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The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, cap-
turing both its radial and angular contents. The EAP can thus provide richer information about complex tissue
microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP.
Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed,
such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new
analytical EAP reconstruction method is proposed, called Bessel Fourier Orientation Reconstruction (BFOR),
whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and
is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing
BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate
the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruc-
tion, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of
potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are
computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized frac-
tional anisotropy (GFA).

© 2012 Elsevier Inc. All rights reserved.
Introduction

The aim of diffusion-weighted imaging (DWI) is to non-invasively
recover information about the diffusion of water molecules in bio-
logical tissues. The most common form of DWI is diffusion tensor im-
aging (DTI) (Basser et al., 1994), which is a good model of diffusion-
weighted signal behavior at low levels of diffusion weighting.
However, DTI is limited by the Gaussian assumption, which is invalid
at higher levels of diffusion weighting (b>2000 s/mm2) and its inabil-
ity to resolvemultiple fiber orientationswithin a voxel (Alexander et al.,
2001; Frank, 2001; Wiegell et al., 2000). In order to recover complex
white matter (WM) geometry, high angular resolution diffusion imag-
ing (HARDI) (Tuch et al., 2002), which reduces the diffusion signal
sampling to a single sphere (i.e. single level of diffusion weighting)
within q-space, was proposed. Many HARDI techniques (Aganj et al.,
2010; Canales-Rodriguez et al., 2009; Descoteaux et al., 2007; Hess et
al., 2006; Tuch, 2004) seek to extract the orientation distribution func-
tion (ODF), a probability density function describing the angular
ysics, University of Wisconsin-

or).
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distribution of water molecules during diffusion. Unlike apparent
diffusion coefficient (ADC) profiles, the maxima of the ODF are aligned
with the fiber directions, making it useful in fiber tractography applica-
tions. However, the ODF only retrieves the angular content of the diffu-
sion process.

The ensemble average propagator (EAP) provides more informa-
tion about tissue microstructure than the ODF because it captures
both the radial and angular information contained in the diffusion
signal. The ODF, mathematically defined as the radial projection of
the EAP, is simply an angular feature of the EAP. Unlike the diffusion
tensor, the EAP profiles illustrate and recover crossing fibers. The
authors in Cohen and Assaf (2002) have suggested that the radial
part of the diffusion signal may be sensitive to WM disorders caused
by demyelination and could be used to infer the axonal diameter.

The estimation of the EAP requires combination of high angular
sampling at multiple levels of diffusion weighting. Under the narrow
pulse assumption (Stejskal and Tanner, 1965), the diffusion signal at-
tenuation, E(q) in q-space and the EAP, P(p), are Fourier Transform
(FT) pairs (Callaghan, 1991):

P pð Þ ¼ ∫E qð Þe−2πiq⋅pd3q; ð1Þ
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where E(q)=S(q)/So is the normalized q-space diffusion signal, S(q)
is the diffusion signal measured at position q in q-space, and So is
the baseline image acquired without any diffusion gradients (q=0).
We denote q=q u(θ,ϕ) and p=p r(θ′,ϕ′), where u and r are 3D
unit vectors. The wave vector q is q=γδG/2π, where γ is the nuclear
gyromagnetic ratio and G=gu is the applied diffusion gradient direc-
tion. The norm of the wave vector, tq, is related to the diffusion
weighting level (b-value) via b=4π2q2(Δ−δ/3) (Basser, 2002),
where δ is the duration of the applied diffusion gradients and Δ the
time between the two pulses. Eq. (1) is valid only if the narrow
pulse condition is met, which is rarely the case for q-space diffusion
MRI performed under experimental conditions. Several studies
(Bar-Shir et al., 2008; Mair et al., 2002; Weeden et al., 2005) however,
have shown that even when these assumptions do not hold, the
Fourier relationship in Eq. (3) is still a reasonable approximation of
the microstructural features. The diffusion displacements, however,
will be consistently underestimated (Weeden et al., 2005).

Various methods already exist to reconstruct the EAP. Using the
diffusion tensor framework, the EAP is simply described by a multi-
variate Gaussian function (Basser et al., 1994). The authors in Ghosh
and Deriche (2010) presented a closed-form approximation of the
EAP using higher order tensors, specifically the 4th order diffusion
tensor. The diffusion orientation transform (DOT) (Ozarslan et al.,
2006) is a HARDI technique that computes the iso-radius of the EAP.
DOT assumes the radial diffusion follows a mono-exponential decay,
which allows the radial integration in Eq. (1) to be solved analytically.
The spherical integration is then solved numerically. The application
of this technique, however, is limited by its mono-Gaussian assump-
tion of the radial diffusion decay. In addition, the single shell
approach of DOT gives an incomplete picture of the EAP, whose esti-
mation requires signal measurements along all of q-space.

EAP reconstruction techniques using multiple diffusion weighting
acquisitions can be divided into two strategies: Fast Fourier Trans-
form (FFT) based and analytical. FFT based methods include diffusion
spectrum imaging (DSI) (Canales-Rodriguez et al., 2010; Weeden
et al., 2005) and hybrid diffusion imaging (HYDI) (Rathi et al., 2011;
Wu and Alexander, 2007). DSI is based on direct sampling of the dif-
fusion signal on a Cartesian q-space lattice. The FT in Eq. (1) is then
numerically evaluated via FFT to obtain the EAP. A major advantage
of DSI is that the EAP is estimated without any prior assumptions of
behavior of the diffusion signal. However, DSI requires dense sam-
pling of the Cartesian lattice, resulting in very long acquisition
times. HYDI samples the diffusion signal along concentric spherical
shells in q-space, with the measurements then being interpolated
and regridded onto a 9×9×9 Cartesian lattice so that the EAP can
be similarly reconstructed as in DSI. HYDI uses much fewer samples
than DSI, making it more clinically feasible. However, the HYDI prop-
agator reconstruction may suffer from the ad hoc signal interpolation
and regridding.

The FFT is impractical for methods employing spherical q-space
sampling schemes, such as HYDI, since the FFT requires data to lie
on a Cartesian grid. It is also quite computationally expensive. Solving
the FT in spherical coordinates (i.e. spherical Fourier Transform) in-
stead, obviates the need for FFT and ad hoc processing. Analytic
methods, seeking to obtain a closed-form solution of the EAP, pursue
such a route. Currently, the two main analytical EAP reconstruction
schemes are diffusion propagator imaging (DPI) (Descoteaux et al.,
2011) and spherical polar Fourier imaging (SPFI) (Assemlal et al.,
2009a; Cheng et al., 2010a, 2010b).

DPI assumes that E(q) is a solution to the 3D Laplace's equation
▽ 2E=0, which results in the signal basis being composed of the reg-
ular and irregular solid harmonics. It is fast, and seems to work well
with only a small number of samples. However, the DPI signal basis
is an unrealistic model of E(q) because Laplacian modeling of diffu-
sion signal entails that (1) E(0) does not exist, which arises from
the irregular solid harmonic term, and (2) MSD of water molecules
is zero, which will be proved in the Theory section. In addition, the
DPI signal basis lacks orthonormality, and hence does not possess
the robust numerical stability that would otherwise feature in an
orthonormal basis.

SPFI models the diffusion signal in terms of an orthonormal basis
comprising the spherical harmonics (SH) and Gaussian–Laguerre
polynomials. The SPFI signal basis is, in fact, a modified solution of
the 3D quantum mechanical simple harmonic oscillator problem. It
is robust to noise and low anisotropy, and works well with just a
few number of samples. However, SPFI has not been tested at
b>3000 s/mm2. A slightly modified version of the SPFI signal basis
was proposed just recently by the authors in Caruyer and Deriche
(2012). This paper, however, will only be concerned with the original
SPFI basis.

A closely related basis to SPFI was proposed in Ozarslan et al.
(2008, 2009), which use the Hermite polynomials to estimate the
1D q-space diffusion signal. In addition to forming a complete orthog-
onal basis, the Hermite polynomials are also eigenfunctions of the
Fourier transform. However, the 3D EAP solution has yet to be derived
using this basis.

With respect to analytical EAP reconstruction methods, one valu-
able though overlooked use is in extracting rotationally invariant
quantitative measures from them. Recently, the authors in Assemlal
et al. (2011) used the SPFI signal basis to compute the novel fiber
population dispersion (FPD), an index which assess the presence of
crossing fibers within a voxel. The FPD, however, is a relatively
new measure that has not yet been computed for an actual human
brain. More well-established q-space metrics include generalized
fractional anisotropy (GFA) (Tuch, 2004), mean squared displace-
ment (MSD) (Assaf et al., 2000; Wu and Alexander, 2007), and
zero-displacement probability (Po) (Assaf et al., 2000). All three are
simply scalar features of the EAP, and the GFA and the MSD can be
viewed as high angular resolution analogues of the DTI indices frac-
tional anisotropy (FA) and mean diffusivity (MD) (Basser and
Pierpaoli, 1996), respectively. An analytical representation of the
EAP (and hence diffusion signal) can facilitate either analytic compu-
tation of such features or numerical efficiency in estimating them.

In this paper, we present Bessel Fourier Orientation Reconstruc-
tion (BFOR) (Hosseinbor et al., 2011). Rather than assuming the sig-
nal satisfies Laplace's equation, we reformulate the problem into a
Cauchy problem and assume E(q) satisfies the heat equation. The
heat equation is a generalization of Laplace's equation, which the
latter approaches at the steady state (i.e. t→∞). BFOR provides an
analytical reconstruction of the EAP profile from diffusion signal and
models the diffusion signal in terms of an orthonormal basis. In addi-
tion, it contains an intrinsic exponential smoothing term that allows
one to control the amount of smoothing in the EAP estimation. The
last point is significant because, although the Laplacian modeling in-
trinsically smoothes the diffusion signal, the amount of smoothing
cannot be controlled, and hence it may oversmooth the signal. In ad-
dition to heat diffusion smoothing, we also look at linear signal ex-
trapolation as a potential means to mitigate the effects of common
artifacts afflicting the reconstructed EAP profile, such as Gibbs ringing
and signal truncation. Employing a hybrid, non-Cartesian encoding
scheme in both synthetic and in vivo datasets, we reconstruct the
EAP using BFOR, SFPI, and DPI and assess their performances. Lastly,
we use BFOR to compute GFA, Po, and MSD, and compare BFOR's
accuracy in estimating such indices to that of DPI and SPFI.

The paper is organized as follows: in Theory section, we develop
BFOR, first by describing how to estimate the diffusion signal, and
then deriving the analytical solution for the EAP using Eq. (1). Scalar
features of the EAP are also introduced in this section. The Appendix
carefully details the derivations of the BFOR signal basis, EAP, and
q-space indices. In Materials and methods section, we describe the
implementation details of BFOR and present the synthetic and
in vivo human brain datasets that will be used to validate and
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Fig. 1. Plots of spherical Bessel functions of first kind, which form the radial basis of the
BFOR signal solution, for different orders l. As q approaches infinity, they infinitely
oscillate about zero.
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illustrate BFOR and compare it to SPFI and DPI in Results section.
Lastly, we discuss our results and future applications of analytical
EAP methods in Discussion section.

Theory

The heat equation is ubiquitous in the natural sciences, arising in
Fick's law of diffusion, Brownianmotion, Fourier's law of thermal con-
duction, and the price variation over time of stocks. A nice feature of
any solution to the heat equation is its temporal dependence, which
can be viewed as an inherent smoothing control mechanism. DPI,
by solving the heat equation at the steady state, has no smoothing
control mechanism, and so can potentially oversmooth the signal.
Smoothing can be useful in situations where reconstructions greatly
suffer from noise. Although our method is similar in spirit to DPI
and SPFI, it significantly differs from them due to its inclusion of a
smoothing term.

Consider the eigenvalue/boundary condition problem

Iqψi qð Þ ¼ −λiψi qð Þ; ψi q ¼ τ;uð Þ ¼ 0 ð2Þ

which we use to solve the Cauchy problem

∂
∂t g q; tð Þ−Iqg q; tð Þ ¼ 0; g q; t ¼ 0ð Þ ¼ f qð Þ; ð3Þ

where f(q) is simply the acquired signal and I is some self-adjoint
linear operator.We require λ>0. Chung et al. (2007) derived a unique
solution for Eq. (3):

g q; tð Þ ¼
X∞
i¼0

aie
−λi tψi qð Þ; ð4Þ

where e−λi t is a smoothing term controlled by parameter t≥0 and the
coefficients are given by ai=〈f,ψi〉. The implication of Eq. (4) is that the
solution decreases exponentially as t increases and smoothes out high
spatial frequency noise much faster than low-frequency noise. In DPI,
however, the steady state assumption permanently removes any tem-
poral term, which governs the extent of smoothing, so there is no
smoothing control mechanism. Note that t=0 corresponds to no
smoothing being applied.

Assuming that I ¼ ▽2, where ▽ 2 is the 3D Laplacian operator in
spherical coordinates, Eq. (2) becomes

1
q2

∂
∂q q2

∂
∂q

� �
þ 1
q2 sin θ

∂
∂θ sinθ

∂
∂θ

� �
þ 1
q2 sin2θ

∂2

∂ϕ2

" #
ψi qð Þ ¼ −λiψi qð Þ

ð5Þ

Eq. (5) can be solved via separation of variables to obtain an
orthonormal basis, which we show in Appendix A:

ψnj qð Þ ¼ jl jð Þ
αnl jð Þq

τ

� �
Yj uð Þ; ð6Þ

where αnl(j) is nth root of lth order spherical Bessel function of first
kind jl and τ is the radial distance in q-space at which the Bessel func-
tion goes to zero. Yj are a modified real and symmetric SH basis pro-
posed in Descoteaux et al. (2011) to reflect the symmetry and
realness of the diffusion signal. The index j := j(l,m)=(l2+ l+2)/
2+m is defined for l=0, 2, 4,...and m=− l, …, 0, …, l. Hence,
for j={1,2,3,4,5,6,7,…}, l(j)={0,2,2,2,2,2,4,…}. The eigenvalues are
−λnl jð Þ ¼ −α2

nl jð Þ
τ2
. The SH are also used to model the angular profile of

the diffusion signal in DPI and SPFI.
Within the context of our problem, g(q,t) is the diffusion signal.

The assumption of a Laplacian operator results in Eq. (3) becoming
the heat equation: ▽2E q; tð Þ ¼ ∂E q;tð Þ

∂t . From Eq. (4) then, the diffusion
signal can be expanded in terms of the spherical orthonormal basis
ψnj given in Eq. (6):

E q; tð Þ ¼
XN
n¼1

XR
j¼1

Cnje
−α2

nl jð Þ t

τ2 jl jð Þ
αnl jð Þq

τ

� �
Yj uð Þ; ð7Þ

where Cnj are the expansion coefficients, R ¼ Lþ1ð Þ Lþ2ð Þ
2 is the number of

terms in the modified SH basis of truncation order L, and N is the
number of roots for any spherical Bessel function of order l. The
total number of coefficients in the expansion is W ¼ N Lþ1ð Þ Lþ2ð Þ

2 . Note
that the actual acquired signal from scanner is given at t=0. In
DWI, E(0)=1, and so for our basis, we obtain the following identity
(derived in Appendix B):

E q ¼ 0;u; t ¼ 0ð Þ ¼ 1ffiffiffiffiffiffi
4π

p ∑
n
Cn1 ¼ 1; ð8Þ

which holds for any u within the unit sphere S2 (i.e. u∈S2).
An important property of the diffusion signal is that it asymptoti-

cally approaches zero as q→∞. However, the spherical Bessel func-
tions infinitely oscillate about zero, as shown in Fig. 1, so a finite
upper bound τ is needed at which the BFOR signal model becomes
zero. The fact that the radial basis in BFOR does not radially decay
to zero but becomes zero at some point in q-space is the main limita-
tion of the BFOR algorithm.

In deriving the EAP, the spherical integration of Eq. (1) is made
easier by expressing the Fourier kernel as a plane wave expansion:

e−2πiq⋅p ¼ 4π
X∞
j¼1

−ið Þl jð Þjl jð Þ 2πqpð ÞYj uð ÞYj rð Þ ð9Þ

Substituting Eqs. (7) and (9) into Eq. (1), we obtain

P p; tð Þ ¼ 4π∫
XN
n¼1

XR
j¼1

Cnje
−α2

nl jð Þt
τ2 jl jð Þ

αnl jð Þq
τ

� �
Yj uð Þ

×
X∞
j′¼1

−ið Þl j′ð Þjl j′ð Þ 2πqpð ÞYj′ uð ÞYj′ rð Þ d3q

¼ 4π
XN
n¼1

XR
j¼1

−1ð Þl jð Þ=2Cnje
−α2

nl jð Þt
τ2 Yj rð ÞInl jð Þ pð Þ;

ð10Þ
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where we use the orthonormal property of SH, i.e. ∫Yj uð ÞYj′ uð Þd2u ¼
δjj′ and define

Inl jð Þ pð Þ ¼ ∫∞
0 q

2jl jð Þ
αnl jð Þq

τ

� �
jl jð Þ 2πqpð Þdq≈∫τ

0 q
2jl jð Þ

αnl jð Þq
τ

� �
jl jð Þ 2πqpð Þdq

ð11Þ
The integral in Eq. (11) is solved in Appendix C, and we can write

the EAP as

P p; tð Þ ¼ 2τ
ffiffiffiffiffiffiffiffi
2π3

p XN
n¼1

XR
j¼1

−1ð Þl jð Þ
2 Cnje

−α2nl jð Þ t

τ2 Yj rð Þ
ffiffiffiffiffiffiffiffiffiffiffi
αnl jð Þ

p
Jl jð Þ−1=2 αnl jð Þ

� �
jl jð Þ 2πτpð Þ

4π2p2−α2
nl jð Þ
τ2

� �
ð12Þ

The BFOR theoretical solution can be summarized in five steps:

1. ▽ 2ψi(q)=−λiψi(q), ψi(q=τ, u)=0
2. E(q,t)=∑ i=0

∞ aihi(t)ψi(q)
3. ▽2E q; tð Þ ¼ ∂E q;tð Þ

∂t ; E q; t ¼ 0ð Þ ¼ f qð Þ
4. hi tð Þ ¼ e−λi t ; ai ¼ f qð Þ;ψi qð Þh i
5. P(p,t)=∫E(q,t)e−2πiq⋅pd3q=4π∑ j=1

∞ (− i)l(j)Yj(r){∫E(q,u,t)jl(j)
(2πqp)Yj(u)d3q}

Rotationally invariant q-space indices

In addition to analytical EAP reconstruction, the DPI, BFOR, and SPFI
modeling bases can be used to obtain rotationally invariant q-space
indices. Here, we look at three such measures: Po, MSD, and GFA.

Po=P(p=0) is the probability density that a water molecule
returns back to its initial position within the diffusion time [6,50]. In
a healthy adult brain, Po is greater in white matter (WM) than gray
matter (GM) because WM has more restricting barriers including
multi-layer myelin sheaths, axonal membranes, and microtubules.
Such restrictivity increases the likelihood of a water molecule re-
turning to its original position, whereas it has a very low probability
of returning to its original position in areas of unrestricted isotropic
diffusion (CSF). Hence, Po can be viewed as a measure of restricted
diffusion. Several studies have shown Po to be sensitive to brain pa-
thology, and suggesting that changes in myelin are the primary
mechanism for differences in Po (Assaf et al., 2002; Bar-Shir et al.,
2009; Wu et al., 2011).

Po can be evaluated either numerically or analytically. The authors
in Wu et al. (2008) computed Po by numerically summing the nor-
malized diffusion signal E(q) over all diffusion measurements in
q-space, and then correcting the sum by the sampling density. Analyt-
ical formulations of Po were derived for the SPFI and DPI signal bases
(Cheng et al., 2010b; Descoteaux et al., 2011). Similarly, an analytical
Po expression can be obtained using the BFOR basis, which is derived
in Appendix D:

PoBFOR ¼ 2
ffiffiffi
π

p
τ3
XN
n¼1

Cn1
−1ð Þnþ1

α2
n0

ð13Þ

The MSD, which we will denote as 〈p2〉, is simply the second mo-
ment of the EAP (Wu and Alexander, 2007): 〈p2〉=∫p2P(p)d3p. It is
related to the MD, which in the case of Gaussian diffusion is given by
the well-known Einstein relation 〈p2〉=6(Δ−δ/3)MD. Thus far, an
analytical formulation of MSD exists only within the DTI framework.
It is calculated numerically in q-space imaging, either by extracting
the full width at half maximumof the EAP (Assaf et al., 2000) or taking
the geometric mean of the diffusion signal over all directions on a
HDYI shell (Wu et al., 2008) In Appendix E, we will show that, in gen-
eral, the MSD is related to the diffusion signal by the relation

p2
D E

¼ −1
4π2 ▽

2E qð Þ q¼0

��� ð14Þ

Since DPI assumes ▽ 2E=0, it predicts the MSD to be zero:
p2
� 	

DPI ¼ 0. The BFOR MSD is (derived in Appendix E)

p2
D E

BFOR
¼ 1

8π5
2τ2
XN
n¼1

Cn1α
2
n0 ð15Þ

Tuch (2004) introduced the concept of GFA and defined it as
std(ODF)/rms(ODF). Since ODF is only a feature of the EAP, the subse-
quent GFA map is derived solely from the angular content of the dif-
fusion profile. Incorporating both the angular and radial contents of
the diffusion profile into the definition of GFA will result in a radial
dial of GFA maps, illustrating how anisotropy varies with diffusion
displacement p. Therefore, we define a new GFA:

GFA p ¼ poð Þ ¼ std P p ¼ po; rð Þ½ �
rms P p ¼ po; rð Þ½ � ð16Þ

Another advantage of Eq. (16) is that it is better suited for multiple
diffusion weighted MR experiments, unlike Tuch's definition, which
is single-shell HARDI-based. In order to capture the 3D anisotropy of
the EAP-defined GFA maps, 1000 uniformly distributed vertices on a
unit sphere in propagator space (i.e. 1000 values of θ′ and ϕ′) were
acquired using the approach described in Wong and Roos (1994).
Materials and methods

In general, we are given k HARDI shell datasets. The number of encoding directions in each shell does not have to be the same. Each HARDI
dataset corresponds to a different b-value. Across all k shells, we have a total of M diffusion measurements (including the b=0 measurement).
Hence, from these multiple shell datasets, we want to reconstruct the EAP, P(p).

Numerical implementation of BFOR

The task is to estimate coefficients Cnj in Eq. (12) from the observed signal E(q, u, t=0). We achieve this by carrying out a linear least square
(LLS) fitting with regularization in the radial and angular parts. We let S ¼ E q1; t ¼ 0ð Þ…E qM ; t ¼ 0ð Þ½ �T be the M×1 vector representing the
M diffusion signal measurements across all k shells. We also let C represent the W×1 vector of unknown expansion coefficients Cnj, where
W ¼ N Lþ1ð Þ Lþ2ð Þ

2 . Defining Znj(q,u)= jl(j)(αnl(j)q/τ)Yj(u), we let Z denote our M×W design matrix:

Z ¼
Z1;1 q1;u1ð Þ Z2;1 q1;u1ð Þ ⋯ ZN;1 q1;u1ð Þ ⋯ Z1;R q1;u1ð Þ Z2;R q1;u1ð Þ ⋯ ZN;R q1;u1ð Þ

ts ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
Z1;1 qM ;uMð Þ Z2;1 qM ;uMð Þ ⋯ ZN;1 qM ;uMð Þ ⋯ Z1;R qM ;uMð Þ Z2;R qM ;uMð Þ ⋯ ZN;R qM ;uMð Þ

0
@

1
A



Table 1
HYDI encoding scheme for synthetic and human datasets.

Shell Ne q (mm−1) Δq (mm−1) b (s/mm2)

1 0 0
1st 6 15.2 15.2 375
2nd 21 30.4 15.2 1500
3rd 24 45.6 15.2 3375
4th 24 60.8 15.2 6000
5th 50 76 15.2 9375

Total=126 qmax=76 Mean=15.2 bmax=9375
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Fig. 2. Plots of diffusion signal attenuation as a function of b-value illustrating mono-exponential and bi-exponential decays. The tail of the bi-exponential can be interpreted as the
slow diffusion component, while the head the fast diffusion component.
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Thus, we have a simple linear model of the form S=ZC. This system of over-determined equations is solved with a regularized LLS solution
yielding vector Ĉ given by

Ĉ ¼ ZTZþ λlLreg þ λnNreg

� �−1
ZTS; ð17Þ

where Lreg is the Laplace–Beltrami regularization diagonal matrix with l2(l+1)2 entries on the diagonal and Nreg is the regularization diagonal
matrix for the radial basis, with entries n2(n+1)2 on the diagonal. The angular and radial regularization matrices penalize, respectively, high de-
grees of the angular and radial parts of Eq. (7) in the estimation under the assumption that they are likely to capture noise (Assemlal et al., 2009a).
They also serve to reinforce the positivity constraint of the EAP. λl and λn are the regularization terms for angular and radial bases, respectively.

Visualization of EAP

Lastly, from the estimated vector Ĉ, we can extract the Cnj coefficients needed to compute the EAP, Po, MSD, and GFA. The spherical function
P(p,r,t) is the iso-probability profile at some instant of smoothening t for a given p—that is, the probability density that a water molecule, initially
at the origin, diffuses a distance p along the direction r. It is computed by generating 800 equidistant points along the equator of a sphere of
radius p i.e. the polar angle θ is fixed at π/2 and the azimuthal angle ϕ is uniformly varied from 0 to 2π. The EAP profile P(p,r,t) is then interpo-
lated along these 800 points. Thus, the resulting profiles are 2D with the equator perpendicular to the z-axis. It is important to note that in this
paper smoothening was applied only to the EAP, itself, and not on the diffusion signal.

Value of τ parameter

An important point to consider in the implementation is how to determine the parameter τ in the signal basis. In practice, the diffusion signal
is bounded by the maximal q-value qmax achievable by the imaging system. The authors in Assaf and Cohen (1998) have shown that, depending
Table 2
Fast/Slow diffusion ADCs and component size fractions (from Maier et al., 2004).

Region of interest Corpus callosum Internal capsule

ADCf (μm2/ms) 1.176 1.201
ADCs (μm2/ms) 0.195 0.176
ff 0.699 0.643
fs 0.301 0.357
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on the length of diffusion time, the amount of signal present at b-values near 30,000 s/mm2 varies from about half a percent to about 5%, which
means that the signal does not approach zero at qmax unless the diffusion weighting/diffusion time are very high/long. Thus, we conclude
τ≥qmax. Based on numerical simulations, we find the value of τ that best reconstructs the EAP to be τoptimal=qmax+Δq, where Δq is the (uni-
form) q-space sampling interval.

Diffusion MRI data acquisitions for synthetic and human brain data

The synthetic and in vivo datasets use a hybrid, non-Cartesian sampling scheme (Wu and Alexander, 2007), shown in Table 1. Since EAP re-
construction is sensitive to angular resolution, the number of encoding directions is increased with each shell to increase the angular resolution
with the level of diffusion weighting. The number of directions in the outer shells was increased to better characterize complex tissue organi-
zation. Diffusion tensor elements for measurements in the second shell were calculated using non-linear least squares estimation with the
Camino software package (Cook et al., 2006), which were then used to obtain the FA and principal eigenvector.

Synthetic data
The mono-exponential (also referred to as mono-Gaussian) mixture model (Tuch et al., 2002) is frequently used to generate synthetic data to

validate a given EAP reconstruction, such as in Assemlal et al. (2009a), Cheng et al. (2010b), where the maximum b-value used was 3000 s/mm2.
However, diffusion MR imaging experiments using high b-values (>2000 s/mm2) have shown that the diffusion signal decay is no longer
mono-exponential. Studies in normal human brain, with b-values over an extended range of up to 6000 s/mm2, have shown that the signal
decay is better described with a bi-exponential i.e. bi-Gaussian curve (Clark and Le Bihan, 2000; Mulkern et al., 1999). Similar findings were
made for rat brain, using multiple b-values of up to 10,000 s/mm2 (Niendorf et al., 1996). According to Assaf and Cohen (1998), a
bi-exponential fit gives very good agreement with the observed water signal attenuation in excised brain tissue from rats for b-values of up
to 2−3×104 s/mm2. Thus, BFOR, SPFI, and DPI were applied to simulations of crossing fiber configurations generated by a bi-Gaussian mixture
model. Fig. 2 illustrates mono-exponential and bi-exponential decay curves, where the latter has a pronounced tail at high q values, indicating
that it takes longer for the signal to decay to zero than under the mono-exponential assumption. The head and tail of the bi-exponential decay
curve can be viewed as the fast and slow diffusion components, respectively (Clark and Le Bihan, 2000; Maier et al., 2004).

In bi-Gaussian mixture,

E q;uð Þ ¼
XNb

k¼1

f kf e
−buTDkf u þ f kse

−buTDksu
h i

; ð18Þ
(a) (b) (c) (d) (e)

BFOR Signal Fit

(f) (g) (h) (i) (j)

SPFI Signal Fit

(k) (l) (m) (n) (o)

DPI Signal Fit

Fig. 3. The ground truth diffusion signal (green) and estimated signal (red) using BFOR, SPFI, and DPI when noise was absent. Two equally weighted WM fibers were simulated
crossing at 60°. Measurements from all 5 shells were used.



(a) (b) (c) (d)

BFOR Fast EAP reconstruction at

(e) (f) (g) (h)

SPFI Fast EAP Reconstruction

(i) (j) (k) (l)

DPI Fast EAP Reconstruction

Fig. 4. Reconstruction of the fast component EAP (red) using BFOR, SPFI, and DPI compared with the ground truth (green). Two equally weighted WM fibers were simulated cross-
ing at 60°.
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where Nb is the total number of simulated fibers, fkf the volume fraction of the fast component of the kth fiber, and fks the volume fraction of the
slow component. The summation of all volume fractions is 1, i.e., ∑k=1

Nb [fkf+ fks]=1. Dkf and Dks describe the diffusion tensor for the fast and
slow components, respectively, of the kth fiber assuming no exchange between the fast- and slow-diffusion compartments. It should be noted
(a) (b) (c) (d)
BFOR Slow EAP Reconstruction at

(e) (f) (g) (h)
SPFI Slow EAP Reconstruction

(i) (j) (k) (l)
DPI Slow EAP Reconstruction

Fig. 5. Reconstruction of the slow component EAP (red) using BFOR, SPFI, and DPI compared with the ground truth (green). Two equally weighted WM fibers were simulated cross-
ing at 60°.
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that there is controversy over the assignment of these components and whether the bi-Gaussian model should take into account exchange be-
tween compartments (Mulkern et al., 1999). The ground truth of EAP is then

P p; rð Þ ¼
XNb

k¼1

"
f kfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π�ð Þ3 Dkf

��� ���r e−p2rTD−1
kf r=4� þ f ksffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π�ð Þ3 ctDksj j
q e−p2rTD−1

ks r=4�

#
; ð19Þ

where =Δ−δ/3. For the synthetic data, the diffusion gradient duration is δ=45 ms and diffusion gradient separation Δ=56 ms.
In reconstructing the EAP, we look at two equally weighed fibers crossing at 60°, and set eigenvalues of each diffusion tensor to be

[1.6,0.4,0.4]e−3, which gives an FA value of 0.7071. The values of the fast and slow Gaussian diffusion functions were taken from Maier et al.
(2004) and are shown in Table 2. Monte Carlo noise simulations were then performed to investigate the effect of SNR on the estimation of
Po, MSD, and GFA for a single voxel for each EAP method. Seven SNR levels ([10 20 30 40 50 60 100]) for the b=0 image were simulated,
1000 times each, by adding Rician noise in a similar manner as in Descoteaux et al. (2007) for four different scenarios: a fast isotropic component
(D=0.00115 mm2/s); a slow isotropic component (D=0.00045 mm2/s); fast anisotropic components of a corpus callosum fiber and internal
capsule fiber crossing at 60°; and the slow anisotropic components for the previous scenario. The BFOR parameters are {L=4, N=6, τ=91.2 mm−1,
λl=10−6, λn=10−6}, DPI parameters {L=4, λl=0 (no noise)/λl=0.006 (with noise)}, and SPFI parameters {L=4, N=3, ζ=500, λl=10−8,
λn=10−8}. For each method, model parameters were chosen based on giving the optimal EAP reconstruction when no noise was present.

Human brain data
HYDI was performed on a healthy, adult human using a 3.0T GE-SIGNA scanner with an 8-channel head coil and ASSET parallel imaging. The

DW pulse sequence was a single-shot, spin-echo, echo-planar imaging (SS-SE-EPI) with pulse-oximeter gating. The MR parameters were as
(a) (b) (c) (d)

BFOR Fast EAP Reconstruction at           with Linear Extrapolation

BFOR Slow EAP Reconstruction at           with Linear Extrapolation

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
SPFI Slow EAP Reconstruction with Linear Extrapolation

SPFI Fast EAP Reconstruction with Linear Extrapolation

Fig. 6. Extrapolated samples were acquired by linearly damping the signal measurements in the outermost shell. Reconstruction of the EAP (red) using BFOR and SPFI compared
with the ground truth (green). Two equally weighted WM fibers were simulated crossing at 60°.
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follows: TE=122 ms, TR 12 s, FOV=256 mm, matrix=128×128, voxel size=2×2 mm2, 30 slices with slice thickness=3 mm, and a total
scan time of about 30 min. Diffusion parameters were maximum b-value bmax=9375 s/mm2, diffusion gradient duration δ=45 ms, diffusion
gradient separation Δ=56 ms, q-space sampling interval Δq=15.2 mm−1, maximum length of the q-space wave vector qmax=76 mm−1,
field of view of the diffusion displacement space FOVp=(1/Δq)=65 μm, and resolution of the diffusion displacement space Δp=(1/2qmax)=
6.6 μm (Callaghan, 1991). The same BFOR, DPI, and SPFI modeling parameters utilized for synthetic data were also used for in vivo data.
Results

BFOR, DPI, and SPFI are first applied to the numerical phantom and
then on the real dataset. The numerical phantom is used to validate
BFOR, compare its performance to those of DPI and SPFI, assess all
three methods' robustness in estimating the scalar measures Po,
MSD, and GFA, and answer the following questions: (1) Can these
methods properly reconstruct a diffusion signal acquired via hybrid
sampling? (2) How does the slow diffusion component affect the
EAP reconstruction and the estimations of the scalar quantities?
(3) What can be done to reduce the effects of Gibbs ringing on the
EAP reconstructions? It is also important to note that the EAP and
quantitative scalar measures were reconstructed using only 125 dif-
fusion measurements, while those presented in Descoteaux et al.
(2011) used 256.
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Results of synthetic data

Can these methods be used for diffusion signal estimation? Fig. 3 dis-
plays the BFOR, DPI, and SPFI signal fit for each shell and the corre-
sponding ground truth. The BFOR signal basis fits the diffusion
signal nearly perfectly for all shells. Both SPFI and DPI reasonably fit
the diffusion signal for b≥1500 s/mm2, but poorly reconstruct the
inner most shell (b=375 s/mm2). As expected, DPI also tends to
oversmooth the diffusion signal, especially so at b=3375, 6000 s/mm2.
Results of DPI signal fitting were also reported in Descoteaux et al.
(2011), where uniform sampling along four spherical shells (b=2000,
4000, 6000, and 8000 s/mm2) was done. Although a hybrid sampling
scheme is used here, our results are consistent with those of
Descoteaux et al. (2011) for b≥1500 s/mm2. SPFI's and DPI's poor signal
fit of the diffusion signal in inner most shell may be due to the fact that
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only six measurements were acquired in this shell (see Table 1), which
may be inadequate for their respective radial bases.

Performances of BFOR, DPI, and SPFI in reconstructing EAP. Fig. 4
shows the EAP reconstruction for the fast diffusion component across
propagator space using each method. Modeling the fast component
(i.e. head of the bi-exponential in Fig. 2) is tantamount to fitting a
mono-exponential curve, and so the EAP reconstruction for the fast
diffusion component can be viewed as if the diffusion signal decay
was mono-exponential. Both BFOR and SPFI model the fast compo-
nent EAP very well, accurately capturing the geometry and orienta-
tion of the EAP profile, and the BFOR reconstruction is nearly
identical to that of SPFI. DPI performs reasonably well, but tends to
overestimate the EAP.

Fig. 5 shows the EAP reconstruction for the slow diffusion compo-
nent, which can be viewed as modeling the tail of the bi-exponential
curve in Fig. 2. Note that the BFOR and SPFI reconstructions are quite
alike. At p=1 μm, all three methods capture the correct geometry of
the ground truth EAP profile, but underestimate it, DPI more so. At
p=5 μm, all three methods are unsuccessful in capturing the correct
geometry, in particular failing to capture the peaks of the ground
truth EAP profile. However, they do capture the correct orientation.
At p=10 and especially p=15 μm, the BFOR and SPFI EAP
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reconstructions of the slow diffusion component begin to suffer from
Gibbs ringing, which arise from the truncation of the signal bases at
high q. The DPI reconstruction at p=15 μmbenefits from the inherent
smoothening of Laplacian signal modeling, with no spurious peaks
present. Although oversmoothened and overestimated, it does a
much better job than BFOR and SPFI in resolving the correct fiber ori-
entation at p=15 μm. The difficulty in reconstructing the EAP for the
slow diffusion component is due to the slow diffusion component
being sensitive to truncation effects. The reality of finite sampling
makes it challenging to capture the tail of the bi-exponential curve.
How then should one combat the effects of truncation artifacts?

Signal extrapolation. Extrapolating the diffusion signal to higher
q-values so that q-space is more thoroughly explored could mitigate
the truncation effects. Signal extrapolation can increase the spatial
resolution of the EAP (Cohen and Assaf, 2002), and in the case of
DSI, significantly reduce the cumbersome q-space sampling (Yeh et
al., 2008). By linearly damping the signal measurements in the
outermost shell (b=9375 shell), we were able to (linearly) extrapo-
late samples onto three new ‘pseudo-shells.’ Specifically, the outer-
most signal measurements were attenuated by a factor of 0.7, 0.4,
and 0.1 to form the three ‘pseudo-shells.’ The BFOR and SPFI scaling
factors, τ and ζ, respectively, were changed for the extrapolation to
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τ=136.8 mm−1 and ζ=1100. Note that the q-space sampling interval
Δq was not changed for the extrapolation.

Fig. 6 shows that signal extrapolation improves the reconstruction
of the slow EAP component for both BFOR and SPFI. At p=10 μm, the
BFOR and SPFI slow EAP reconstructions with signal extrapolation, al-
though not perfectly capturing the ground truth geometry, better
capture the angular features of the ground truth than those without
signal extrapolation. The biggest improvement, however, is seen at
p=15 μm, where the pronounced Gibbs ringing is greatly reduced
by the signal extrapolation. In particular, the BFOR and SPFI slow
EAP reconstructions with signal extrapolation at p=15 μm are not
spiky and much closer to the ground truth, although their orienta-
tions are slightly off, than those without extrapolation (Fig. 5). Note
that both the BFOR and SPFI slow EAP reconstructions with extrapo-
lation are quite alike. The BFOR fast EAP reconstruction was not
affected by extrapolation, being nearly identical to its counterpart
without extrapolation. However, the SPFI fast EAP reconstruction
with extrapolation was moderately less accurate than that with-
out extrapolation. In general, signal extrapolation can significantly
improve EAP reconstructions at larger diffusion displacements
(i.e. p=15 μm).
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Estimation of q-space indices. Fig. 7 shows the results for the Po
measurements. Without signal extrapolation, BFOR and SPFI asymp-
totically approach the ground truth fast anisotropic Po, whereas DPI
overestimates it. All three methods, without signal extrapolation,
severely underestimate slow anisotropic Po, which is due to the trun-
cation of the signal bases at high q. Both BFOR and SPFI asymptotically
approach the ground truth fast/slow isotropic Po, while DPI overesti-
mates both. At low levels of SNR (e.g. 10 and 20), which is quite com-
mon in diffusion MRI, all three methods (without signal extrap.) have
biased estimates of Po, though the variance is fairly small.

When signal extrapolation is applied, the estimation of the slow
anisotropic Po by BFOR and SPFI significantly improves, as shown in
Fig. 7b. According to Fig. 7a, signal extrapolation does not asymptoti-
cally affect SPFI's estimation of fast anisotropic Po, but slightly
worsens that of BFOR's. At low levels of SNR, however, signal extrap-
olation results in more severe overestimation of fast anisotropic Po
than without signal extrapolation for both BFOR and SPFI.

Fig. 8 shows the results for the MSD measurements. BFOR esti-
mates both the fast and slow anisotropic/isotropic MSD very well
across SNR levels. However, at low levels of SNR, the variability
(given by the standard deviation) of the BFOR estimation of MSD is
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quite large, indicating strong sensitivity to noise. SPFI without signal
extrapolation severely underestimates anisotropic MSD, giving nega-
tive values for slow anisotropic MSD, which indicates that it will give
inaccurate measurements of the MSD of WM. SPFI also underesti-
mates fast isotropic MSD, but asymptotically approaches ground
truth slow isotropic MSD. Interestingly, there is less variability in
SPFI's estimation of MSD than BFOR.

When signal extrapolation is applied to the MSD measurements,
SPFI's estimations of slow anisotropic and slow isotropic MSD signif-
icantly improve, well-estimating them across SNR levels, as shown
in Figs. 8b and d, respectively. Specifically, the SPFI slow anisotropic
MSD estimation is no longer negative with signal extrapolation.
BFOR's estimations of slow anisotropic and slow isotropic MSD with
extrapolation are nearly identical to those without it. However, the
variability of the BFOR and SPFI MSD measurements is much less
than those without extrapolation. A negative consequence of signal
extrapolation is that it increases the inaccuracy (i.e. asymptotically
worsening) of the BFOR/SPFI fast anisotropic and fast isotropic MSD
estimations, all of which are greatly underestimated. The simulations
indicate signal extrapolation may be more beneficial to SPFI's estima-
tion of MSD than that of BFOR's.

Fig. 9 shows the results for the GFA measurements. Asymptotical-
ly, BFOR and SPFI without signal extrapolation approach the ground
truth fast anisotropic GFA, while DPI underestimates it. Across SNR
levels, DPI severely underestimates slow anisotropic GFA, while
both BFOR and SPFI greatly overestimate it. For the case of isotropic
diffusion, where GFA=0, the GFA estimated by each method ap-
proaches zero at high SNR. However, at SNR=10, both SPFI and
BFOR severely overestimate the isotropic GFA, giving values compara-
ble to the GFA of WM. DPI's estimation of the isotropic component is
more robust to noise than BFOR and SPFI.

SPFI with signal extrapolation still overestimates slow anisotropic
GFA, though slightly less so than without it, but the extrapolation in-
creases the estimation's variability at the same time. Signal extrapola-
tion has negligible effects on BFOR's estimation of slow anisotropic
GFA. Both BFOR's and SPFI's estimation of fast anisotropic GFA are
(a) FA

(c) BFOR at (d) BFOR at (

Fig. 10. Axial slice of FA map of adult human brain at b=1500 s/mm2 (second shell), where 4
overlaid on FA map in 4×4 ROI using BFOR at (c) t=0, (d) t=550, and (e) DPI and (f) SPFI.
not asymptotically affected by signal extrapolation, having similar
convergences as those without signal extrapolation, but the extrapo-
lation causes both methods to overestimate fast anisotropic GFA to a
larger degree at SNR=10, 20, and 30 than without it. Based on Fig. 9c,
both SPFI and BFOR with signal extrapolation overestimate isotropic
GFA, across SNR levels, to a larger extent than without extrapolation,
implying that extrapolation is quite sensitive to noise in CSF regions.

Results of human brain data

Resolving single fibers. In Fig. 10, a 4×4 ROI was drawn on the
splenium of corpus callosum. The EAP profiles reconstructed at
p=10 μm by each method have the fundamental peanut shape of a
single fiber. Note that the BFOR and SPFI reconstructions in both cases
are very similar. We see that application of smoothing t=550 removes
the center peaks of the BFOR EAP profiles. Whether these center peaks
in the EAP profiles are the result of Gibbs ringing (i.e. artificial peaks)
or describe some underlying biological process is an open question.

Resolving crossing fibers. In Fig. 11, a 4×9 ROI was drawn in a re-
gion of fiber crossing, where the EAP profiles were reconstructed at
p=10 μm. Although not identical, the BFOR and SPFI reconstructions
are quite similar, and they recover and well discriminate crossing
fiber configurations in the EAP. DPI, however, tends to oversmooth
the EAP profiles of crossing WM fibers, resulting in spherical/oblate
shapes that give the impression of isotropic diffusion. Based on
Fig. 11d, the application of smoothing t=60 to BFOR removes the
center peaks from several voxels, but at the expense of slight angular
smoothening of EAP profiles themselves.

Fig. 12 shows the reconstructed EAP profiles for the same crossing
fiber region, but at p=15 μm. Fiber crossing configurations are recov-
ered and well discriminated in the EAP for each method. Unlike at
p=10 μm, the DPI EAP reconstruction at p=15 μm is sharper and
does not suffer from oversmoothening. In fact, as the propagator radi-
us p increases, the angular resolution improves, at the expense of the
EAP profiles becoming spiky, as is evident in Figs. 12a, e, and g. When
a smoothing of t=60 is applied to the BFOR EAP reconstruction
(b) FA modulated by principal eigenvector

e) DPI (f) SPFI

×4 ROI is drawn on splenium of corpus callosum. Plotted is the EAP profile at p=10 μm
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Fig. 11. Axial slice of FA map of adult human brain at b=1500 s/mm2 (second shell), where a 4×9 ROI is drawn on a region of crossing fibers. Plotted is the EAP profile at p=10 μm
overlaid on FA map in 4×9 ROI using (c) BFOR at t=0, (d) t=60, and (e) DPI and (f) SPFI. The splenium is to the left of the ROI.
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(without signal extrapolation), the subsequent EAP profiles are still
spiky. At t=350, the spikiness is smoothed out, but many of the
WM voxels have EAP reconstructions significantly differing, with re-
spect to orientation and geometry, from those at t=0. Figs. 12d and
f show the BFOR and SPFI EAP profiles reconstructed at p=15 μm
with signal extrapolation, respectively, which are much less spiky
than the corresponding ones without signal extrapolation, which is
consistent with the synthetic results shown in Fig. 6. The signal ex-
trapolation also smoothes the reconstructed EAP profiles, but unlike
BFOR at t=350, none of the WM voxels are oversmoothed to such a
degree that their EAP profiles have oblate shapes. Unlike BFOR at
t=350, the underlying EAP geometry and orientation of the BFOR/
SPFI reconstructions with signal extrapolation are fairly consistent
to those without extrapolation (at t=0). As observed at p=10 μm,
the BFOR and SPFI EAP reconstructions at p=15 μm are quite similar,
which is consistent with the synthetic data results.

Q-space indices. Table 3 shows the mean index value and corre-
sponding standard deviation for genu and splenium of corpus
callosum (WM) and putamen (GM). Three 4×4 ROIs were drawn
on both the genu and splenium and one such ROI on both the left
and right putamen, across several slices. The table shows that the
SPFI MSD (without signal extrapolation) erroneously gives negative
values for the MSD of genu and splenium. With extrapolation, the
SPFI MSD of genu and splenium are positive.

Based on the numerical simulations, signal extrapolation was
applied to both BFOR's and SPFI's estimation of Po. Fig. 13 displays
an axial slice of Po generated by each method. In the first row, we
show Po computed from BFOR, SPFI, DPI, and numerically (Wu et
al., 2008). The BFOR, SPFI, and numerical Po maps are quite simi-
lar, exhibiting rich GM/WM and tissue/CSF contrasts while the
DPI Po map has less GM/WM contrast. In particular, based on Table 3,
the Po ratio of WM to GM is slightly above 2 for BFOR and SPFI, while
less than 2 for DPI.

The MSD maps computed from BFOR, SPFI, DPI, and numerically
(Wu et al., 2008) are shown in Fig. 14. Both the BFOR and numerical
MSD maps exhibit rich tissue/CSF contrast, but have little WM/GM
contrast, which is similar to the DTI MD. Table 3 shows that the
BFORMSD values for WM and GM are quite similar. In the SPFI (with-
out signal extrapolation) MSD map, WM regions are completely dark,
having negative MSD values. This is consistent with the results of the
noise simulations, which showed that SPFI severely underestimates
the MSD of WM. Signal extrapolation has the effect of enforcing the
positivity constraint on the MSD for SPFI. However, both the BFOR
and SPFI MSD maps with signal extrapolation have poor tissue/CSF
contrast because of the noise induced by the signal extrapolation.
With regards to BFOR, both the synthetic and in vivo data suggest
that it's best not to use signal extrapolation in estimating MSD. SPFI,
however, does not generate reliable MSDmaps either with or without
signal extrapolation. Although DPI predicts the MSD to be zero, an
MSD map was computed for it by numerically estimating the second
moment of the diffusion propagator. The contrast of the MSD DPI map
is completely inverted, with WM appearing bright and CSF dark.



(a) BFOR at (b) BFOR at (c) BFOR at (d) BFOR with Signal
Extrap.

(e) SPFI (f) SPFI with Signal
Extrap.

(g) DPI

Fig. 12. EAP profiles reconstructed at p=15 μm for same crossing fiber region shown in Fig. 11.
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Fig. 16 displays axial slices of the GFA computed at p=5, 10, and
15 μm for each method, illustrating how the anisotropy of different
WM regions, such as the corpus callosum and capsules, varies with
diffusion displacement p. According to Table 3, at p=5 μm, the an-
isotropy of corpus callosum is lower with respect to levels seen in
DTI. At p=10 μm, the corpus callosum is very anisotropic, as can be
seen from Table 3, indicating that p=10 μm is a diffusion displace-
ment worth reconstructing the EAP at. The GFA at p=15 μm is
more noisy, which is due to truncation of signal basis at high
q-values and 15 μm being well beyond the resolvable resolution (of
diffusion displacement) limit. The BFOR and SPFI GFA maps without
signal extrapolation are very similar, while WM regions in the DPI
computed GFA maps at p=5 and 10 μm have lower intensity than
those of BFOR and SPFI, which is consistent with the underestimation
of GFA(10) by DPI observed in the Monte Carlo noise simulations
(Fig. 9). CSF regions in the BFOR GFA(10) map with signal extrapola-
tion are more noisy than without it, which is consistent with the sim-
ulation results shown in Fig. 9c. In the case of SPFI, however, the noise
level is very severe in CSF regions in the GFA(5) and GFA(10) maps
with signal extrapolation than those without it.

Discussion

The three analytical EAP reconstruction schemes examined in this
paper possess both certain advantages and disadvantages. Among the
three, the DPI reconstruction uses the least number of expansion
coefficients. According to both synthetic and tin vivo data, DPI tends
to greatly oversmoothen the EAP, especially p=10 μm, but performs
well at p=15 μm where it did not make use of signal extrapolation.
DPI's assumption of Laplacian signal modeling, however, entails that
the MSD is zero (refer to Eq. (14)). Fig. 9 indicates that DPI greatly un-
derestimates GFA(10), which is reflected in Fig. 16 and Table 3. In
addition, the DPI signal basis is only applicable at q>0, which is unre-
alistic since the diffusion signal is defined at q=0.

The SPFI signal basis possesses several advantages in that it radial-
ly decays to zero and has no singularity at q=0. In addition, the EAP



Table 3
Values of indices for various WM and GM structures.

Index Splenium Genu Putamen

BFOR GFA(5) 0.212±0.0162 0.188±0.0153 0.0353±0.0130
BFOR GFA(5) Extrap 0.416±0.0310 0.370±0.0325 0.0879±0.0296
SPFI GFA(5) 0.234±0.0178 0.209±0.0179 0.0424±0.0152
SPFI GFA(5) Extrap 0.461±0.0342 0.402±0.0387 0.103±0.0342
DPI GFA(5) 0.129±0.00849 0.111±0.0103 0.0166±0.00642
BFOR GFA(10) 0.998±0.00310 0.991±0.0184 0.254±0.0686
BFOR GFA(10) Extrap 0.999±0.00270 0.991±0.0187 0.360±0.0759
SPFI GFA(10) 0.999±0.00246 0.994±0.0156 0.263±0.0735
SPFI GFA(10) Extrap 0.996±0.00535 0.988±0.0243 0.339±0.0722
DPI GFA(10) 0.831±0.0280 0.766±0.0533 0.123±0.0380
BFOR GFA(15) 0.927±0.0424 0.857±0.0736 0.397±0.0830
BFOR GFA(15) Extrap 0.859±0.0782 0.753±0.104 0.349±0.0737
SPFI GFA(15) 0.957±0.0346 0.875±0.0849 0.380±0.0797
SPFI GFA(15) Extrap 0.858±0.0838 0.730±0.104 0.318±0.0722
DPI GFA(15) 0.952±0.0253 0.906±0.0566 0.286±0.0682
BFOR MSD (10−3 mm2) 0.207±0.0860 0.219±0.0980 0.211±0.0820
BFOR MSD Extrap (10−3 mm2) 0.137±0.0300 0.162±0.0330 0.158±0.0160
SPFI MSD (10−3 mm2) −0.0670±0.0770 −0.0220±0.0950 0.0700±0.0510
SPFI MSD Extrap (10−3 mm2) 0.0830±0.0210 0.103±0.0210 0.137±0.0150
DPI MSD (10−3 mm2) 4.60±0.430 4.27±0.460 4.28±0.361
BFOR Po (105 mm−3) 6.63±0.729 5.65±0.630 2.95±0.263
BFOR Po Extrap (105 mm−3) 10.8±1.17 9.24±1.07 4.41±0.396
SPFI Po (105 mm−3) 7.00±0.757 6.06±0.649 3.12±0.258
SPFI Po Extrap (105 mm−3) 11.2±1.33 9.37±1.22 4.33±0.449
DPI Po (105 mm−3) 5.00±0.514 4.38±0.435 2.99±0.231
BFOR QIV (10−10 mm5) 4.04±0.447 4.78±0.563 11.1±1.28
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is derived via integration over the entire q-space, unlike BFOR and
DPI, where the q-space integration is up to a certain bound that is
related to qmax. Interestingly, however, the SPFI EAP reconstructions
for both synthetic and real datasets are quite similar to those of BFOR,
suggesting the two methods may be inherently related. According to
the synthetic data, signal extrapolation greatly improves the SPFI EAP
reconstruction atp=15 μm.Although not shown in this paper, heat dif-
fusion smoothening can be applied to SPFI. SPFI's estimation of Po and
GFA, either with or without signal extrapolation, is quite comparable
(a) BFOR (b) BFOR with Si
lation

(d) SPFI with Signal Extrapola-

tion

(e) DPI

Fig. 13. Axial slice of Po gen
to those of BFOR's. However, it poorly estimates the MSD, which
recalling Eq. (14), may be due to, from a computational standpoint,
SPFI's signal basis not being an eigenfunction of the Laplacian operator.

The main limitation of the BFOR signal model, as mentioned in the
Theory section, is that it infinitely oscillates about zero, which entails a
finite integration of the signal over q-space (τ being the upperbound)
to retrieve the EAP. However, based on Fig. 3, BFOR outperforms DPI
and SPFI in modeling the diffusion signal. Heat diffusion smoothening
helps in removing potentially spurious peaks, and signal extrapolation
gnal Extrapo- (c) SPFI

(f) Numerical

erated by each method.



(a) BFOR (b) BFOR with Signal Extrapo-

lation

(c) SPFI

(d) SPFI with Signal Extrapola-
tion

(e) DPI (f) Numerical

Fig. 14. Axial slice of MSD generated by each method.
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significantly improves the EAP reconstruction at p=15 μm. According
to both the synthetic and real data, BFOR gives reasonable estimates
of all three q-space indices.

The slow component of diffusion is the most sensitive to trunca-
tion artifacts, which can induce severe Gibbs ringing and adversely
affect the orientation of reconstructed EAP. In this paper, signal
extrapolation was proposed as a means to mitigate the effects of
such artifacts, and was observed to be most effective at higher radii
(i.e. p=15 μm), where the effects of signal truncation artifacts are
most pronounced. The significant improvement in the BFOR/SPFI
EAP reconstruction at p=15 μm via linear signal extrapolation
hence suggests that extrapolation may be a useful preprocessing
step for EAP reconstruction at large diffusion displacements. Signal
extrapolation also greatly improves the accuracy of the BFOR/SPFI
Po estimation, according to the synthetic data. However, signal
extrapolation increases the severity of noise in CSF regions in the
GFA and MSD maps for both BFOR and SPFI, as evidenced by the
Fig. 15. Axial slice of BFOR QIV. Within the CSF regions, some voxels were zeroed out
because they blew up upon the division operation in computing QIV.
synthetic and real datasets, reducing tissue/CSF contrast. Hence,
extrapolation may not be desirable for GFA and MSD estimation.
Future work includes optimizing the signal extrapolation for a given
signal basis.

The degree of heat diffusion smoothing desired depends on the
propagator radius and whether the fibers are single or crossing.
Based on Fig. 10, a smoothing of t=550 was applied to splenium at
p=10 μm to remove the center peaks. However, for a crossing fiber
region at p=10 μm, a smoothing of t=60 was only applied because
the EAP profiles of crossing fibers can easily become oversmoothed,
resulting in oblate shapes. The fact that the smoothing factor is differ-
ent for different brain regions poises a problem for whole brain EAP
processing. One way to address this issue is to use an optimal
bandwidth selection framework from statistics to estimate the
optimal t. Specifically, the bandwidth t is selected to minimize a
certain cost function. In a spline setting, the cost function will be a
generalized cross-validation (GCV) criterion (Katkovnik, 1999). In a
more simple setting like ours, we can choose the t that minimizes
the sum of the squared residuals, where the residual is simply the
difference between the actual data and model fit.

Although the encoding scheme in this study consisted of equally
spaced concentric spherical shells, the BFOR framework does not re-
quire such a scheme. BFOR only requires a minimum of two diffusion
weightings and use of a spherical coordinate system. Random sam-
pling along q-space or even the use of unequally spaced concentric
shells is perfectly valid. This, however, leads to the important ques-
tion of what is the best way to sample N diffusion measurements in
q-space, which have started to be addressed (Assemlal et al., 2009b;
Caruyer et al., 2011; Merlet et al., 2011). Future work includes opti-
mizing the q-space sampling and applying compressed sensing to
BFOR.

Both the ODF and EAP profiles are not sharp enough to extract the
true fiber orientation. Rather, the fiber orientation is given by the
fiber orientation distribution function (fODF), which can be comput-
ed via spherical deconvolution of some assumed kernel (i.e. response
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Fig. 16. GFA maps computed at p=5, 10, and 15 μm.
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function) from q-space diffusion signal (Tournier et al., 2004). Math-
ematically, the angular convolution is given by

E q;uð Þ ¼ ∫S2F rð ÞK q;u; rð Þd2r; ð20Þ

where F(r) is the fODF and K the kernel. The derivation of the fODF
using the BFOR, SPFI, and DPI signal bases is worth exploring in the
future.

In any future clinical study employing HYDI to examine brain
pathology, where rotationally invariant indices like GFA and Po can
be used to assess changes between diseased and normal subjects,
voxel-wise analysis is desired. However, spatial normalization of mul-
tiple b-value datasets is no easy task. Recently, the authors in Du et al.
(2012) proposed a registration algorithm to align HARDI datasets
using the ODFs. Specifically, the algorithm seeks an optimal dif-
feomorphism of large deformation between two ODF fields across a
spatial volume domain and at the same time, locally reorients an
ODF in a manner consistent with the underlying anatomical structure.
HYDI images could be aligned using the same algorithm, except
replacing the ODF with the EAP.

The MSD measure is quite sensitive to noise (Assaf and Cohen,
2000; Wu and Alexander, 2007). The authors in Wu et al. (2008) pro-
posed an alternative measure to MSD called the q-space inverse var-
iance (QIV), which is a pseudo-diffusivity measure. Mathematically,
the QIV is defined as

QIV ¼ ∫q2E qð Þd3q
h i−1 ð21Þ

The QIV can thus be interpreted as the inverse of the “variance” of
q (i.e. QIV=1/〈q2〉). It is not a real variance in the statistical sense
because E(q) does not constitute a probability density function. The
QIV is not an arbitrary measure, but related to the EAP in a manner
analogous to which the MSD is related to the diffusion signal—in
Appendix F, we will show that

QIV−1 ¼ −▽2P pð Þjp¼0

4π2 : ð22Þ

The QIV within the BFOR framework is (see Appendix F for deriva-
tion)

QIVBFOR ¼ 1

2
ffiffiffi
π

p
τ5∑N

n¼1 −1ð ÞnCn1
6−α2

n0ð Þ
α4
n0

ð23Þ

Fig. 15 displays an axial slice of the BFOR QIV, illustrating rich tissue/
CSF contrast. The tissue/CSF contrast in the QIV is more enhanced than
that of theMSD, and unlike theMSD, theQIVmap also exhibitsWM/GM
contrast (the right and left putamen are visible in Fig. 15 but not in the
MSD maps). According to Table 3, the QIV of the corpus callosum is
about a third of that of the putamen.

Conclusion

We have introduced a new orthonormal basis to model the q-space
diffusion signal and from which the EAP can be analytically re-
constructed using hybrid, non-Cartesian sampling with multiple
q-shell measurements. BFOR is a linear and efficient reconstruction
based on heat equation estimation of the diffusion signal. Compared
toDSI, BFOR employsmuch fewer diffusionmeasurements. Rotationally
invariant q-space indices such asGFA, Po, andMSD can then be obtained
using the derived EAP.
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Appendix A. Derivation of BFOR signal basis

We want to solve the following boundary value partial differential
equation:

1
q2

∂
∂q q2

∂
∂q

� �
þ 1
q2 sinθ

∂
∂θ sinθ

∂
∂θ

� �
þ 1
q2 sin2θ

∂2

∂ϕ2

" #
ψi qð Þ

¼ −λiψi qð Þ; ψ q ¼ τ; θ;ϕð Þ ¼ 0 ðA:1Þ

where we require λ>0. Substituting the separable solution of the
form

ψ q; θ;ϕð Þ ¼ f qð Þh θ;ϕð Þ ðA:2Þ

into Eq. (A.1), we obtain

q2

f
d2

dq2
f þ 2q

f
d
dq

f þ q2λ ¼ −ΔLBh
h

¼ l lþ 1ð Þ; ðA:3Þ

where ΔLB ¼ 1
sinθ

∂
∂θ sinθ ∂

∂θ

� �
þ 1

sin2θ
∂2
∂ϕ2 is the Laplace–Bertrami opera-

tor and l is some real-valued constant.
We first solve for the second equation in Eq. (A.3):

ΔLBhþ l lþ 1ð Þh ¼ 0 ðA:4Þ

The solutions to Eq. (A.4) are the spherical harmonics (SH) Ylm(θ,ϕ).
The second equation in (A.3) can be written as

q2
d2

dq2
f þ 2q

d
dq

f þ q2λ−l lþ 1ð Þ
h i

f ¼ 0 ðA:5Þ

Defining a new variable f qð Þ ¼
ffiffiffiffiffiffiffi
π

2
ffiffiffi
λ

p
q

q
F qð Þ, we can transform

Eq. (A.5) to

q2
d2

dq2
F þ q

d
dq

F þ q2λ− lþ 1=2ð Þ2
h i

F ¼ 0; ðA:6Þ

which is simply a scaled version of the Bessel differential equation.
The only bounded solution at the origin is given in terms of the Bessel
function of the first kind as F qð Þ ¼ Jlþ1=2

ffiffiffi
λ

p
q

� �
. The solution to

Eq. (A.5) is then f qð Þ ¼
ffiffiffiffiffiffiffiffiffi
π

2
ffiffiffi
λ

p
q

q
Jlþ1=2

ffiffiffi
λ

p
q

� �
¼ jl

ffiffiffi
λ

p
q

� �
, where jl is the

spherical Bessel function of the first kind and we invoke the relation
jl xð Þ ¼ ffiffiffi

π
2x

p
Jlþ1=2 xð Þ.

Imposing the boundary condition from Eq. (A.1), we have
jl

ffiffiffi
λ

p
τ

� �
¼ 0. Defining αnl as the nth root of the lth order spherical

Bessel function of first kind, then the eigenvalues are found to be
−λnl ¼ − α2

nl
τ2 . Note that for l=0, the roots are simply αn0=nπ.

Multiplying the spherical Bessel functions and the spherical har-
monics together, we obtain the eigenfuctions (i.e. our orthonormal
basis) to Eq. (A.1): Znlm q; θ;ϕð Þ ¼ jl

ffiffiffiffiffiffiffi
λnl

p
q

� �
Ym
l θ;ϕð Þ. Thus, the com-

plete set of solutions to Eq. (A.1) is

ψ q; θ;ϕð Þ≈
XN
n¼1

XL
l¼0

Xl
m¼−l

Cnlmjl
αnlq
τ

� �
Ym
l θ;ϕð Þ; ðA:7Þ
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where N is the truncation order of the number of roots of spherical
Bessel function and L the truncation order of the SH.

Now, to derive the diffusion signal, we make two important
assumptions. First, we assume the diffusion signal E(q) is a solution
to the heat equation:

▽2E q; tð Þ ¼ ∂E
∂t ; E q; t ¼ 0ð Þ ¼ H qð Þ; ðA:8Þ

where H(q) is simply the acquired signal. Second, we assume that
the diffusion signal can be expressed as a linear combination of the
orthonormal basis derived in Eq. (A.7):

E q;u; tð Þ ¼
XN
n¼1

XL
l¼0

Xl
m¼−l

Cnlmgnlm tð Þjl
αnlq
τ

� �
Ym
l uð Þ ðA:9Þ

Substituting Eq. (A.9) back into Eq. (A.8), we obtain

XN
n¼1

XL
l¼0

Xl
m¼−l

Cnlmjl
αnlq
τ

� �
Ym
l uð Þ −α2

nl

τ2
gnlm tð Þ− d

dt
gnlm tð Þ

" #
¼ 0 ðA:10Þ

A unique solution exists if and only if gnl tð Þ ¼ bnle
−α2

nl
t

τ2 (Chung et al.,
2007), and so

E q;u; tð Þ ¼
XN
n¼1

XL
l¼0

Xl
m¼−l

Cnlme
−α2nl t

τ2 jl
αnlq
τ

� �
Ym
l uð Þ ðA:11Þ

Note that all constants are absorbed into Cnlm. In the following sec-
tions, we will use the SH basis Yj proposed in Descoteaux et al. (2011).

Appendix B. Diffusion signal at origin

In diffusion weighted imaging (DWI), E(0)=1. Thus, for our basis,
we obtain the following identity:

E 0; t ¼ 0ð Þ ¼ ∑
n
∑
j
Cnj jl jð Þ 0ð ÞYj uð Þ ¼ 1ffiffiffiffiffiffi

4π
p ∑

n
Cn1 ¼ 1; ðB:1Þ

which holds for any u within the unit sphere S2 (i.e. u∈S2). In deriv-
ing Eq. (B.1), we invoked a basic property of the spherical Bessel func-
tion that

jl 0ð Þ ¼ 1; if l ¼ 0
0; if l≠0




and the identity Y0
0 ¼ 1ffiffiffiffi

4π
p .

Appendix C. Derivation of analytical BFOR EAP solution

In the Theory section, we showed that

P p; r; tð Þ ¼ 4π
XN
n¼1

XR
j¼1

−1ð Þl jð Þ=2Cnje
−α2nl jð Þ t

τ2 Yj rð ÞInl jð Þ pð Þ; ðC:1Þ

where Inl jð Þ pð Þ ¼ ∫τ
0q

2jl jð Þ
αnl jð Þq

τ

� �
jl jð Þ 2πqpð Þdq. We rewrite In(l(j)(p) in

terms of the Bessel function of the first kind:

Inl jð Þ pð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πτ

2αnl jð Þp

s
∫τ
0qJl jð Þþ1=2

αnl jð Þq
τ

� �
Jl jð Þþ1=2 2πqpð Þdq ðC:2Þ
Recall the Bessel function of first kind Jk(ax), where k is some
real-valued constant, satisfies

x2
d2

dx2
þ x

d
dx

þ a2x2−k2
h i !

Jk axð Þ ¼ 0 ðC:3Þ

Thus, by definition of the Bessel function, Jl jð Þþ1=2
αnl jð Þq

τ

� �
and

Jl(j)+1/2(2πqp) satisfy

q
d2

dq2
þ d
dq

þ α2
nl jð Þq

τ2
− l jð Þ þ 1=2ð Þ2

q

" # !
Jl jð Þþ1=2

αnl jð Þq
τ

� �
¼ 0 ðC:4Þ

q
d2

dq2
þ d
dq

þ 4π2p2q− l jð Þ þ 1=2ð Þ2
q

" # !
Jl jð Þþ1=2 2πqpð Þ ¼ 0; ðC:5Þ

respectively. Multiplying Eq. (C.4) by Jl(j)+1/2(2πqp) and Eq. (C.5)

by Jl jð Þþ1=2
αnl jð Þq

τ

� �
and then subtracting, we obtain

Jl jð Þþ1=2 2πqpð Þddq qddq Jl jð Þþ1=2
αnl jð Þq

τ

� �h i
−Jl jð Þþ1=2

αnl jð Þq
τ

� �
d
dq qddq Jl jð Þþ1=2 2πqpð Þ
h i

¼ q 4π2p2−alpha2nl jð Þ
τ2

� �
Jl jð Þþ1=2

αnl jð Þq
τ

� �
Jnl jð Þþ1=2 2πqpð Þ

Integrating the above from q=0 to q=τ via integration by parts
and noting that Jl(j)+1/2(αnl(j))=0, we have
∫τ
0qJl jð Þþ1=2

αnl jð Þq
τ

� �
Jl jð Þþ1=2 2πqpð Þdq

¼
τJl jð Þþ1=2 2πτpð Þ d

dq Jl jð Þþ1=2
αnl jð Þq

τ

� �
jq¼τ

h i
4π2p2− α2

nl jð Þ
τ2

ðC:6Þ

The right side of Eq. (C.6) can be simplified via the Bessel recur-
rence relations d

dx Jk xð Þ ¼ 1
2 Jk−1 xð Þ−Jkþ1 xð Þ� �

:

∫τ
0 qJl jð Þþ1=2

αnl jð Þq
τ

� �
Jl jð Þþ1=2 2πqpð Þdq

¼ αnl jð ÞJl jð Þþ1=2 2πτpð Þ
2 4π2p2−α2

nl jð Þ
τ2

� � Jl jð Þ−1=2 αnl jð Þ
� �

−Jl jð Þþ3=2 αnl jð Þ
� �� �

ðC:7Þ

Using the Bessel recurrence relation Jkþ1 xð Þ ¼ 2k
x Jk xð Þ−Jk−1 xð Þ, we

obtain Jl(j)+3/2(αnl(j))=− Jl(j)−1/2(αnl(j)), and so we can rewrite
Eq. (C.7) as

∫τ
0qJl jð Þþ1=2

αnl jð Þq
τ

� �
Jl jð Þþ1=2 2πqpð Þdq

¼
αnl jð ÞJl jð Þ−1=2 αnl jð Þ

� �
Jl jð Þþ1=2 2πτpð Þ

4π2p2−α2
nl jð Þ
τ2

; ðC:8Þ

Thus, substituting Eq. (C.8) back into Eq. (C.2), we obtain

Inl jð Þ pð Þ ¼ 1
2

ffiffiffiffiffiffi
πτ
2p

r ffiffiffiffiffiffiffiffiffiffiffi
αnl jð Þ

p
Jl jð Þ−1=2 αnl jð Þ

� �
Jl jð Þþ1=2 2πτpð Þ

4π2p2−α2
nl jð Þ
τ2

� � ;

and so the diffusion propagator is then

P p; r; tð Þ ¼ 2τ
ffiffiffiffiffiffiffiffi
2π3

p XN
n¼1

XR
j¼1

−1ð Þl jð Þ=2Cnje
−α2

nl jð Þ t

τ2 Yj rð Þ
ffiffiffiffiffiffiffiffiffiffiffi
αnl jð Þ

p
Jl jð Þ−1=2 αnl jð Þ

� �
jl jð Þ 2πτpð Þ

4π2p2−α2
nl jð Þ
τ2

� �
ðC:9Þ
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Appendix D. Derivation of BFOR zero-displacement probability

We can derive Po by evaluating Eq. (C.9) at p=0:

Po ¼ P p ¼ 0; rð Þ ¼ 2τ
ffiffiffiffiffiffiffiffi
2π3

p XN
n¼1

Cn1Y1 rð Þ
ffiffiffiffiffiffiffiffi
αn0

p
J−1=2 αn0ð Þ
−α2

n0
τ2

¼ 2τ
ffiffiffiffiffiffiffiffi
2π3

p
ffiffiffiffiffiffi
4π

p
XN
n¼1

Cn1

ffiffiffiffiffiffiffiffi
αn0

p ffiffiffiffiffiffi
2

παn0

q
cos αn0ð Þ

−α2
n0

τ2

¼ 2
ffiffiffi
π

p
τ3
XN
n¼1

Cn1
−1ð Þnþ1

α2
n0

;

ðD:1Þ

where we used the relation J−1=2 xð Þ ¼
ffiffiffiffi
2
πx

q
cos xð Þ.

Appendix E. Relationship between MSD and diffusion signal
in q-space

We define the wave vector q as q ¼ qxî þ qyî þ qzk̂ and the radius

vector in propagator space p as p ¼ pxî þ pyĵ þ pzk̂. The norm of p is

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ p2y þ p2z

q
.

Since the diffusion signal and EAP are FT pairs, then the inversion
of Eq. (1) gives

E qð Þ ¼ ∫P pð Þe2πiq⋅pd3p ¼ ∫P pð Þe2πi qxpxþqypyþqzpzð Þd3p ðE:1Þ

Taking the second derivative of E(q) with respect to qx, qy, and qz
gives

∂2E qð Þ
∂q2x

¼ 2πið Þ2∫p2xP pð Þe2πiq⋅pd3p
∂2E qð Þ
∂q2y

¼ 2πið Þ2∫p2yP pð Þe2πiq⋅pd3p

∂2E qð Þ
∂q2z

¼ 2πið Þ2∫p2z P pð Þe2πiq⋅pd3p

The sum of the derivatives is simply the Laplacian operator acting
on E(q):

▽2E qð Þ ¼ ∂2E qð Þ
∂q2x

þ ∂2E qð Þ
∂q2y

þ ∂2E qð Þ
∂q2z

¼ 2πið Þ2∫p2P pð Þe2πiq⋅pd3p ðE:2Þ

Note that the Laplacian of E(q) evaluated at q=0 is related to the
second moment of the EAP. Thus, the MSD is

p2
D E

¼ −1
4π2 ▽

2E qð Þ q¼0

��� ðE:3Þ

For the case of DTI, where E q;uð Þ ¼ e−4π2q2 Δ−δ=3ð ÞuTDu, Eq. (E.3)
simplifies to the Einstein relation

p2
D E

¼ 6 Δ−δ=3ð ÞMD ðE:4Þ

E.1. Derivation of BFOR MSD

The BFOR signal basis is an eigenfunction of the Laplacian opera-
tor, with eigenvalues −α2

nl jð Þ
τ2 . Hence

▽2E qð Þ ¼ −
XN
n¼1

XR
j¼1

Cnj

αnl jð Þ
τ

� �2
e−α2

nl jð Þt=τ
2

jl jð Þ
αnl jð Þq

τ

� �
Yj uð Þ ðE:5Þ
Evaluating the Laplacian of E(q) at q=0 gives

▽2E qð Þ q¼0 ¼ −1
2
ffiffiffi
π

p
τ2
XN
n¼1

Cn1α
2
n0e

−α2
n0t=τ

2

����� ðE:6Þ

Substituting Eq. (E.6) into Eq. (E.3), we obtain

p2
D E

BFOR
¼ 1

8π5
2τ2
XN
n¼1

Cn1α
2
n0; ðE:7Þ

where we dropped the smoothing term.

Appendix F. Relationship between QIV and EAP in q-space

Using the definition of QIV, we have

QIV−1 ¼ ∫q2E qð Þd3q ¼ ∫q2 ∫P pð Þe2πiq⋅pd3p
h i

d3q

¼ ∫P pð Þt ∫q2e2πiq⋅pd3qd3p
h ðF:1Þ

The Dirac delta function is defined as

δ pð Þ ¼ ∫e2πiq⋅pd3q ðF:2Þ

Taking the second derivative of δ(p) with respect to px, py, and pz
gives

∂2δ pð Þ
∂p2x

¼ 2πið Þ2∫q2xe2πiq⋅pd3q
∂2δ pð Þ
∂p2y

¼ 2πið Þ2∫q2ye2πiq⋅pd3q

∂2δ pð Þ
∂p2z

¼ 2πið Þ2∫q2z e2πiq⋅pd3q

The sum of the derivatives is simply the Laplacian operator acting
on δ(p):

▽2δ pð Þ ¼ ∂2δ pð Þ
∂p2x

þ ∂2δ pð Þ
∂p2y

þ ∂2δ pð Þ
∂p2z

¼ 2πið Þ2∫q2e2πiq⋅pd3q ðF:3Þ

Thus, Eq. (F.1) becomes

QIV−1 ¼ −1
4π2 ∫P pð Þ ▽2δ pð Þ

h i
d3p ðF:4Þ

Since the Laplacian operator▽ 2 is Hermitian and the EAP and δ(p)
are real-valued, Eq. (F.4) can be equivalently stated as

QIV−1 ¼ −1
4π2 ∫P pð Þ ▽2δ pð Þ

h i
d3p ¼ −1

4π2 ∫δ pð Þ ▽2P pð Þ
h i

d3p

Exploiting the property of the Dirac delta function that ∫−∞
∞ f(x)δ(x)

dx= f(0), we have

QIV−1 ¼ −▽2P pð Þjp¼0

4π2 ; ðF:5Þ

which is very similar in form to Eq. (E.3). Thus,whereas theMSDdirectly
varies with the Laplacian of the diffusion signal evaluated at the origin,
the QIV inversely varies with the Laplacian of the EAP evaluated at the
origin.
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F.1. Derivation of BFOR QIV

QIV−1 ¼ ∫q2E qð Þd3q≈∑n∑jCnj∫Yj uð Þd2u∫τ
0q

4jl jð Þ
αnl jð Þq

τ

� �
dq

¼
ffiffiffiffiffiffi
4π

p
∑nCn1∫

τ
0q

4j0
αn0q
τ

� �
dq ¼

ffiffiffiffiffiffi
4π

p
τ∑n

Cn1

αn0
∫τ
0q

3sin
αn0q
τ

� �
dq

The last integral can easily be solved via integration by parts, and
so the QIV is

QIVBFOR ¼ 1

2
ffiffiffi
π

p
τ5∑N

n¼1 −1ð ÞnCn1
6−α2

n0ð Þ
α4
n0

ðF:6Þ
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