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Abstract. 3D q-space can be viewed as the surface of a 4D hypersphere.
In this paper, we seek to develop a 4D hyperspherical interpretation of
q-space by projecting it onto a hypersphere and subsequently modeling
the q-space signal via 4D hyperspherical harmonics (HSH). Using this or-
thonormal basis, we analytically derive several quantitative indices and
numerically estimate the diffusion ODF. Importantly, we derive the in-
tegral transform describing the relationship between the diffusion signal
and propagator on a hypersphere. We also show that the HSH basis
expends less fitting parameters than other well-established methods to
achieve comparable signal and better ODF reconstructions. All in all,
this work provides a new way of looking at q-space.

1 Introduction

One of the first physical applications of quantum mechanics was in solving the
Schrödinger equation for the hydrogen atom. It had been solved in position-
space by Schrödinger, himself, but not in momentum-space, which is related
to position-space via the Fourier transform. The momentum-space solution was
of interest to quantum chemists because it could potentially reveal additional
quantum mechanical insights about the hydrogen atom not found in the position
space solution. Nearly a decade after Schrödinger’s work, V. Fock solved the
Schrödinger equation for the hydrogen atom directly in momentum-space. In his
classic paper [4], Fock stereographically projected 3D momentum-space onto the
surface of a 4D unit hypersphere, and after this mapping was made, he was able
to show that the momentum-space hydrogen orbitals could be simply expressed
in terms of 4D hyperspherical harmonics (HSH), which are the multidimensional
analogues of the 3D spherical harmonics.

In diffusion MRI, analogous to momentum- and position-space in quantum
mechanics, the signal decay and ensemble average propagator (EAP) are Fourier
transform (FT) pairs within the q-space framework:

P (k) =

∫
E(q)e−2πiq·kd3q, (1)

where k is the displacement vector in EAP-space and q is the diffusion wave-
vector in signal-space. We denote q = qu and k = kr, where u and r are 3D
unit vectors. An interesting problem, similar to that of the hydrogen atom, is
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whether a new interpretation of q-space can be obtained by stereographically
projecting q-space and EAP-space onto a hypersphere.

In this paper, following the work of Fock, we seek to develop a 4D hyper-
spherical interpretation of q-space by focusing on four things: 1) Modeling the
3D q-space signal in terms of the 4D HSH, which is achieved by stereographi-
cally projecting 3D q-space onto the surface of a 4D hypersphere; 2) Using this
single, orthonormal basis to reconstruct the diffusion orientation distribution
function (ODF); 3) Computing the familiar q-space metric zero-displacement
probability (Po) and introducing a novel hyperspherical diffusivity index; and
4) Deriving the integral transform that maps from the signal-hypersphere to the
EAP-hypersphere. The last point is especially significant because the integral
transform describing the relationship between any two functions individually
existing on some n-dimensional sphere Sn, given that the two functions are FT
pairs on the (n− 1)-plane, has never been derived. Lastly, we compare the HSH
basis to Bessel Fourier Orientation Reconstruction (BFOR) [5], and show that
HSH expansion requires less fitting parameters than BFOR to achieve compa-
rable signal and better ODF reconstructions.

2 Methods

2.1 4D Hyperspherical Harmonics

Consider the 4D unit hypersphere S3 existing in R
4. The Laplace-Beltrami op-

erator on S3 is defined as ΔS3 = 1
sin2 β

∂
∂β sin2 β ∂

∂β + 1
sin2 β

ΔS2 , where ΔS2 is the

Laplace-Beltrami operator on the unit sphere S2. The eigenfuctions of ΔS3 are
the 4D HSH Zm

nl(β, θ, φ): ΔS3Zm
nl = −l(l+2)Zm

nl. The 4D HSH are defined as [3]

Zm
nl(β, θ, φ) = 2l+1/2

√
(n+ 1)Γ (n− l + 1)

πΓ (n+ l + 2)
Γ (l+ 1) sinl βCl+1

n−l(cos β) Y
m
l (θ, φ),

(2)
where (β, θ, φ) obey (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), Cl+1

n−1 are the Gegenbauer
(i.e. ultraspherical) polynomials, and Y m

l are the 3D spherical harmonics. The l
denotes the degree of the HSH, m is the order, and n = 0, 1, 2, ..., and these three
integers obey the conditions 0 ≤ l ≤ n and −l ≤ m ≤ l. The number of HSH
corresponding to a given value of n is (n + 1)2. The HSH form an orthonormal
basis on the hypersphere.

2.2 4D Stereographic Projection of q-space onto Hypersphere

In order to model the q-space signal with the HSH, we need to map 3D q-space
onto a 4D hypersphere of radius po, which is achieved via stereographic projec-
tion. The q-space coordinates are defined as qx = q sin θ cosφ, qy = q sin θ sinφ,
and qz = q cos θ. The coordinates of the signal-hypersphere are defined by the 4D



A 4D Hyperspherical Interpretation of q-space 503

vector s, whose components are s1 = po sinβ sin θ cosφ, s2 = po sinβ sin θ sinφ,
s3 = po sinβ cos θ, and s4 = po cosβ. The relationship between q and s is then

s1 =
2p2oqx
q2 + p2o

, s2 =
2p2oqy
q2 + p2o

, s3 =
2p2oqz
q2 + p2o

, s4 =
po(q

2 − p2o)

q2 + p2o
(3)

According to Eq. (3), the center of q-space (0, 0, 0) projects onto the south pole
(0, 0, 0,−po) of the hypersphere. As q → ∞, the projection (s1, s2, s3, s4) moves
closer to the north pole (0, 0, 0, po). Eq. (3) establishes a one-to-one correspon-
dence between q-space and the 4D hypersphere.

Stereographic projection exhibits two important properties. First, it is confor-
mal, which means it preserves angles - the angles (θ, φ) in q-space are preserved
in 4D hyperspherical space. However, stereographic projection does not preserve
volume; in general, the volume of a region in the 3D plane doesn’t equal the
volume of its projection onto the hypersphere. In fact, the degree of volume dis-
tortion in going from a differential volume element in q-space d3q to that of the
hypersphere dV = p3odΩ can be shown to be

d3q =

(
q2 + p2o
2po

)3
1

p3o
dV =

(
q2 + p2o
2po

)3

dΩ =

(
po

1− cosβ

)3

dΩ, (4)

where dΩ = sin2 β sin θdβdθdφ.

2.3 Diffusion Signal Modeling via HSH Basis

Stereographically projecting q-space onto the hypersphere results in the q-space
signal existing along the surface of the hypersphere. According to Fourier analy-
sis, any square-integrable function defined on a sphere can be expanded in terms
of the spherical harmonics. Thus, stereographic projection allows the 3D q-space
signal to be expanded in terms of the HSH:

Epo(β, θ, φ) ≈
N∑

n=0

n∑
l=0

l∑
m=−l

CnlmZm
nl(β, θ, φ), (5)

where Epo denotes the q-space signal existing on hypersphere of radius po. The
realness of the diffusion signal requires use of the real HSH, and so we employ a
modified real basis proposed in [6] for Y m

l .
An important axiom to state is that the q-space signal, itself, remains in-

variant after the mapping - that is, for a given q-space point (qx, qy, qz) and
its corresponding projection on the hypersphere (s1, s2, s3, s4), E(qx, qy, qz) =
Epo(s1, s2, s3, s4). In q-space, the diffusion signal is even i.e. E(qx, qy, qz) =
E(−qx,−qy,−qz). Evenness in q-space doesn’t necessarily translate into even-
ness on the hypersphere. According to Eq. (3), (−qx,−qy,−qz) projects to
(−s1,−s2,−s3, s4), and so evenness in q-space is tantamount to Epo(s1, s2, s3, s4)
= Epo(−s1,−s2,−s3, s4) on the hypersphere, indicating that the signal is not
even on the hypersphere. In other words, stereographic projection destroys
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evenness. For this reason, we are free to use both the even and odd HSH. Thus,
for a given truncation order N , the total number of expansion coefficients is
W = (N + 1)(N + 2)(2N + 3)/6.

2.4 Relationship between EAP and q-space Signal on Hypersphere

Lets project 3D EAP-space onto a 4D hypersphere of radius po, whose coordi-
nates are defined by the 4D vector v = v(po, β

′, θ′, φ′). The Fourier relationship
given in Eq. (1) between the signal and EAP does not hold true on the hyper-
sphere. The question, then, is what integral transform maps from the signal-
hypersphere to the EAP-hypersphere. We show1, for the first time, that this
integral transform is

Ppo(v) = p3o

∫
Epo(s)

e−2πi[s·v−s4v4]/(1−cosβ)(1−cosβ′)

(1 − cosβ)3
dΩ, (6)

where Ppo denotes the EAP existing on hyphersphere of radius po. Eq. (6) is
not one of the more familiar integral transforms encountered in mathematics
literature.

2.5 HSH Metrics

A well-known q-space metric is Po ≡ P (k = 0) [1, 9], which is a measure of dif-
fusion restrictivity. k = 0 corresponds to the south pole of the EAP-hypersphere
i.e. β′ = π. Hence using Eq. (6) and the HSH basis, we can derive a hyperspher-
ical Po:

Po = Ppo(β
′ = π) =

∫
Ω∈S3

Epo(s)

(1− cosβ)3
dΩ =

∫
Ω∈S3

(
q2 + p2o
2po

)3

Epo(s)dΩ (7)

The integral in (7) is difficult to evaluate analytically, which is due to the non-
volume-preserving nature of stereographic projection. To overcome this, we com-
pute an uncorrected Po by assuming q-space is uniformly projected onto the
hypersphere:

Pounc =

∫
Ω∈S3

Epo(Ω)dV = p3o
∑
n,l,m

Cnlm

∫
Ω∈S3

Zm
nl(Ω)dΩ = π

√
2p3oC000,

(8)

where we use the fact that Z0
00 = 1

π
√
2
. Pounc will, naturally, suffer from volume

distortion, which is corrected for by a signal weighting operation discussed in
the next section.

1 For derivation, see http://brainimaging.waisman.wisc.edu/∼ameer/HSH Suppl.pdf
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Examples of q-space distance metrics include the q-space inverse variance
(QIV) [5] and the mean squared displacement (MSD) [1], which are measures
of diffusivity and only pertinent to planes. A useful distance metric defined on
the hypersphere is the chordal distance [7], denoted χ. Consider the two q-space

points Q = (qx, qy, qz) and Q̂ = (q̂x, q̂y, q̂z) and their corresponding projections

on the hypersphere S = (s1, s2, s3, s4) and Ŝ = (ŝ1, ŝ2, ŝ3, ŝ4), respectively. Then

the Euclidean (4D) distance between the projections S and Ŝ on the hypersphere
is given by the chordal distance, and it can be shown that

χ = χ(Q, Q̂) =
2p2o

√
(qx − q̂x)2 + (qy − q̂y)2 + (qz − q̂z)2√

q2 + p2o
√
q̂2 + p2o

, (9)

where q̂ =
√
q̂2x + q̂2y + q̂2z . If Q̂ = 0, then the distance between the projection

S and the south pole is χsp ≡ χ(Q, 0) = 2poq√
q2+p2

o

. Likewise, if q̂ → ∞, then

the distance between the projection S and the north pole is χnp ≡ χ(Q,∞) =
2p2

o√
q2+p2

o

. Geometrically, χnp and χsp are the chords on the hypersphere that

form the legs of a right triangle (by Thales’ theorem), with the diameter of the
hypersphere the hypotenuse. The ratio of these 2 chordal lengths illuminates the

relationship between the hypersphere radius po and q-space: po = q
χnp(q)
χsp(q)

(=

constant). It can be shown that cosβ =
χ2
sp−χ2

np

4p2
o

, which we define as the chordal

squared difference (CSD). We then define the mean chordal squared difference
(MCSD) as the CSD averaged over the surface of the signal-hypersphere i.e.
〈cosβ〉:

MCSD ≡ 〈cosβ〉 = p3o

∫
Ω∈S3

cosβ Epo(Ω)dΩ =
π√
2
p3oC100, (10)

where we use the fact that Z0
10 =

√
2 cosβ/π. MCSD is an inherently hyper-

spherical metric, whereas Po is a native q-space metric.

2.6 Numerical Implementation and Estimation of ODF

Consider M diffusion signal measurements (including b = 0) spread across k
shells in q-space. Denote G as the M x 1 vector representing the M measure-
ments, C the W x 1 vector of unknown expansion coefficients Cnlm, and A the
M x W matrix constructed with the HSH basis. Thus, we have a simple linear
model of the form G = AC. This system of over-determined equations is solved
via linear least squares (LLS) with Laplace-Beltrami regularization (LBR), yield-

ing Ĉ = (ATA+ λlLreg)
−1ATG, where Lreg is the LBR diagonal matrix with

entries l2(l + 2)2 along the diagonal. The regularization serves to reinforce the
positivity constraint of the signal.

Using Eq. (4), we correct for the volume distortion induced in Pounc by weigh-

ing each signal shell in q-space by
(

q2i+p2
o

2po

)3

, where qi is the radius of the ith
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shell, before signal fitting. The resulting “weighted” coefficients are then solely
used for computing Po via Eq. (8). The q-shell radii are listed in the next section.
The volume weighting of each q-shell, in this case, can be viewed as a sampling
density correction of the projected q-space points on the hypersphere.

Given the intricacy of Eq. (6), it is difficult to estimate the EAP analytically
using the HSH framework. However, the zeroth-order diffusion ODF [8] can be
numerically estimated. Lets construct a 11 x 11 x 11 (−qmax : Δq : qmax) Carte-
sian lattice, which we map onto the 4D hypersphere via Eq. (3). Once we have
computed the HSH expansion coefficients via LLS from the acquired data, Eq.
(5) can then be used the estimate the signal at any location on the hypersphere,
including the projected lattice points. Taking the fast Fourier transform (FFT)
of the HSH-estimated signal for the lattice gives the EAP. The radial projection
of the EAP then yields the ODF. Since the zeroth-order ODF is not inherently
normalized, we min-max normalize it [8].

3 Experiments

The synthetic and in vivo datasets use a hybrid, non-Cartesian q-space sampling
scheme (HYDI) [9], consisting of 7 baseline images acquired at b = 0 and 125
diffusion measurements spread across 5 shells in q-space. The number of encoding
directions and b-value (in s/mm2) for each shell are (6,300), (21,1200), (24,2700),
(24,4800), and (50,7500); and qmin = 15.79 mm−1, qmax = 78.95 mm−1, and
Δq = 15.79 mm−1.

Synthetic Data. Synthetic experiments were done the same way as in [5], with
data generated via the bi-exponential mixture model. We look at two equally
weighed fibers crossing at 45◦, and set eigenvalues of each diffusion tensor to
be [1.6,0.4,0.4]e-3, which gives FA=0.7071. Monte Carlo noise simulations were
performed to investigate the effect of SNR on the signal reconstruction. Five
SNR levels ([10 20 30 40 80]) for the b = 0 image were simulated, 1000 times
each, in a similar manner as in [5], and the quality of the HSH signal fit is
assessed by computing the normalized mean squared error (NMSE), given by
||S−̂S||2
||S||2 . The HSH parameters are N = 4, po = 42, and λl = 10−6 and those of

BFOR are taken from [5]. In the signal fitting, HSH expends W = 55 parameters
while BFOR uses 90.

Fig. 1 displays the HSH signal fit for each shell and the corresponding ground
truth in absence of noise, and shows that the HSH basis fits the diffusion signal
nearly perfectly across all b-values. Fig. 2 displays the results of the noise simu-
lations, with the NMSE plotted against SNR for each shell, and shows that the
HSH and BFOR bases have a nearly identical robustness to noise. Fig. 3 shows
the ground truth, HSH-estimated, and BFOR ODF profiles in absence of noise,
indicating that the HSH basis succesfully captures the geometry and orientation
of the ODF profile. However, as with the Laplacian modeling framework in dif-
fusion propagator imaging (DPI) [2], the HSH basis smoothens the ODF peaks.
The BFOR-estimated ODF is not as accurate as that of HSH.
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(a) b=300 (b) b=1200 (c) b=2700 (d) b=4800 (e) b=7500

Fig. 1. The ground truth diffusion signal (green) and reconstructed signal (red) using
HSH basis in absence of noise. Two equally weighted WM fibers were simulated crossing
at 45◦. Measurements from all 5 shells were used.

0 10 20 30 40 50 60 70 80

0.05

0.1

0.15

0.2

0.25

0.3

0.35
NMSE vs SNR for HSH Basis

SNR

N
M

S
E

 

 
b=7500
b=4800
b=2700
b=1200
b=300

(a) NMSE for HSH basis
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(b) NMSE for BFOR

Fig. 2. The normalized mean squared error (NMSE) of the HSH signal fit, left, and
BFOR signal fit, right, for each b-value plotted against SNR. 1000 noise trials were
simulated for each SNR level for two equally weighted fibers crossing at 45◦.

(a) HSH ODF (b) Ground Truth ODF (c) BFOR ODF

Fig. 3. The HSH-estimated ODF, ground truth ODF, and BFOR ODF in absence of
noise for two equally weighted fibers crossing at 45◦. The ODF is normalized to [0 1].
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(a) HSH Po (b) BFOR Po (c) MCSD

Fig. 4. Axial slices of Po, computed via HSH and BFOR bases, and MCSD maps for
a healthy, adult human

Real Data. HYDI was performed on a healthy, adult human using a 3 T GE-
SIGNA whole body scanner. MR parameters were TE=102ms, TR=6500ms,
FOV=24cm, matrix=96x96, voxel size=2.5x2.5mm2, 43 slices with slice thick-
ness=3mm, and scan time=15min. Diffusion parameters were δ = 37.86ms and
Δ = 43.1ms.

Axial slices of Po, computed via HSH and BFOR bases, and MCSD are shown
in Fig. 4. The Po map closely resembles BFOR’s, exhibiting both tissue/CSF
and WM/GM constrasts. The HSH Po map, however, has sharper WM/GM
contrast than BFOR’s (compare the left and right putamen in both maps),
which probably arises from the signal weighting operation. The MCSD map has
tissue/CSF contrast but very little WM/GM contrast, and interestingly, closely
resembles a mean squared displacement map. The MCSD can be viewed as a
hyperspherical diffusivity measure, and specifically, an index of isotropic diffusion
in neural tissue.

4 Discussion

We have introduced a new orthonormal basis to model the 3D q-space signal, and
from which various metrics can be analytically derived. 4D HSH signal modeling
allows for the capture of the radial and angular contents of the diffusion profile by
a single basis function, and the basis’ orthonormality provides robust numerical
stability. The HSH basis’ ability to give as good a signal reconstruction as BFOR
and better ODF reconstruction, but with less fitting parameters, implies that it
may be better suited to sparser sampling schemes than BFOR. Major drawbacks
of the hyperspherical interpretation of q-space, however, are the destruction of
the q-space signal’s symmetry by stereographic projection and the difficulty in
estimating the EAP via Eq. 6. Future work for HSH signal expansion includes
implementing it on sparser q-space sampling schemes, estimating the EAP, and
imposing a symmetry constraint.
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