p, q)Y (q) dµ(q) (2)

whereµ(q) is a surface measure mostly the Lebesgue measure if not stated oth-
erwise and heat kernelKσ is given in terms of the eigenvalues of the Laplace-
Beltrami operator. For an overview of heat kernel, one may refer Rosenberg
(1997) and Berlineet al. (1991). The Laplace-Beltrami operator∆ corresponding
to the surface parameterizationp = X(u1, u2) ∈ ∂Ω can be written as

∆ =
1

det g1/2

2∑

i,j=1

∂

∂ui

(
det g1/2gij ∂

∂uj

)

whereg = (gij) is the Riemannian metric tensor given by inner productgij =
〈 ∂X

∂ui ,
∂X
∂uj 〉. Let0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · be ordered eigenvalues andψ0, ψ1, ψ2, · · ·

be the corresponding eigenfunction of the Laplace-Beltramioperator given by
solving ∆ψj = λjψi. Note thatψj form an orthonormal basis ofL2 space on
manifolds∂Ω, i.e. L2(∂Ω). Assuming the existence of heat kernel, it has a spec-
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tral representation

Kσ(p, q) =
∞∑

j=0

e−λjσψj(p)ψj(q). (3)

Under some regularity condition,Kσ is a probability distribution on∂Ω which is a
generalized version of Gaussian density on manifolds so

∫
∂Ω

Kσ(p, q) dµ(q) = 1
for all p ∈ ∂Ω and σ ∈ R

+. Another property of heat kernel isKσ(p, q) =
Kσ(q, p). Convolution (2) can be viewed as the unique solution of a partial differ-
ential equation (PDE) and the minimizer of the weighted least-squares errors.

Theorem 1 Kσ ∗ Y is the unique solution of the following initial value problem
at timet = σ2/2:

∂f

∂t
= ∆f, f(p, 0) = Y (p) (4)

where∆ is the Laplace-Beltrami operator.

This is a well known result in differential geometry (Rosenberg, 1997). In Chung
et al. (2003), smoothing is performed by solving the above heat equation (4) via
the finite element method.

Theorem 2 Kσ ∗ Y is the minimizer

Kσ ∗ Y (p) = arg min
λ

∫

∂Ω

Kσ(p, q)
[
Y (q) − θ]2 dµ(q).

Similar result is given for Gaussian kernel smoothing in theEuclidean space (Fan
and Gijbels, 1996). It can be proved easily noting that the right hand side is
quadratic intheta:

Kσ ∗ Y 2(p) − 2θKσ ∗ Y (p) + θ2

which is minimized at its extreme value. So the heat kernel smoothing can be
viewed as the0-th order weighted polynomial regression on manifolds.

Theorem 3 Suppose the covariance function ofY in (1) is decreasing isotropic
function, i.e.RY (p, q) = ρ(d(p, q)) whered(p, q) is the geodesic distance between
p andq. Then

Var[Kσ ∗ Y (p)] ≤ VarY (p) for eachp ∈ ∂Ω.
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Figure 2: Anatomy of brain cortex. Left: Part of the corticalsurface showing both
outer (yellow) and inner surface (blue) that bound gray matter. Right: enlargement
of the boxed region. The cortical thickness measures the distance between outer
and inner surfaces.

The geodesic distance is defined in the following way. Consider curve segment
C ⊂ ∂Ω connectingp and q and parameterized byγc(t) with γc(0) = p and
γc(1) = q. In Cartesian coordinates,γc(t) = (γ1

c (t), · · · , γn
c (t)) ∈ R

n. The length
of C is given by

∫ 1

0

〈dγc

dt
,
dγc

dt
〉1/2 dt =

∫ 1

0

[ ∑

i,j

gij
dγi

c

dt

dγj
c

dt

]1/2

dt

where the inner product〈·, ·〉 is with respect to the tangent space of the manifold.
Then the geodesic curve connectingp andq is defined as the minimizer

d(p, q) = min
C

∫ 1

0

〈dγc

dt
,
dγc

dt
〉1/2 dt.

It is usually given as a solution the an Euler equation and computational tech-
nique is available for polygonal surfaces (Wolfson and Schwartz, 1989). Note
thatRY (p′, q′) = ρ(d(p′, q′)) ≤ ρ(0) = ρ(d(p′, p′)) = RY (p′, p′) = VarY (p′).
Isotropic covariance function implies stationary uniformvariance field. The co-
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variance functionR of Kσ ∗ Y (p) is given by

R(p, q) = E

[ ∫

∂Ω

Kσ(p, p′)Y (p′) dµ(p′)
]2

=

∫

∂Ω

∫

∂Ω

Kσ(p, p′)Kσ(q, q′)RY (p′, q′) dµ(p′)dµ(q′)

≤
∫

∂Ω

∫

∂Ω

Kσ(p, p′)Kσ(q, q′)ρ(0) dµ(p′)dµ(q′)

= ρ(0)

from the fact thatKσ is a probability distribution. Now lettingp = q, we have
Var[Kσ ∗ Y (p)] = R(p, p) ≤ ρ(0) ≤ VarY (p) proving the theorem. Hence heat
kernel smoothing will reduce the variability of cortical thickness measurements.

Theorem 4 Heat kernel smoothing with large bandwidth can be decomposed into
multiple kernel smoothing with smaller bandwidth via

K(k)
σ ∗ f = Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

k times

∗f = K√
kσ ∗ f.

From Theorem 1,Kσ ∗ (Kσ ∗ Y ) can be taken as the diffusion of signalKσ ∗ Y
after timeσ2/2 so thatKσ ∗ (Kσ ∗ Y ) is the diffusion of signalY after timeσ2,
i.e.

Kσ ∗ Kσ ∗ Y = K√
2σ ∗ Y.

Arguing inductively, we prove the general statement.

In order to implement heat kernel smoothing numerically, weuse asymptotic
representation called theparametrix expansion(Rosenberg, 1997):

Kσ(p, q) =
1

(2πσ)1/2
exp

[
− d2(p, q)

2σ2

][
u0(p, q) + O(σ2)

]
(5)

whered(p, q) is the geodesic distance betweenx andy. The first termu0(p, q) ≈
det g−1/2(q) for p close toq so thatu0(p, q) → 1 asp → q. When the manifolds
is flat,gij = δij andd(p, q) = ‖p− q‖, the Euclidean distance betweenp andq so
the heat kernelKσ becomes Gaussian kernel

Gσ(p, q) =
1

(2πσ)1/2
exp

[
− ‖p − q‖2

2σ2

]
.
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Figure 3: Left: original cortical thickness measurement and corresponding QQ-
plot. Middle: after 50 iterations with smoothing parameterσ = 0.5mm., Right:
after 100 iterations. The total effective smoothing amountafter 100 iterations is 5
mm. QQ-plots show increased Gaussianess.

Assuming sufficiently smallσ and closep andq, we have

Kσ(p, q) ≈ 1

(2πσ)1/2
exp

[
− d2(p, q)

2σ2

]
.

But since the above kernel may not integrate to 1, we normalizekernel in a small
geodesic ballBp = {q ∈ ∂Ω : d(p, q) ≤ r} ⊂ ∂Ω:

K̃σ(p, q) =
exp

[
− d2(p,q)

2σ2

]
1Bp

(q)
∫

Bp
exp

[
− d2(p,q)

2σ2

]
dµ(q)

(6)

indicator function1Bp
is defined as1Bp

(q) = 1 if q ∈ Bp and 1Bp
(q) = 0

otherwise. ThenK̃σ(p, q) is a probability distribution on∂Ω. Sincedµ(q) =
det g1/2(q) du1du2, heat kernel smoothing with kernel (6) in parameter space is
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given by

K̃σ ∗ Y (p) =

∫
Bp

exp
[
− d2(p,q)

2σ2

]
det g1/2(q)Y (q) du1du2

∫
Bp

exp
[
− d2(p,q)

2σ2

]
det g1/2(q) du1du2

.

Theorem 5 When the radiusr of geodesic ballBp is sufficiently large, heat kernel
smoothing with infinite bandwidth gives average signal, i.e.

lim
σ→∞

K̃σ ∗ Y =

∫
∂Ω

Y (q) dµ(q)

µ(∂Ω)
.

From definition (6),

lim
σ→∞

K̃σ =
1Bp

(q)∫
Bp

dµ(q)
=

1Bp
(q)

µ(Bp)
.

Hence

lim
σ→∞

K̃σ ∗ Y (p) =

∫
Bp

Y (q) dµ(q)

µ(Bp)

which is the average signal overBp. Now letting the radius of the geodesic ball
to be large enough thatBp = ∂Ω, we prove the theorem. A similar result for heat
kernel (3) is given in Rosenberg (1997).

Theorem 6 When∂Ω is a flat Euclidean space,

G√
kσ(p) ≤ K̃(k)

σ (p) ≤ 1

αk(Bp)
G√

kσ(p)

whereα(Bp) =
∫

Bp
Gσ(p, q) dµ(q).

Unlike heat kernel, truncated kernel does not have the nice property of Theorem
4, i.e.

K̃σ ∗ K̃σ 6= K̃√
2σ.

In order to implement iterated kernel smoothing, we need a similar result. When
the manifold is flat, truncated kernel (6) becomes

K̃σ(p, q) =
Gσ(p, q)1Bp

(q)∫
Bp

Gσ(p, q) dµ(q)
.
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Hence

Gσ(p, q) = Gσ(p, q)1Bp
(q) + Gσ(p, q)1∂Ω\Bp

(q)

= α(Bp)K̃σ(p, q) + Gσ(p, q)1∂Ω\Bp
(q)

≥ α(Bp)K̃σ(p, q).

Applying convolution to the above equation, we have

Gσ ∗ Gσ(q) ≥ αGσ ∗ K̃σ(q)

≥ α2K̃σ ∗ K̃σ(q).

Trivially Gσ(q) ≤ K̃σ(q) for q ∈ Bp. Hence

Gσ ∗ Gσ(q) ≤ K̃σ ∗ K̃σ(q) ≤ 1

α2(Bp)
Gσ ∗ Gσ(q), q ∈ Bp

and the general result follows so that

G(k)
σ (q) ≤ K̃(k)

σ (q) ≤ 1

αk(Bp)
G(k)

σ (q), q ∈ Bp.

Now applying the result of Theorem 4, we prove the statement.
Note thatα(Bp) → 1 asσ → 0. So for the proper choice of sufficiently

smallσ andBp, we can makeα(Bp) as small as we want. Supposeα = 0.9999.
The number of iterations will be fixed to be less than 100 or 200in numerical
implementation. That givesα100 = 0.9900 andα200 = 0.9802. For α = 0.999,
α100 = 0.9048 andα200 = 0.8186. Hence, decreasing the size of bandwidth and
increasing the number of iterations would perform better. This theorem shows
that the iterated truncated kernel smoothing can approximate the integral version
of kernel smoothing within one percent error if one desires it in practical appli-
cations. Theorem 4 should be asymptotically true for general manifolds whenBp

andσ are sufficiently small.
In the case of triangular mesh, cortical thickness is measured at discrete ver-

tices so it is natural to take a discrete measureµ in defining convolution. Let
q1, · · · , qm be neighboring vertices ofp = q0 andNp = {q0, q1, · · · , qm} be the
set of nearest neighboring points ofp plus the point itself (Figure 1). Then the
geodesic distance between adjacent vertices is the straight line, i.e. d(p, qi) =
‖p− qi‖, the Euclidean distance. Then we define the normalized truncated kernel
for polygonal surface to be

W̃σ(p, qi) =
exp

[
− d2(p,qi)

2σ2

]
∑m

j=0 exp
[
− d2(p,qj)

2σ2

]
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and discrete convolution

W̃σ ∗ Y (p) =
m∑

i=0

W̃σ(p, qi)Y (qi).

Note W̃σ is a discrete probability distribution so that
∑m

i=0 W̃σ(p, qi) = 1. This
is the generalization ofNadaraya-Watson estimator(Fan and Gijbels, 1996) for
discrete measurements in manifolds. Following the proof ofTheorem 4, we see
that the same results should hold for the discrete version with the discrete measure
µ and geodesic ballBp replaced byNp. For the proof to hold, we require

α(Np) =
m∑

i=0

Gσ(p, qi) ≤ 1.

In related note, Lafferty and Lebanon (2004) estimated the Laplace-Beltrami op-
erator using similar exponential weights. Let polygonal surfaceS haven vertices
q1, · · · , qn. Then we have the following algorithm for the heat kernel smoothing

Algorithm 1
For i = 1 to n do
Find a set of neighboring verticesN(qi) of qi.
Compute the weighted average and storeZ(qi) ← Wσ ∗ Y (qi).
End.
UpdateY ← Z.
Repeat this proceduresk-times.

3 Statistical Inference on Manifolds

We let the first group to be autistic and the second group to be normal control.
There areni subjects ini-th group. Following stochastic model (1) fori-th group,
we have the following model on cortical thicknessYij for i-th group andj-th
subject:

Yij(p) = θi(p) + ǫij(p)

whereǫij is independent zero mean Gaussian random fields. Then we are inter-
ested in testing if the thickness for two groups are identical, i.e.

H0 : θ1(p) = θ2(p) for all p ∈ ∂Ω
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v.s.
H1 : θ1(p) > θ2(p) for somep ∈ ∂Ω.

The above hull hypothesis is the intersection of collectionof hypothesis

H0 =
⋂

p∈∂Ω

H0(p)

whereH0(p) : θ1(p) = θ2(p). Assuming the variability of two groups are same,
which will be demonstrated for our data in the result section, the test statistic to
use is the two samplet-statistic with equal variance given by

T (p) =
θ̄1 − θ1 − (θ̄2 − θ2)

Sp

√
1/m + 1/n

where the pooled varianceS2
p = ((n1 − 1)S2

1 +(n2 − 1)S2
2)/(n1 +n2 − 2). Under

null hypothesis,T (p) ∼ tn1+n2−2 the t-distribution withn1 + n2 − 2 degrees of
freedom at each fixed pointp. The type I error for the multiple hypotheses testing
would be

α = P ( reject at least oneH0(p)|H0 true)

= P
( ⋃

p∈∂Ω

{T (p) > h}
)

= 1 − P
( ⋂

p∈∂Ω

T (p) ≤ h}
)

= 1 − P ( sup
p∈∂Ω

T (p) ≤ h)

= P ( sup
p∈∂Ω

T (p) > h).

So in order to constructα-level test for multiple hypothesis testing, we need to
know the distribution of the supremum of correlatedt-field. P -value constructed
this way is usually refereed as thecorrectedP -value to distinguish it from the
P -value constructed from a single hypothesis (add reference). The distribution of
supp∈∂Ω T (p) is asymptotically given as

P ( sup
p∈∂Ω

T (p) > h) ≈
2∑

d=0

φd(∂Ω)ρd(h)

whereµd are thed-dimensional Minkowski functionals of∂Ω andρd are thed-
dimensional Euler characteristic (EC) density oft-field (Worsleyet al., 1996).
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Figure 4: Full width at half maximum (FWHM) of Gaussian kernel.

The Minkowski functionals areφ0 = 2, φ1 = 0, φ2 = µ(∂Ω)/2 = 49, 616mm2,
the half area of the template cortex∂Ω. The EC density is given by

ρd(h) = E
[
(T > h) det(−T̈d)|Ṫd

]
P (Ṫd = 0).

where dot notation indicates differentiation with respectto the firstd components.
For t random field withd degrees of freedom, the EC-densities are given by

ρ0(h) =

∫ ∞

h

Γ(d+1
2

)

(dπ)1/2Γ(d
2
)

(
1 +

x2

d

)− (d+1)
2

dx,

ρ2(h) =
λ

(2π)3/2

Γ(d+1
2

)

(d
2
)1/2Γ(d

2
)

(
1 +

h2

d

)− (d−1)
2

whereλ measures the smoothness of fields (Worsleyet al., 1994).
Similarly we can also perform a test based on the supremum of correlatedF -

fields as well. For removing the effect of age, we set up a general linear model
(GLM) on cortical thicknessYj for subjectj

Yj(p) = λ1(p) + λ2(p) · agej + β(p) · groupj + ǫ
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where dummy variablegroup is 1 for autism and0 for normal control. Then we
test the group difference

H0 : β(p) = 0 for all p ∈ ∂Ω

v.s.
H0 : β(p) 6= 0 for somep ∈ ∂Ω

Let us denote the sum of the squared errors (SSE) of the least squares estimation
of parameters by

SSE0(p) =

n1+n2∑

j=1

(
Yj(p) − λ̂1(p) − λ̂2(p) · agej

)2

and

SSE1(p) =

n1+n2∑

j=1

(
Yj(p) − λ̂1(p) − λ̂2(p) · agej − β̂(p) · groupj

)2
.

Then underH0, the test statistic would followF distribution at each fixed pointp,
i.e.

F (p) =
SSE0 − SSE1

SSE0/(n1 + n2 − 3)
∼ F1,n1+n2−3

For F random field withα andβ degrees of freedom, the EC-densities are given
by

ρ0(h) =

∫ ∞

h

Γ(α+β
2

)

Γ(α
2
)Γ(β

2
)

α

β

(
αx

β

) (α−2)
2

(
1 +

αx

β

)− (α+β)
2

dx,

ρ2(h) =
λ

2π

Γ(α+β−2
2

)

Γ(α
2
)Γ(β

2
)

(
αh

β

) (α−2)
2

(
1 +

αh

β

)− (α+β−2)
2

×
[
(β − 1)

αh

β
− (α − 1)

]

whereλ measures the smoothness of fields. If we assumeǫ to be unit variance
isotropic field, the smoothness isotropic random field can bedefined as the co-
variance of derivative vector∂ǫ(x)/∂x, given byCov

∂ǫ(x)
∂x

= λI. If ǫ is the
convolution of the Gaussian white noise with isotropic kernel Kσ, the covariance
function ofǫ is

Rǫ(x, y) =

∫
Kσ(x − z)Kσ(y − z) dz.
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Since fieldǫ does not give unit variance, we normalizeǫ by the square root of

Var ǫ = Rǫ(x, x) =

∫
K2

σ(x − z) dz

The cross-covariance of the above zero mean unit variance field is thenλij =
E[∂xi

ǫ∂xj
ǫ]/Eǫ2. Note that

E∂xi
ǫ(x)∂yj

ǫ(y)

Eǫ2(x)
=

∫
∂xi

Kσ(x − z)∂yj
Kσ(y − z) dz∫

Kσ(z)Kσ(z) dz
.

Now lettingx = y and using identity

K2
σ(x) = (2

√
πσ)−nKσ/

√
2(x),

we have

λij =

∫ x2
i

σ4 K
2
σ(x) dx∫

K2
σ(x) dx

δij =
1

2σ2
δij,

whereδij is the Kronecker’s delta. Henceλ = 1/(2σ2).
The amount of smoothingσ2 is usually expressed in terms of the full width

at the half maximum (FWHM) of a smoothing kernel in brain imaing (Figure
4). Note that FWHM of kernelKσ corresponds to2

√
ln 4σ. Conversly for given

FWHM, the corresponding kernel isKFWHM/(2
√

ln 4). So in terms of FWHM,

the smoothness of field is given asλ = 4 ln 2/FWHM2. The FWHM is usually
predetermined to match the extend of the signal size and we set it to be 30 mm
reflecting the width of sulci (Chunget al., 2003).

4 Application

Gender and handedness affect brain anatomy (Luders, 2003) so all the 16 autis-
tic and 12 control subjects used in this study were screened to be right-handed
males except one subject who is ambidextrous. Sixteen autistic subjects were di-
agnosed with high functioning autism (HFA) via the Autism Diagnostic Interview
- Revised (ADI-R) by a trained and certified psychologist (Chunget al., 2003).
Twelve healthy, typically developing males with no currentor past psychological
diagnoses served as a control group. The average age for the control subject is
17.1±2.8 and the autistic subjects is16.1±4.5 which is in compatible age range.

15



Figure 5: CorrectedP -value map constructed fromt random fields. Top isP -
values projected onto the outer template surface and Bottom isP -values projected
onto the inner template surface. Red is the regions of thickergray matter while
blue is thinner gray matter in the autistic subjects compared to the normal controls.

Afterwards, high resolution anatomical magnetic resonance images (MRI)
were obtained using a 3-Tesla GE SIGNA (General Electric Medical Systems,
Waukesha, WI) scanner with a quadrature head RF coil. The dimension of MRI is
256× 256× 128 with an approximate image resolution of 1mm3. For the detailed
image acquisition parameters, see Chunget al. (2003) where the same data set is
used to perform a different morphometric analysis. Afterwards, nonuniformity of
image intensity has been corrected artifacts using nonparametric nonuniform in-
tensity normalization method (N3), which eliminates the dependence of the field
estimate on anatomy (Sledet al., 1998). Then using the automatic image pro-
cessing pipepline (Zijdenboset al., 1998), MRI were spatially normalized into
a standardized template brain via a global affine transformation to align and re-
move the global brain volume difference (Collins et al., 1994). Subsequently, an
automatic tissue-segmentation algorithm based on a supervised artificial neural
network classifier was used to classify each voxel as cerebrospinal fluid (CSF),
gray matter, and white matter (Kollakian, 1996). Afterward, a triangular mesh for
each cortical surface was generated by deforming a spherical mesh to fit the proper
boundary in a segmented volume using a deformable surface algorithm (MacDon-
ald et al., 2000). Brain substructures such as the brain stem and the cerebellum
were removed. Then an ellipsoidal mesh that already had the topology of a sphere
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Figure 6: CorrectedP -value map forF random fields removing the effects of age
and the total gray matter volume.

was deformed to fit the shape of the cortex guaranteeing the same topology. The
resulting triangular mesh consists of 40,962 vertices and 81,920 triangles with the
average internodal distance of 3 mm. The triangular meshes are not constrained
to lie on voxel boundaries. Instead the triangular meshes can cut through a voxel,
which can be considered as minimizing the discretization error. Once we have a
triangular mesh as the realization of the cortical surface,we compute the cortical
thickness which measures the distance between the outer andinner surfaces that
bound gray matter. Finally the thickness measurements are smoothed with a heat
kernel of size 30 mm FWHM as described in a previous section andstatistical
analysese are performed and the final correctedP -value maps are computed (Fig-
ure 5 and 6). After removing the effect of age and the total gray matter volume,
we found statistically thinner gray matter regions at the right temporal lobe and
the left frontal lobe (correctedP -value< 0.1).

Acknowledgements

Kim Dalton and Richard Davidson of the Keck Laboratory for Functional Brain
Imaging and Behavior, University of Wisconsin-Madison provided the autism
data and Steve Robbinson and Alan Evans of the Montreal Neurological Insti-
tute (MNI) assisted with the image segmentation. I would like to thank Keith

17



Worsley of the McGill University, Kam Tsui and Shijie Tang ofthe Department
of Statistics, University of Wisconsin-Madison and TulayaLimpiti of the Depart-
ment of Electrical Engineering, University of Wisconsin-Madison for valuable
discussions.

References

1. Andrade, A., Kherif, F., Mangin, J., Worsley, K.J., Paradis, A., Simon, O.,
Dehaene, S., Le Bihan, D., and Poline, J-B. 2001. Detection of Fmri Acti-
vation Using Cortical Surface Mapping.Human Brain Mapping, 12:79–93.

2. Berline, N., Getzler, E., and Vergne M. 1991.Heat Kernels and Dirac
Operators, Springer-Verlag, New York.

3. Cachia, A., Mangin, J.-F., Riviere, D., Kherif, F., Boddaert, N., Andrade,
A., Papadopoulos-Orfanos, D., Poline, J.-B., Bloch, I., Zilbovicius, M.,
Sonigo, P., Brunelle, F., Regis. 2003. A primal sketch of the cortex mean
curvature: a morphogenesis based approach to study the variability of the
folding patterns,22:754- 765.

4. Chung, M.K., Worsley, K.J., Robbins, S., Paus, P., Taylor, J., Giedd, J.N.,
Rapoport, J.L., Evans, A.C. 2003. Deformation-Based Surface Morphome-
try with an Application to Gray Matter Deformation,NeuroImage.18:198–
213.

5. Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C. 1994. Automatic 3D
intersubject registration of MR volumetric data in standardized Talairach
space.J. Comput. Assisted Tomogr.18:192-205.

6. Dale, A.M., and Fischl, B. 1999. Cortical surface-based analysis I. segmen-
tation and surface reconstruction. NeuroImage, 9:179.194.

7. Fan, J., and Gijbels, I. 1996.Local Polynomial Modelling and Its Applica-
tions. Chapman& Hall/CRC.

8. Joshi, S.C., Wang, J. and Miller, M.I., Van Essen, D.C., Grenander, U. 1995.
On the Differential Geometry of the Cortical Surface. VisionGeometry IV,
2573:304-311.

18



9. MacDonald, J.D., Kabani, N., Avis, D., and Evans, A.C. 2000. Automated
3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI.
NeuroImage, 12:340–356.

10. Lafferty, J., and Lebanon, G. Diffusion kernels on statistical manifolds.
2004. Technical Report, Department of Computer Science, Carnegie Mel-
lon University.

11. Luders, E., Rex, D.E., Narr, K.L., Woods, R.P., Janke, L., Thompson, P.M.,
Mazziotta, J.C., Toga, A.W. 2003. Relationships between sulcal asymme-
tries and corpus callosum size: gender and handedness effects. Cerebral
Cortex13:1084-1093.

12. Rosenberg, S. 1997.The Laplacian on a Riemannian Manifold, Cambridge
University Press.

13. Sled, J.G., Zijdenbos, A.P., and Evans, A.C. 1988. A Nonparametric Method
for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE
Transactions on Medical Imaging, 17:87-97.

14. Wolfson, E. and Schwartz, E.L. 1989. Computing minimal distances on
polyhedral surfaces,IEEE Trans. on Pattern anal. and Mach. Intel.11:1001-
1005.

15. Worsley, K.J., 1994. Local maxima and the expected Eulercharacteristic
of excursion sets ofχ2, F andt fields. Advances in Applied Probability.
26:13-42.

16. Worsley et al. 1992. A Three-Dimensional Statistical Analysis for CBF
Activation Studies in Human Brain,Journal of Cerebral Blood Flow and
Metabolism12:900-918.

17. Zijdenbos, A.P., Jimenez, A. and Evans. A.C. 1998. Pipelines: Large scale
automatic analysis of 3D brain data sets.NeuroImage, 7S:783.

19


