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Abstract

In brain imaging analysis, there is a need for analyzing dallacted on the corti-
cal surface of the human brain. Gaussian kernel smoothisdpéean widely used
in this area in conjunction with random field theory for arzatyg data residing in
Euclidean spaces. The Gaussian kernel is isotropic in @aaolspace so it assigns
the same weights to observations equal distance apart. \1¢oywehen we smooth
data residing on a curved surface, it fails to be isotropin.ti@ curved surface,
a straight line between two points is not the shortest digta® one may assign
smaller weights to closer observations. For this reasorofimmy data residing
on manifolds requires constructing a kernel that is isotrgbong the geodesic
curves. With this motivation in mind, we construct the keémfea heat equation
on manifolds that should be isotropic in the local confore@drdinates and de-
velop a framework for heat kernel smoothing and statistifalence is performed
on manifolds. As an illustration, we apply our approach imparing the cortical
thickness of autistic children to that of normal children.



1 Introduction

The cerebral cortex has the topology of a 2D highly convalsteeet. Most of the
anatomical features that distinguish these cortical regman only be measured
relative to the cortical surface. It is likely that diffetteciinical population will
show different brain surface shape differences. By meaguhe cortical thick-
ness difference among groups, brain shape differencesecquantified locally.

The cortical surface is usually represented as a triangouéesh with average
inter nodal distance of 1-3mm (Figure 1). The most widelydusethod for trian-
gulating the cortical surface is the deformable surfacebate(MacDonalcet al.,
2000). It can generate cortical triangular meshes thatieapology of a sphere
consisting of 40,962 vertices and 81,920 triangles withetrerage internodal dis-
tance of 3 mm. Once we have a triangular mesh as the reahzattithe cortical
surface, we can compute the distance between two corticaldasies (Figure 2).
Itis natural to assume the cortical surfaces to be a smodim2nsional Rieman-
nian manifold (Dale and Fischl, 1999; Joghial., 1995).

To increase the signal to noise ratio and smoothness, @ifftsmoothing,
which generalizes Gaussian kernel smoothing to an arpitnanifolds, has been
developed and have been used in brain imaging (Andeadd. 2001; Cachia
et al, 2003; Chunget al, 2003). Due to huge noise on the cortical thickness
measurements, it is necessary to smooth it along the costictace (Figure 3).
The smoothing is also necessary to grantee the smoothn#ss iandom fields
theory.

Consider following stochastic model for thickness on theeod(2:

Y(p) = 0(p) + e(p),p € 00 (1)

whereY is thickness measuremefittrue unknown thickness anrds a zero mean
Gaussian random field. Then the solution to a diffusion eqnat used as an esti-
mate ofd. The drawback of this method is the complexity of the settipg finite
element method (FEM) for solving the diffusion equation ruically. To over-
come this shortcoming associated with solving diffusionatpn on manifolds,
we have developed a much simpler method based on the heat kenvolution
which generalizes Gaussian kernel smoothing in Euclidpanesto arbitrary Rie-
mannian manifolds.



Figure 1: Right: Typical triangular surface representatibime brain cortex. Left:
Typical triangular surface withh = 6 neighboring vertices around= ¢

2 Heat Kernel Smoothing

We defineheat kernel smoothing estimatof datad to be the convolution

0(p) = K, Y (p) = ., Ko (p,q)Y (q) du(q) (2)
wherep(q) is a surface measure mostly the Lebesgue measure if nod sidte
erwise and heat kerndt, is given in terms of the eigenvalues of the Laplace-
Beltrami operator. For an overview of heat kernel, one magrr&osenberg
(1997) and Berlinet al. (1991). The Laplace-Beltrami operatircorresponding
to the surface parameterizatipn= X (u!, v?) € 99 can be written as
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whereg = (g;;) is the Riemannian metric tensor given by inner prodygt=
(2X,9X) Let0 = A\g < A\ < Ay < --- be ordered eigenvalues angl ¢, s, - - -

be the corresponding eigenfunction of the Laplace-Beltrap@rator given by
solving Ay; = A\;4;. Note thaty); form an orthonormal basis df? space on
manifoldso, i.e. L?(92). Assuming the existence of heat kernel, it has a spec-



tral representation

o0

Ko(p,q) =Y _ e M7 (p)iby(q)- (3)

=0

Under some regularity conditiorx,, is a probability distribution o®$2 which is a
generalized version of Gaussian density on manifold§,sd<, (p, ¢) du(q) = 1

for all p € 9 ando € R*. Another property of heat kernel i&,(p,q) =

K,(q,p). Convolution (2) can be viewed as the unique solution of aadatiffer-

ential equation (PDE) and the minimizer of the weightedtlsgsiares errors.

Theorem 1 K, * Y is the unique solution of the following initial value problem
attimet = 02/2:
af

whereA is the Laplace-Beltrami operator.

This is a well known result in differential geometry (Rosergyd 997). In Chung
et al. (2003), smoothing is performed by solving the above heaaigu (4) via
the finite element method.

Theorem 2 K, * Y is the minimizer

Ko+ Y(p) = argmin | Ko(p.q) [Y(q) — 0" du(q).
Similar result is given for Gaussian kernel smoothing inEuelidean space (Fan
and Gijbels, 1996). It can be proved easily noting that tightrhand side is
quadratic intheta:
K, xY?(p) — 20K, * Y (p) + 6°

which is minimized at its extreme value. So the heat kernedathing can be
viewed as th@-th order weighted polynomial regression on manifolds.

Theorem 3 Suppose the covariance functionofin (1) is decreasing isotropic
function, i.e.Ry (p, q) = p(d(p, q)) whered(p, q) is the geodesic distance between
pandg. Then

Var[K, * Y (p)] < VarY (p) for eachp € 09.
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Figure 2: Anatomy of brain cortex. Left: Part of the cortisalface showing both
outer (yellow) and inner surface (blue) that bound gray enaRight: enlargement
of the boxed region. The cortical thickness measures thardie between outer
and inner surfaces.

The geodesic distance is defined in the following way. Comsideve segment
C C 09 connectingp and ¢ and parameterized by.(¢) with 4.(0) = p and

7.(1) = q. In Cartesian coordinates,(t) = (y1(¢),--- ,7*(t)) € R™. The length

of C'is given by

Y dye dy.,, ! dyi dryi 12
c Zley1/2 dt—/ [ _f_f} dt
/0<dt’dt> 0 Zg“dt dt

where the inner produgt, -) is with respect to the tangent space of the manifold.
Then the geodesic curve connectmgndg is defined as the minimizer

Y dy. dy
d = mi ¢ N2 gt
(p.q) mcm/o <dt, dt)

It is usually given as a solution the an Euler equation andprdational tech-
nique is available for polygonal surfaces (Wolfson and Sattmy 1989). Note
that Ry (p', ¢') = p(d(p'.¢')) < p(0) = p(d(p,p')) = Ry(¥.p') = VarY(p').

Isotropic covariance function implies stationary unifovariance field. The co-



variance functiom? of K, « Y (p) is given by

R) = E[ [ Kr)Y0) )]

B / | Kap.p) Ko (g, )Ry (0, q) du(p)dpq)

< / Ko (p. 1) Ko (g,4)p(0) du(p')dpu(q))
o0 J O
= p(0)

from the fact thatk, is a probability distribution. Now letting = ¢, we have
Var[K, * Y(p)] = R(p,p) < p(0) < VarY (p) proving the theorem. Hence heat
kernel smoothing will reduce the variability of corticaltkness measurements.

Theorem 4 Heat kernel smoothing with large bandwidth can be decompaded i
multiple kernel smoothing with smaller bandwidth via

KWxf=K,x- xK,«f = K g * f.
~—_——
k times
From Theorem 1K, * (K, * Y') can be taken as the diffusion of sigrf} *« Y
after timeo? /2 so thatK, * (K, * Y) is the diffusion of signal” after times?,
ie.
Kox KoxY =K 5, %Y.

Arguing inductively, we prove the general statement.

In order to implement heat kernel smoothing numerically,use asymptotic
representation called thparametrix expansiofRosenberg, 1997):

K,(p,q) = (271)1/2 exp [ — d 2(?2(])} [uo(p, @) + O(c?)] (5)

whered(p, q) is the geodesic distance betweeandy. The first termug(p, ¢) ~
det g=1/2(q) for p close tog so thatuy(p, ¢) — 1 asp — ¢. When the manifolds
is flat, g;; = 0;; andd(p, ¢) = ||p — ¢||, the Euclidean distance betwegandg so
the heat kernek’, becomes Gaussian kernel

Go(p,q) =

exp [ - CIHQ]
(27o)1/2 202 I
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Figure 3: Left: original cortical thickness measuremerd aarresponding QQ-
plot. Middle: after 50 iterations with smoothing parameter 0.5mm., Right:
after 100 iterations. The total effective smoothing amaiter 100 iterations is 5
mm. QQ-plots show increased Gaussianess.

Assuming sufficiently smal- and closeyp andq, we have

1 d*(p,q)
(27m0)1/2 exp [ — 952 J.

Ks(p,q) =

But since the above kernel may not integrate to 1, we normkéreel in a small
geodesic balB, = {q € 92 : d(p, q) < r} C O

d(p.q)
~ exp | — 552 1 " q
K,(p,q) = : o })B ) 6)
s, exp [ = SE2] dulq)

indicator functionlp, is defined aslg, (q) = 1if ¢ € B, and1p,(q) = 0

otherwise. Thenf(g(p, q) is a probability distribution ord$2. Sincedu(q) =
det g'/%(q) du'du®, heat kernel smoothing with kernel (6) in parameter space is



given by

_ ) Ji exp [ — pq)} det g'2(q)Y (q) du'du?
K, +xY(p) =—=
pr exp [ — W} det ¢'/2(q) du'du?

Theorem 5 When the radius of geodesic balB, is sufficiently large, heat kernel
smoothing with infinite bandwidth gives average signal, i.e.

lim K, Y = Joo Y (@) du(q)

From definition (6),
= 1p,(¢)  1p,(q)
lim K, = L =2
000 Js, dula) — w(Bp)

Hence

~ Y d
lim &, + () = 22 oo

which is the average signal ové,. Now letting the radius of the geodesic ball
to be large enough thdt, = OS2, we prove the theorem. A similar result for heat
kernel (3) is given in Rosenberg (1997).

Theorem 6 Wheno() is a flat Euclidean space,

1

G () < KP(p) < 5]

G 0 (p)

wherea(B,) = [, Go(p,q) du(q).

Unlike heat kernel, truncated kernel does not have the nigegpty of Theorem
4,i.e. L N
Ko+ K, # K s,

In order to implement iterated kernel smoothing, we needrdai result. When
the manifold is flat, truncated kernel (6) becomes

= G, (p, Q)lB,,(Q)
e (p, q) fB d#( )




Hence

Go(p:q) = Go(p,a)1p,(q) + Go(p,q)1oa\s, ()
= a(B,)K4(p,q) + Go(p, a)1oo5, ()
> a(By)Ks(p,q).

Applying convolution to the above equation, we have
G, xG,(q) > aG, * [N(g(q)
> oK, * K,(q).
Trivially G, (q) < K,(q) for ¢ € B,. Hence
1
a?(By)

Gy Golq) < Ky % Ky(q) < G, *Gy(q),q € B,

and the general result follows so that

1
ak(By)
Now applying the result of Theorem 4, we prove the statement.

Note thata(B,) — 1 asc — 0. So for the proper choice of sufficiently
smallo and B, we can makey(B5,) as small as we want. Suppose= 0.9999.
The number of iterations will be fixed to be less than 100 or 20Aumerical
implementation. That gives'®® = 0.9900 anda?* = 0.9802. Fora = 0.999,
% = 0.9048 anda*® = (.8186. Hence, decreasing the size of bandwidth and
increasing the number of iterations would perform bettelisTtheorem shows
that the iterated truncated kernel smoothing can appradeitime integral version
of kernel smoothing within one percent error if one desitas practical appli-
cations. Theorem 4 should be asymptotically true for g¢meaaifolds whenB,
ando are sufficiently small.

In the case of triangular mesh, cortical thickness is measat discrete ver-
tices so it is natural to take a discrete measuri@ defining convolution. Let
¢, ,qm be neighboring vertices of = ¢ and N, = {qo,q1.-- - , ¢} be the
set of nearest neighboring points plus the point itself (Figure 1). Then the
geodesic distance between adjacent vertices is the dtiaghi.e. d(p,q;) =

GP(g) < KW (q) < G%(q),q € B,.

llp — gi|, the Euclidean distance. Then we define the normalized ataddernel
for polygonal surface to be
4?(p,9:)
1774 _ €xp [ T 202 }
Wg(p, Qi) - d2(p,q;)

Somexp | — ]
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and discrete convolution

W, = Y(p) =Y Walp,a)Y (a).

=0

Note Wg is a discrete probability distribution so that" , Wg(p, ¢;) = 1. This
is the generalization diladaraya-Watson estimat¢Fan and Gijbels, 1996) for
discrete measurements in manifolds. Following the prodfledorem 4, we see
that the same results should hold for the discrete versitnthve discrete measure
w and geodesic balB, replaced byV,. For the proof to hold, we require

a(N) =3 Golpa) < 1

=0

In related note, Lafferty and Lebanon (2004) estimated tyadce-Beltrami op-
erator using similar exponential weights. Let polygonafate S haven vertices
q1, -+ ,qn- Then we have the following algorithm for the heat kernel sthing

Algorithm 1

Fori=1tondo

Find a set of neighboring vertice$(g;) of ¢;.

Compute the weighted average and stB(g;) <« W, * Y (¢;).
End.

UpdateY — Z.

Repeat this procedurdstimes.

3 Statistical Inference on Manifolds

We let the first group to be autistic and the second group todoenal control.
There aren; subjects ini-th group. Following stochastic model (1) foth group,
we have the following model on cortical thickneBg for i-th group andj-th
subject:

Y, (p) = 0:(p) + € (p)
wheree;; is independent zero mean Gaussian random fields. Then watere i
ested in testing if the thickness for two groups are idehtiea

Hy: 91(])) = 92(p) for all p e o0

11



V.S.
H, : 6,(p) > 05(p) for somep € OS.

The above hull hypothesis is the intersection of collectibhypothesis

Hy = () Ho(p)

peEIN
whereHy(p) : 01(p) = 02(p). Assuming the variability of two groups are same,

which will be demonstrated for our data in the result segttbe test statistic to
use is the two samplestatistic with equal variance given by

_ 8_1_91_(52_92)

Sp/1/m+1/n
where the pooled varianc® = ((ny —1)SF + (nz —1)53)/(n1 +ny — 2). Under
null hypothesisT’(p) ~ t,,n,_2 thet-distribution withn; + n, — 2 degrees of

freedom at each fixed poipt The type | error for the multiple hypotheses testing
would be

T(p)

a = P(rejectatleast onél(p)|H, true)

= r(U1rw > n})

peEON)

= 1—P< N T(p)éh})
peO)
= 1—P(sup T'(p) < h)
pEIN
= P(sup T(p) > h).
peIf
So in order to construct-level test for multiple hypothesis testing, we need to
know the distribution of the supremum of correlatefield. P-value constructed
this way is usually refereed as tlerrected P-valueto distinguish it from the
P-value constructed from a single hypothesis (add refejefid¢e distribution of
sup,can 1'(p) is asymptotically given as

2
P(sup T(p) > h) = > 6a(0)pa(h)
pEIN =0
wherey,; are thed-dimensional Minkowski functionals af¢2 andp, are thed-
dimensional Euler characteristic (EC) densitytdield (Worsleyet al, 1996).
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Figure 4: Full width at half maximum (FWHM) of Gaussian kernel

The Minkowski functionals are, = 2,¢; = 0, ¢y = p(9Q)/2 = 49, 616mn¥,
the half area of the template cort@®. The EC density is given by

pa(h) = E[(T > h) det(—Ty)|Ta] P(Ty = 0).

where dot notation indicates differentiation with resgedhe firstd components.
Fort random field withd degrees of freedom, the EC-densities are given by

A p— L) (Hh_Q)‘d;

where\ measures the smoothness of fields (Worslegl, 1994).

Similarly we can also perform a test based on the supremurorcélatedr -
fields as well. For removing the effect of age, we set up a géhieear model
(GLM) on cortical thickness’; for subject;

Yi(p) = Mi(p) + A2(p) - age; + B(p) - group; + ¢

13



where dummy variablgroup is 1 for autism and) for normal control. Then we
test the group difference

Hy : B(p) = 0forall p € 092

V.S.
Hy : B(p) # 0 for somep € 09

Let us denote the sum of the squared errors (SSE) of the lgastes estimation
of parameters by

ni+nz

SSEo(p) = Z (Yi(p) = Ai(p) — Na(p) - age;)”
and

n1+n2
-~

SSEi(p) = . (Yi(p) = Mi(p) — Aa(p) - age; — B(p) - group;)”.

Jj=1

Then undetH,, the test statistic would follow’ distribution at each fixed point,
i.e.
SSE, — SSE;

F pr—
(p) SSEO/(m + ng — 3
For F' random field witha: and 3 degrees of freedom, the EC-densities are given
by

) ~ Fl,n1+n2—3

a—2) (a+B)

© (L) o faz\ ar\ " 2
w) = [ () | (14F) e
a+B8—2 (a—2) _ (atB-2)
S %;(;ﬁ(ﬁ)) (5) " (%)

where A measures the smoothness of fields. If we assumoebe unit variance
isotropic field, the smoothness isotropic random field camdfeed as the co-
variance of derivative vectave(z)/0x, given by Cov 3;—? = M. If eis the
convolution of the Gaussian white noise with isotropic ledti,,, the covariance
function ofe is

R (x,y) = /Ka(:v —2)Ky(y — 2) dz.
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Since fielde does not give unit variance, we normalizby the square root of
Var ¢ = R.(z,z) = /Kg(m —2)dz

The cross-covariance of the above zero mean unit varianiceidighen\;; =
E[0,,€0,,¢]/Ee®. Note that

EO,,€(x)0y,€(y) _ J 02, Ko(x — 2)0,, Ko (y — 2) dz
Ee?(x) [ K, (2)K,(2) dz

Now lettingz = y and using identity

K2(x) = (2V70) K, ) (),
we have

_f:—sz,(x) dx 1

N = Lot e s
! [ K2(z)dx 7 202

5@']'7
whered;; is the Kronecker’s delta. Hence= 1/(25?).

The amount of smoothing? is usually expressed in terms of the full width
at the half maximum (FWHM) of a smoothing kernel in brain ingaifFigure
4). Note that FWHM of kernek, corresponds t@v/In 40. Conversly for given
FWHM, the corresponding kernel B \wHM oy~ SO in terms of FWHM,
the smoothness of field is given as= 41n2/FWHM?. The FWHM is usually

predetermined to match the extend of the signal size and twietsebe 30 mm
reflecting the width of sulci (Chunet al., 2003).

4  Application

Gender and handedness affect brain anatomy (Luders, 26G8) the 16 autis-
tic and 12 control subjects used in this study were screemdx tright-handed
males except one subject who is ambidextrous. Sixteerntialgishjects were di-
agnosed with high functioning autism (HFA) via the AutismaBnostic Interview
- Revised (ADI-R) by a trained and certified psychologist (Chehgl., 2003).
Twelve healthy, typically developing males with no currenpast psychological
diagnoses served as a control group. The average age foouimlcsubject is
17.1+ 2.8 and the autistic subjectsi$.1 +4.5 which is in compatible age range.
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Figure 5: Corrected’-value map constructed fromrandom fields. Top is-

values projected onto the outer template surface and Bo#iétyvalues projected
onto the inner template surface. Red is the regions of thigkey matter while
blue is thinner gray matter in the autistic subjects comgharehe normal controls.

Afterwards, high resolution anatomical magnetic resoreamngages (MRI)
were obtained using a 3-Tesla GE SIGNA (General Electric is&dystems,
Waukesha, WI) scanner with a quadrature head RF coil. The dioeof MRI is
256 x 256 x 128 with an approximate image resolution of 1rmnfror the detailed
image acquisition parameters, see Changl. (2003) where the same data set is
used to perform a different morphometric analysis. Aftedganonuniformity of
image intensity has been corrected artifacts using nonpetrac nonuniform in-
tensity normalization method (N3), which eliminates theeledence of the field
estimate on anatomy (Slest al, 1998). Then using the automatic image pro-
cessing pipepline (Zijdenbast al, 1998), MRI were spatially normalized into
a standardized template brain via a global affine transfoomdo align and re-
move the global brain volume difference (Collins et al., 19%Rubsequently, an
automatic tissue-segmentation algorithm based on a sspdrartificial neural
network classifier was used to classify each voxel as cespbral fluid (CSF),
gray matter, and white matter (Kollakian, 1996). Afterwadriangular mesh for
each cortical surface was generated by deforming a spherésh to fit the proper
boundary in a segmented volume using a deformable surfgodataim (MacDon-
ald et al,, 2000). Brain substructures such as the brain stem and thbatkm
were removed. Then an ellipsoidal mesh that already hadpwoédgy of a sphere
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Figure 6: Corrected@-value map forf’ random fields removing the effects of age
and the total gray matter volume.

was deformed to fit the shape of the cortex guaranteeing the sapology. The
resulting triangular mesh consists of 40,962 vertices dn@d2 triangles with the
average internodal distance of 3 mm. The triangular mesteesa constrained
to lie on voxel boundaries. Instead the triangular meshesaathrough a voxel,
which can be considered as minimizing the discretizatioareOnce we have a
triangular mesh as the realization of the cortical surfagecompute the cortical
thickness which measures the distance between the outen@edsurfaces that
bound gray matter. Finally the thickness measurementsaoetbed with a heat
kernel of size 30 mm FWHM as described in a previous sectionssaistical
analysese are performed and the final correétedlue maps are computed (Fig-
ure 5 and 6). After removing the effect of age and the totay gnatter volume,
we found statistically thinner gray matter regions at tlgitritemporal lobe and
the left frontal lobe (correctef-value< 0.1).
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