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Summary. Gaussian kernel smoothing has been widely used in 3D whole

brain imaging analysis as a way to increase signal-to-noise ratio. Gaussian

kernel is isotropic in Euclidian space. However, data obtained on the convo-

luted brain cortex fails to be isotropic in the Euclidean sense. On the curved

surface, a straight line between two points is not the shortest distance so

one may incorrectly assign less weights to closer observations. In this paper,

we will present how to correctly formulate isotropic smoothing for data on

the human cortical surface that was extracted from the magnetic resonance

images.

As an illustration, we show how to detect the regions of abnormal cortical

pattern in 16 autistic children that utilizes the new technique.
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1. Introduction

The human cerebral cortex has the topology of a 2D highly convoluted grey

matter shell of average thickness of 3mm. The thickness of the grey matter

shell is usually referred as the cortical thickness and can be obtained in

vivo from magnetic resonance images (MRI). Different clinical populations

show different patterns of cortical thickness variation across the cortex. So

the cortical thickness can be used an useful index for characterizing cortical

shape variations. The thickness measures are obtained after a sequence of

image processing steps which are described briefly here. The first step is

to classify each voxel into three different tissue types: cerebrospinal fluid

(CSF), grey matter and white matter. A neural network classifier (Kollakian,

1996) or a Bayesian mixture modeling (Ashburner and Friston, 2000) have

been used for the classification. The CSF/grey matter interface is called

the outer cortical surface while the grey/white matter interface is called the

inner cortical surface. These two surfaces bounds the gray matter (Figure 1).

Although it is possible to represent the surfaces smoothly and continuously

via a thin-plate spline (Xie et al., 2005), so far, the mainstream approach

in representing the cortical surface has been to use a fine triangular mesh

that is constructed from deformable surface algorithms (MacDonald et al.,

2000). Once we have the two surface meshes, we can compute the cortical

thickness by computing the distance between the two surfaces (MacDonald

et al., 2000). Figure 1 shows an original MRI and its segmentation result

based on the neural network classifier. The interface between different tissue

types was constructed using the thin-plate spline. The arrow indicates the

thickness of the gray matter shell. Figure 2 shows the outer cortical surface
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mesh generated from a deformable surface algorithm. It consists of 40,962

vertices and 81,920 triangles.

[Figure 1 about here.]

[Figure 2 about here.]

In order to compare cortical thickness measures across subjects, it is nec-

essary to align the cortical surfaces via a surface registration. The concept

of surface registration is similar to a curve registration in the functional

data analysis (Ramsay and Silverman, 1997). The surface registration tries

to register two functional data on a unit sphere (Thompson and Toga, 1996;

Robbins, 2003). First a mapping from a cortical surface onto the sphere is es-

tablished while recording the mapping. Then cortical curvatures are mapped

onto the sphere. The two curvature functions on the sphere are aligned by

solving a regularization problem that tries to minimize the discrepancy be-

tween two functions while maximizing the smoothness of the alignment. This

alignment is projected back to the original surface using the recorded map-

ping. For cross-comparison between subjects, surfaces are registered into a

so called template surface which serves as a reference coordinates.

The image segmentation, thickness computation and surface registration

procedures are expected to introduce noise in the thickness measure. In order

to increase the signal-to-noise ratio (SNR) and some type of data smoothing

is necessary (Kiebel et al., 1999). For 3D whole brain MRIs, Gaussian kernel

smoothing is widely used to smooth data, in part, due to its simplicity in

numerical implementation. The Gaussian kernel weights an observation ac-

cording to its Euclidean distance. However, data residing on the convoluted
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brain surface fails to be isotropic in the Euclidean sense. On the curved

surface, a straight line between two points is not the shortest distance so

one may incorrectly assign less weights to closer observations. So when the

observations lie on the cortical surface, it is more natural to assign the weight

based on the geodesic distance along the surface.

Previously diffusion smoothing has been developed for smoothing data

along the cortex (Andrade et al., 2001;Chung et al., 2003;Chung and Tay-

lor, 2004). The technique of diffusion smoothing relies on the fact that the

Gaussian kernel smoothing in Rd is equivalent to solving an isotropic dif-

fusion equation in Rd (Chaudhuri and Marron, 2000). For an overview of

using diffusion equations in statistical literature, one may refer to Chaudhuri

and Marron (2000) and Ramsay (2000). By solving a diffusion equation on

a curved manifold ∂Ω, Gaussian kernel smoothing can be indirectly gener-

alized to ∂Ω. The drawback of this method is the need for estimating the

Laplace-Beltrami operator and setting of up a finite element method (FEM)

to solve the diffusion equation numerically (Chung and Taylor, 2004). To

address this shortcomings, we have developed a simpler method based on

the heat kernel convolution on a manifold.

As an illustration, the method was applied to groups of autistic and nor-

mal subjects, and we were able to detect the regions of statistically significant

cortical thickness difference between the groups.

2. Heat kernel smoothing

The cortical surface ∂Ω can be assumed to be a C2 Riemannian manifold

(Joshi et al., 1995). Let p = X(u1, u2) ∈ ∂Ω be the parametric representation
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of ∂Ω. We assume the following model on thickness measure Y :

Y (p) = θ(p) + ε(p),

where θ(p) is a mean thickness function and ε(p) is a zero-mean random

field with covariance function Rε(p, q). The Laplace-Beltrami operator ∆

corresponding to the surface parameterization p = X(u1, u2) ∈ ∂Ω can be

written as

∆ =
1

det g1/2

2∑
i,j=1

∂

∂ui

(
det g1/2gij ∂

∂uj

)
,

where g = (gij) is the Riemannian metric tensor given by the bilinear form

gij = 〈 ∂X
∂ui ,

∂X
∂uj 〉. In the case when the metric is flat, i.e. g = δij, the Laplace-

Beltrami operator becomes the Euclidean Laplacian ∆ = ∂2

∂(u1)2
+ ∂2

∂(u2)2
in

R2. By solving equation

∆ψ = λψ (1)

on ∂Ω, we can find ordered eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and corre-

sponding eigenfunctions ψ0, ψ1, ψ2, · · · . The eigenfunctions ψj form orthonor-

mal basis on L2(∂Ω). On a unit sphere, the eigenvalues are m(m + n − 1)

and the corresponding eigenfunctions are spherical harmonics Ylm (Wahba,

1990). On an arbitrary surface, the explicit representation of eigenvalues

and eigenfunction are only obtained through numerical methods. Based on

orthonormal basis, the heat kernel Kσ(p, q) is analytically given as

Kσ(p, q) =
∞∑

j=0

e−λjσψj(p)ψj(q), (2)

where σ is the bandwidth of the kernel (Rosenberg, 1997; Berline et al.,

1991). When gij = δij, the heat kernel becomes a Gaussian kernel

Kσ(p, q) =
1

(2πσ)1/2
exp

[
− ‖p− q‖2

2σ2

]
.
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Hence the heat kernel is a natural extension of the Gaussian kernel. Under

some regularity condition, Kσ is a probability distribution on ∂Ω so that
∫

∂Ω
Kσ(p, q) dq = 1. This can be interpreted as the transition probability

density for an isotropic diffusion process with respect to Riemannian volume

element (Wang, 1997). The kernel is symmetric, i.e. Kσ(p, q) = Kσ(q, p)

and isotropic. The property of a kernel being isotropic needs some ex-

planation. Let us first define the geodesic distance on a curved surface.

Consider a curve segment C ⊂ ∂Ω that connects p and q, and parameter-

ized by γC(t) with γC(0) = p and γC(1) = q. In Cartesian coordinates,

γC(t) = (γ1
C(t), · · · , γd

C(t)) ∈ Rd. The arclength of C is given by
∫ 1

0

〈dγC

dt
,
dγC

dt
〉1/2 dt =

∫ 1

0

[ ∑
i,j

gij
dγi

C

dt

dγj
C

dt

]1/2

dt.

Then the geodesic curve connecting p and q is defined as a minimizer

d(p, q) = min
C

∫ 1

0

〈dγC

dt
,
dγC

dt
〉1/2 dt.

Function f is isotropic on surface ∂Ω if f(p) = constant for all point p on

geodesic circle d(0, p) = constant. Since Kσ(p, q) has two arguments while

symmetric, the isotropic property holds for either one of the arguments.

Now we define heat kernel smoothing of cortical thickness Y to be the

convolution:

Kσ ∗ Y (p) =

∫

∂Ω

Kσ(p, q)Y (q) dq. (3)

Let us list a couple of important properties of heat kernel smoothing.

Property. (1) Kσ∗Y is the unique solution of the following isotropic diffusion

equation at time t = σ2/2:

∂f

∂t
= ∆f, f(p, 0) = Y (p), p ∈ ∂Ω (4)
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This is a well known result (Rosenberg, 1997). The previous diffusion smooth-

ing approach smooth data by directly solving the diffusion equation (Chung

and Taylor, 2004). This also shows that the heat kernel smoothing isotropi-

cally assigns weights along ∂Ω.

Property. (2) Kσ ∗ Y (p) = arg minθ(p)∈L2(∂Ω)

∫
∂Ω

Kσ(p, q)
[
Y (q)− θ(p)]2 dq.

Convolution (3) can be viewed in the context of regularization on a man-

ifold by this property. This generalizes a similar discrete result given for

Gaussian kernel smoothing in the Euclidean space (Fan and Gijbels, 1996).

It can be proved easily noting that the integral can be written as quadratic

in θ: Kσ ∗ Y 2(p)− 2θKσ ∗ Y (p) + θ2.

It is natural to assume two random fields ε(p) and ε(q) to have less corre-

lation when p and q are away. So we assume ρ to be non increasing. Suppose

we have a isotropic covariance function of type Rε(p, q) = ρ(d(p, q)) for some

nondecreasing function ρ. Then we can show the variance reduction property

of heat kernel smoothing.

Property. (3) Var[Kσ ∗ Y (p)] ≤ VarY (p) for each p ∈ ∂Ω.

See Appendix A for the proof. It is believed that the requirement for the

covariance function may be relaxed.

Property. (4) limσ→0 Kσ ∗ Y = Y.

This can be easily seen from the fact that as σ → 0, the heat kernel becomes

the Dirac delta function.
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Property. (5)

lim
σ→∞

Kσ ∗ Y =

∫
∂Ω

Y (q) dq

µ(∂Ω)
,

where µ(∂Ω) is the surface area of ∂Ω. The property 5 shows that when

we choose large bandwidth, heat kernel smoothing converges to the sample

mean of data on ∂Ω. This is easily proved by noting

K̃σ ∗ Y (p) =

∫
Bp

exp
[− d2(p,q)

2σ2

]
Y (p) dq

∫
Bp

exp
[− d2(p,q)

2σ2

]
dq

→
∫

Bp
Y (q) dq

µ(Bp)

as σ → ∞. Now by letting Bp to cover the whole cortex ∂Ω, we prove the

property. A similar result in the context of differential geometry can be found

in Rosenberg, 1997.

Property. (6)

Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸
k times

∗Y = K√
kσ ∗ Y.

This can be seen as the scale space property of diffusion. From Property (1),

Kσ ∗ (Kσ ∗ Y ) can be taken as the diffusion of signal Kσ ∗ Y after time σ2/2

so that Kσ ∗ (Kσ ∗ Y ) is the diffusion of signal Y after time σ2. Hence

Kσ ∗Kσ ∗ Y = K√
2σ ∗ Y.

Arguing inductively we see that the general statement holds. We will note

the k-fold iterated kernel as K
(k)
σ = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

k times

.

The problem with the heat kernel is that it is almost impractical to de-

termine the eigenvalues and eigenfunction os the Laplace-Beltrami operator

in an arbitrary surface like the human brain cortex. To address this problem

we use the parametrix expansion of the heat kernel (Rosenberg, 1997; Wang,
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1997):

Kσ(p, q) =
1

(2πσ)1/2
exp

[− d2(p, q)

2σ2

]
[1 + O(σ2)

]
(5)

for small d(p, q). This expansion spells out the exact form of the kernel for

small bandwidth. When the metric is flat, the heat kernel becomes a Gaus-

sian kernel, reconfirming that heat convolution is a generalization of Gaussian

kernel. The expansion is the basis of our heat kernel smoothing formulation.

Heat kernel smoothing with a large bandwidth will be decomposed into iter-

ated kernel smoothing.

We will truncate and normalize the heat kernel using the first order term.

For each p, we define

K̃σ(p, q) =
exp

[− d2(p,q)
2σ2

]
1Bp(q)∫

Bp
exp

[− d2(p,q)
2σ2

]
dq

, (6)

where 1Bp is an indicator function defined on a small compact domain con-

taining B such that 1Bp(q) = 1 if q ∈ Bp and 1Bp(q) = 0 otherwise. Note

that for each fixed p, K̃σ(p, q) defines a probability in Bp and it converges to

Kσ(p, q) as σ → 0 in Bp This implies

K̃(k)
σ ∗ Y (p) → K(k)

σ ∗ Y (p) as σ → 0.

We can proved this only when gij = σij since the exact analytical expres-

sion of the heat kernel is nonexistent and still an ongoing research problem

(Rosenberg, 1997; Wang, 1997).

Property. (7) When gij = δij,

K√
kσ ∗ Y (p) ≤ K̃(k)

σ ∗ Y (p) ≤ 1

αk(p)
K√

kσ ∗ Y (p),

where α(p) =
∫

Bp
Kσ(p, q) dq.

9



For the proof, see Appendix B. The upper bound is valid without the as-

sumption of the flat metric. As σ → 0, α(Bp) → 1 and the inequalities

collapse proving the convergence. For sufficiently small σ and Bp, we can

make α(Bp) as small as possible. Hence, decreasing the size of bandwidth

and increasing the number of iterations will perform better although it will

be slow down the algorithm.

For a discrete triangular mesh, we can take Bp to be a set of points con-

taining p and its neighboring nodes q1, · · · , qm, and take a discrete measure

on Bp in the integral, which will make 6 still a probability distribution. This

can be viewed as a Gaussian kernel Nadaraya-Watson type smoothing ex-

tended to manifolds (Fan and Gijbels, 1996; Chaudhuri and Marron, 2000).

Figure 3 shows the heat kernel smoothing on both a single subject data and

simulated data. The cortical thickness measures are projected onto a tem-

plate that has less surface folding to show the progress of smoothing. The

bottom figure shows the progress of heat kernel smoothing with σ = 1 and

upto k = 5000 iterations applied to a simulated data. From 12 normal sub-

jects, the mean thickness θ(p) and variance Rε(p, p) functions are estimated

and used to generate random fields with a Gaussian white noise. It begin to

show the convergence to the sample mean thickness over all cortex.

[Figure 3 about here.]

3. Multiple comparisons on the human cortex

We will briefly describe how to perform multiple comparisons on ∂Ω using

the random field theory. The random field theory based approach is widely

used for correcting multiple comparisons in brain imaging. We let the first

group to be autistic and the second group to be normal control. There are ni
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subjects in the i-th group. For the i-th group, we have the following model

on cortical thickness Yij for i-th group and j-th subject:

Kσ ∗ Yij(p) = θi(p) + εij(p),

where θi is the mean thickness of the i-th group and εij is independent zero

mean smooth Gaussian random fields. We assume the noise to be a Gaussian

white noise convolved with heat kernel Kσ, i.e. εij = Kσ ∗W . Then we test

if the mean thicknesses for two groups are the same at every points, i.e.

H0 : θ1(p) = θ2(p) for all p ∈ ∂Ω

v.s.

H1 : θ1(p) > θ2(p) for some p ∈ ∂Ω.

The null hypothesis is the intersection of collection of hypothesis

H0 =
⋂

p∈∂Ω

H0(p)

where H0(p) : θ1(p) = θ2(p). for fixed p. The test statistic is given by

T (p) =
θ̄1 − θ1 − (θ̄2 − θ2)

S
√

1/m + 1/n

where the pooled variance S2 = ((n1 − 1)S2
1 + (n2 − 1)S2

2)/(n1 + n2 − 2).

Under H0, it is the t random field with n = n1 + n2 − 2 degrees of freedom

(Worsley, 1994). The type I error for the multiple comparisons is given by

α = P
( ⋃

p∈∂Ω

{T (p) > h}
)

= 1− P
( ⋂

p∈∂Ω

T (p) ≤ h}
)

= 1− P ( sup
p∈∂Ω

T (p) ≤ h) = P ( sup
p∈∂Ω

T (p) > h)
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for some h. The resulting p-value is usually called the corrected p-value in

brain imaging. The distribution of supp∈∂Ω T (p) is asymptotically given as

P ( sup
p∈∂Ω

T (p) > h) ≈
2∑

d=0

φd(∂Ω)ρd(h) (7)

where φd are the d-dimensional Minkowski functionals of ∂Ω and ρd are the d-

dimensional Euler characteristic (EC) density of t-field (Worsley, 2003). The

Minkowski functionals are φ0 = 2, φ1 = 0, φ2 = area(∂Ω)/2 = 49, 616mm2,

the half area of the template cortex ∂Ω. The EC density is given by

ρ0(h) =

∫ ∞

h

Γ(n+1
2

)

(nπ)1/2Γ(n
2
)

(
1 +

x2

d

)− (n+1)
2

dx,

ρ2(h) =
λ

(2π)3/2

Γ(n+1
2

)

(n
2
)1/2Γ(n

2
)

(
1 +

h2

d

)− (n−1)
2

h,

where λ measures the smoothness of field ε = εij and given as λ = 1/(2σ2).

If we want to removed the effect of age and total grey matter volume, we

set up a general linear model (GLM) on cortical thickness Yj for subject j

Yj(p) = λ1(p) + λ2(p) · agej + λ3(p) · volumej + β(p) · groupj + εj (8)

where dummy variable group is 1 for the autistic subjects and 0 for the

normal subjects. Traditionally GLM has been a very popular approach in

brain imaging (Friston., 2002). Then we test the group difference

H0 : β(p) = 0 for all p ∈ ∂Ω

v.s.

H0 : β(p) 6= 0 for some p ∈ ∂Ω.

The test statistic is the ratio of the sum of the squared residual errors and

under H0, it is a F random random field with 1 and n = n1+n2−4 degrees of
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freedom. F fields has a similar asymptotic results like (7). The EC-densities

of F fields are given in Worsley (1994). The resulting corrected p-values maps

for both t and F tests are shown in Figure 4. The main use of the corrected

p-value maps are the localization and visualization of signal difference.

[Figure 4 about here.]

4. Application

Gender and handedness affect brain anatomy so all the 16 autistic and 12

control subjects used in the study were screened to be right-handed males.

Sixteen autistic subjects were diagnosed with autism. The average age for

the control subject is 17.1± 2.8 and the autistic subjects is 16.1± 4.5. High

resolution anatomical magnetic resonance images (MRI) were obtained us-

ing a 3-Tesla GE SIGNA scanner. Afterwards, MRIs are obtained and both

the outer and inner cortical surfaces are extracted via a deformable surface

algorithm (MacDonald et al., 2000). The resulting triangular meshes consist

of 40,962 vertices and 81,920 triangles with the average edge length of 3 mm

(Figure 2). The cortical distance is computed between two surfaces follow-

ing the method in MacDonald et al. (2000). The thickness measures are

smoothed with heat kernel smoothing with parameters σ = 1 and k = 200

giving the effective smoothness of
√

200 = 14.14. A surface-to-surface regis-

tration to a template surface was performed following the curvature matching

method of Robbins (2003). Then following the multiple comparisons proce-

dure of the previous section, the corrected p-value maps for the both t and

F statistics results are projected onto the template surface. Figure 4 shows

statistically significant regions of cortical thickness between two groups. The
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left two images are the corrected p-value map (< 0.1) showing mainly thin-

ner cortical shell in autism. The upper (lower) scale shows the regions of

thicker (thinner) cortical shell in autism. However, most of these regions

turned out to be not significant after removing the effect of age and total

grey matter volume via a F random field. The two right images are the

corrected p-value map (< 0.1) of the F statistic result. After removing the

effect of age and grey matter, the statistically significant regions of thickness

decrease are highly localized at the right inferior orbital prefrontal cortex,

the left superior temporal sulcus and the left occipito-temporal gyrus.

5. Discussion

There are many aspects of heat kernel smoothing that we have ignored in

this paper. The purpose of this paper is to introduce heat kernel smoothing

and its use in brain imaging to attract more attention of researchers on the

important new problem. Although splines on a unit sphere has received a

great deal of attention (Freeden, 1981; Wahba, 1990), the idea of smoothing

or regularizing data on arbitrary manifolds has not been investigated by many

researchers possibly due to the fact that there are no manipulatable basis

functions available. The Property (2) gives a basic framework for a regression

on a manifolds. Instead of trying to explicitly determine the coefficient of

the mean function

θ(p) =
n∑

j=0

cjψj(p)

that minimizes the cost function in the Property (2), heat kernel smoothing

determines them implicitly. In fact, cj’s are given by

cj = e−λjσ

∫

∂Ω

ψj(q)Y (q) dq.
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However, eigenvalues λj and eigenfunctions ψj can not be determined ana-

lytically other than algebraic surfaces like a sphere or a torus. Our method

avoids trying to determine cj’s explicitly and solve it for θ that is a solution

to an isotropic diffusion equation. So our approach works on non algebraic

surfaces like the human brain cortex. Recently researchers are begin to inves-

tigate the problem of regularization on manifolds or graphs in the context of

classification of massive data (Belkin, 2003; Kondor and Lafferty., 2002). In

a computer vision area, diffusion equations have been also used as a way to

smooth noisy manifolds itself (Bulow, 2002) and researchers are begin to dif-

fuse signals on manifolds as well. As noted by Chaudhuri and Marron (2000),

there is a lack of using diffusion equations in statistical literature. It is hoped

that this paper will provide a motivation for developing new methodologies

for smoothing measurements on surfaces.

We have implemented our heat kernel smoothing in MATLAB and it is

freely available with a sample cortical thickness data for research community.

They can be found at

http://www.stat.wisc.edu/∼mchung/softwares/hk/hk.html. The follow-

ing codes will load data into MATLAB and smooth data with parameters

σ = 1 and k = 200.

[tri,coord,nbr,normal]=mni_getmesh(’outersurface.obj’);

load thickness.data;

output=hk_smooth(thickness’,tri,coord,nbr,1,200);

trisurf(tri,coord(1,:),coord(2,:),coord(3,:),output);

15



Acknowledgements

The author wish to thank Kim Dalton and Richard J. Davidson of the Wais-

man Laboratory for Brain and Behavior for providing the autism data and

Steve Robbins and Alan Evans of Montreal Neurological Institute for pro-

viding technical assistant with surface registration.

References

Andrade, A., Kherif, F., Mangin, J., Worsley, K., Paradis, A., Simon, O.,

Dehaene, S., Le Bihan, D. and Poline, J.-B. (2001). Detection of fmri

activation using cortical surface mapping. Human Brain Mapping 12,

79–93.

Ashburner, J. and Friston, K. (2000). Voxel-based morphometry - the meth-

ods. NeuroImage 11, 805–821.

Belkin, M., N. P. (2003). Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Computation 15, 1373–1396.

Berline, N., Getzler, E. and M., V. (1991). Heat kernels and dirac operators.

Springer-Verlag.

Bulow, T. (2002). Spherical diffusion for 3d surface smoothing. 1st Int’l

Symp. on 3D Data Proc. Vis. and Transm. .

Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation.

The Annals of Statistics 28, 408–428.

Chung, M. and Taylor, J. (2004). Diffusion smoothing on brain surface via

finite element method. In Proceedings of IEEE International Symposium

on Biomedical Imaging (ISBI).

Chung, M., Worsley, K., Robbins, S. and Evans, A. (2003). Tensor-based

16



brain surface modeling and analysis. In IEEE Conference on Computer

Vision and Pattern Recognition, volume I, pages 467–473.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applica-

tions. Chapman & Hall/CRC.

Freeden, W. (1981). O spherical splin interpolation and approximation.

Math. Meth. Appl. Sci. 3, 551–575.

Friston., K. (2002). A short history of statistical parametric mapping in

functional neuroimaging. Technical Report Technical report, Wellcome

Department of Imaging Neuroscience, ION, UCL., London, UK.

Joshi, S., Wang, J., Miller, M., Van Essen, D. and Grenander, U. (1995).

On the differential geometry of the cortical surface. Vision Geometry IV

pages 304–311.

Kiebel, S., Poline, J.-P., Friston, K., Holmes, A. and Worsley, K. (1999).

Robust smoothness estimation in statistical parametric maps using stan-

dardized residuals from the general linear model. NeuroImage 10, 756–

766.

Kollakian, K. (1996). Performance analysis of automatic techniques for tissue

classification in magnetic resonance images of the human brain. Technical

Report Master’s thesis, Concordia University, Montreal, Quebec, Canada.

Kondor, I. and Lafferty., J. (2002). Diffusion kernels on graphs and other

discrete structures. In Proceedings of ICML.

MacDonald, J., Kabani, N., Avis, D. and Evans, A. (2000). Automated

3-d extraction of inner and outer surfaces of cerebral cortex from mri.

NeuroImage 12, 340–356.

Ramsay, J. (2000). Differential equation models for satistical functions. The

17



Canadian Journal of Statistics 28, 225–240.

Ramsay, J. and Silverman, B. (1997). Functional Data Analysis. Springer.

Robbins, S. (2003). Anatomical standardization of the human brain in eu-

clidean 3-space and on the cortical 2-manifold. Technical Report PhD

thesis, School of Computer Science, McGill University, Montreal, Que-

bec, Canada.

Rosenberg, S. (1997). The Laplacian on a Riemannian Manifold. Cambridge

University Press.

Thompson, P. and Toga, A. (1996). A surface-based technique for warping 3-

dimensional images of the brain. IEEE Transactions on Medical Imaging

15, 1–16.

Wahba, G. (1990). Spline models for observational data. SIAM.

Wang, F.-Y. (1997). Sharp explict lower bounds of heat kernels. Annals of

Probability 24, 1995–2006.

Worsley, K. (1994). Local maxima and the expected euler characteristic of

excursion sets of χ2, f and t fields. Advances in Applied Probability. 26,

13–42.

Worsley, K. (2003). Detecting activation in fmri data. Statistical Methods in

Medical Research. 12, 401–418.

Xie, X., Chung, M. and Grace, W. (2005). Magnetic resonance image seg-

mentation with thin plate spline thresholding. In 11th Annual Meeting of

the Organization for Human Brain Mapping. Toronto, submitted.

18



Appendix A

Proof of Property (3)

Note that

RY (p′, q′) = R(p′, q′) = ρ(d(p′, q′)) ≤ ρ(0) = VarY (p′).

The covariance function R of Kσ ∗ Y (p) is given by

R(p, q) = E
[ ∫

∂Ω

Kσ(p, p′)Y (p′) dp′
∫

∂Ω

Kσ(q, q′)Y (q′) dq′
]

=

∫

∂Ω

∫

∂Ω

Kσ(p, p′)Kσ(q, q′)RY (p′, q′) dp′ dq′

≤
∫

∂Ω

∫

∂Ω

Kσ(p, p′)Kσ(q, q′)ρ(0) dp′ dq′

= ρ(0)

since Kσ is a probability distribution. Now letting p = q, we have

Var[Kσ ∗ Y (p)] = R(p, p) ≤ VarY (p).

Appendix B

Proof of Property (7)

We only prove for k = 2 and the result follows inductively. The heat kernel

can be written as

Kσ(p, q) = Kσ(p, q)1Bp(q) + Kσ(p, q)1∂Ω\Bp(q)

= α(Bp)K̃σ(p, q) + Kσ(p, q)1∂Ω\Bp(q)

≥ α(Bp)K̃σ(p, q).

Applying convolution again, we have

Kσ ∗Kσ(p, q) ≥ αKσ ∗ K̃σ(p, q) ≥ α2K̃σ ∗ K̃σ(p, q).
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Now let us find a lower bound. When the metric is flat, d(p, q) is the Eu-

clidean distance and Kσ is the usual Gaussian kernel. Hence, Kσ(p, q) ≤
K̃σ(p, q) for q ∈ Bp. Then Kσ ∗Kσ(p, q) ≤ K̃σ ∗ K̃σ(p, q). Now apply K̃σ to

signal Y which proves the statement for k = 2.
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Figure 1. Left: segmented magnetic resonance image of brain. The gray
matter is in fact gray in color. Right: Enlarged image showing the outer
and inner surface. The arrow indicates the cortical thickness between two
surfaces. The boundaries are generated using a thin-plate spline (Xie et al.,
2005).
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Figure 2. Left: Outer cortical surface. Right: A close up image of the outer
cortical surface showing connected triangle elements. The cortical thickness
measures are obtained at each node.
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Figure 3. Top: Heat kernel smoothing of the first subject in the control
group with σ = 1 and k = 20, 100, 200 iterations. The thickness measures
are displayed between 2 and 6 mm. Bottom: Heat kernel smoothing on
simulated data. Mean thickness function θ(p) and variance are estimated
from 12 normal subject data and Gaussian white noise is added to the mean
function. Parameters are σ = 1, k = 20, 200, 5000.
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Figure 4. Corrected p-value maps projected onto the template. Left: p
value of t statistic map. Right: p-value of the F statistic map. Comparing
two p-value maps, we conclude that the thicker grey matter region is largely
due to the effect of age and grey matter volume difference.
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