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3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D
hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling
the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive sev-
eral well-established q-space indices and numerically estimate the diffusion orientation distribution
function (dODF). We also derive the integral transform describing the relationship between the diffusion
signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion
imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize dif-
fusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions
than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using
fewer fitting parameters. All in all, this work provides a new way of looking at q-space.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The aim of diffusion magnetic resonance imaging (dMRI) is to
non-invasively recover information about the diffusion of water
molecules in biological tissues. An important mathematical
descriptor of the water diffusion profile is the ensemble average
propagator (EAP), which is a probability density function that
describes the (canonically averaged) likelihood of a water molecule
undergoing a net displacement during the diffusion time. The EAP
can characterize complex neural architecture, such as crossing
fibers, and many quantitative features of the water diffusion profile
can be derived from the EAP.

Under the narrow pulse assumption (Stejskal and Tanner,
1965), the measured MR signal attenuation, EðqÞ, in q-space and
the EAP, PðkÞ, are Fourier Transform pairs (Callaghan, 1991):

PðkÞ ¼
Z

EðqÞe�2piq�kd3q ð1Þ

where k is the displacement vector in EAP-space and q is the diffu-
sion wave-vector in signal-space. We denote q ¼ quðh;/Þ and
k ¼ krðh0;/0Þ, where u and r are 3D unit vectors. The wave vector
q is q ¼ cdG=2p, where c is the nuclear gyromagnetic ratio and
G ¼ gu is the applied diffusion gradient direction. The norm of the
wave vector, q, is related to the diffusion weighting level (b-value)
via b ¼ 4p2q2ðD� d=3Þ (Basser, 2002), where d is the duration of
the applied diffusion gradients and D the time between the two
pulses. Eq. (1) is valid only if the narrow pulse condition is met,
which is rarely the case for q-space dMRI performed under experi-
mental conditions. Several studies (Mair et al., 2002; Weeden et al.,
2005; Bar-Shir et al., 2008) however, have shown that even when
these assumptions do not hold, the Fourier relationship in Eq. (1)
is still a reasonable approximation of the microstructural features.
The diffusion displacements, however, will be consistently underes-
timated (Weeden et al., 2005).

Another mathematical descriptor of the water diffusion profile
is the diffusion orientation distribution function (dODF), which is
simply an angular feature of the EAP. The dODF, denoted as w, is
defined as the radial projection of the EAP on the unit sphere
(Canales-Rodriguez et al., 2010):

wjðrÞ ¼
1

Oj

Z 1

0
Pðk; rÞkjdk ð2Þ

where j is the order of the radial projection and Oj is the normal-
ization constant. The dODF is thus the (angular) marginal density
function of the EAP that describes the likelihood of a water
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molecule diffusing into any given solid angle r during the diffusion
time. The classical dODF was introduced by (Tuch, 2004) as the zer-
oth-order radial projection, i.e. w0ðrÞ.

Many dMRI methods already exist that seek to estimate the EAP
and dODF. The most widely used dMRI technique, diffusion tensor
imaging (DTI) (Basser et al., 1994), assumes the EAP is described by
a multivariate Gaussian function. However, DTI’s inherent assump-
tion of Gaussianity is an over-simplification of water diffusion in
the brain, and so voxels containing complex neural architecture
(e.g. crossing fibers) cannot be properly described by DTI. In order
to recover complex white matter (WM) geometry, high angular
resolution diffusion imaging (HARDI) (Tuch et al., 2002) was pro-
posed, and many HARDI techniques can be used to measure the
dODF (Tuch, 2004; Hess et al., 2006; Descoteaux et al., 2007;
Canales-Rodriguez et al., 2009; Tristan-Vega et al., 2009; Aganj
et al., 2010; Michailovich et al., 2011). HARDI, in general, does
not sample all of q-space but rather confines the signal measure-
ments to a single spherical shell in q-space (i.e. single b-value).
Since the dODF is defined as the radial projection of the EAP, whose
estimation requires measurements across all of q-space, HARDI
gives an incomplete picture of the dODF. Diffusion spectrum imag-
ing (DSI) (Weeden et al., 2005) and hybrid diffusion imaging
(HYDI) (Wu and Alexander, 2007) are multiple b-value techniques
that estimate the EAP directly from the raw q-space data by eval-
uating Eq. (1) using the Fast Fourier Transform (FFT). The difference
between the two methods lies in their sampling schemes: DSI
directly samples the q-space signal on a Cartesian lattice whereas
HYDI samples it along concentric spherical shells. DSI requires
dense sampling of the lattice (�500 diffusion measurements),
which means long acquisition times and very strong diffusion gra-
dients. HYDI uses much fewer samples than DSI (�125), but it
requires the spherical measurements to be interpolated and regrid-
ded onto a Cartesian lattice to perform the FFT, and such ad hoc
processing may have adverse effects on HYDI’s EAP estimation.

In recent years, non-parametric modeling of the q-space signal
EðqÞ, in terms of either an orthonormal or non-orthonormal basis,
has become popular among multiple b-value methods because it
can facilltate the obtainment of closed-form solutions of the EAP
and dODF and/or sparse representation of the diffusion process.
Each of these non-parametric EAP methods offers its own unique
interpretation of q-space, which revolves around the basis chosen
to describe EðqÞ. Prominent non-parametric EAP methods include
diffusion propagator imaging (DPI) (Descoteaux et al., 2011), sim-
ple harmonic oscillator based reconstruction and estimation
(SHORE) (Ozarslan et al., 2008, 2009), spherical polar Fourier imag-
ing (SPFI) (Assemlal et al., 2009a; Cheng et al., 2010a,b), Bessel Fou-
rier orientation reconstruction (Hosseinbor et al., 2013a), sparse
multi-shell diffusion imaging (SMDI) (Rathi et al., 2011), and mean
apparent propagator (MAP) MRI (Ozarslan et al., 2013). These
methods are summarized in Table 1.
Table 1
Summary of non-parametric EAP methods.

Method Interpretation of q-space

DPI Q-space signal satisfies Laplace’s equation
SHORE Q-space signal behaves like an isotropic (quantum mechanical)

simple harmonic oscillator
SPFI Q-space signal basis is a modified version of SHORE
MAP MRI Q-space signal behaves like an anisotropic (quantum mechanical)

simple harmonic oscillator
BFOR Q-space signal satisfies the heat equation
SMDI Q-space signal behaves like spherical ridgelets
Each of the methods described in Table 1, naturally, confines
their analysis to 3D. But just as a circle may be viewed as a
cross-section of a sphere, 3D q-space may be viewed as a
cross-section of a 4D hypervolume. Specifically, 3D q-space may
be embedded onto the surface of a 4D hypersphere via
stereographic projection, and so 3D q-space can be regarded as
constituting a single hypersphere in 4D space. An interesting
question is then what insights will be revealed by a higher-
dimensional analysis of 3D q-space.

Although it may seem counterintuitive, higher-dimensional
analysis of a 3D problem can prove to be surprisingly useful, as
is illustrated by the case of the hydrogen atom. One of the first
physical applications of quantum mechanics was in solving the
Schrödinger equation for the hydrogen atom. It had been solved
in position-space by Schrödinger, himself (Schrödinger, 1926),
but not in momentum-space, which is related to position-space
via the Fourier transform. The momentum-space solution was of
interest to quantum chemists because it could potentially reveal
additional quantum mechanical insights about the hydrogen atom
not found in the position space solution. Nearly a decade after
Schrödinger’s landmark publication, V. Fock solved the Schrödinger
equation for the hydrogen atom directly in momentum-space. In
his classic paper (Fock, 1935), Fock stereographically projected
3D momentum-space onto the surface of a 4D unit hypersphere,
and after this mapping was made, he was able to show that the
momentum-space hydrogen orbitals could be simply expressed
in terms of 4D hyperspherical harmonics (HSH), which are the
multidimensional analogs of the 3D spherical harmonics.

In this paper, we seek to develop a 4D hyperspherical interpre-
tation of q-space (Hosseinbor et al., 2013b). Following the work of
Fock, we model the 3D q-space signal in terms of the 4D HSH,
which is achieved by stereographically projecting 3D q-space onto
the surface of a 4D hypersphere. Employing a hybrid, non-Carte-
sian encoding scheme, we estimate the dODF using the HSH frame-
work and BFOR and assess their performances. We also compute
familiar q-space metrics such as zero-displacement probability
(Po) (Assaf et al., 2000; Wu and Alexander, 2007) and q-space
inverse variance (QIV) (Wu et al., 2008; Hosseinbor et al., 2013a).
Most importantly, we will show that such high-dimensional anal-
ysis of q-space allows for sparser representation of the diffusion
process than BFOR.

The paper is organized as follows: in Section 2, we review the
4D HSH and stereographic projection, derive the relationship
between the q-space signal and EAP on the hypersphere, and dis-
cuss how to estimate the dODF and several q-space indices using
the HSH basis. In Section 3, we describe the numerical implemen-
tation details of the HSH-framework and present the synthetic and
in vivo human brain datasets that will be used to validate it and
compare it BFOR in Section 4. A discussion then ensues in
Section 5.

2. Theory

2.1. 4D hyperspherical harmonics

Consider the 4D unit hypersphere S3 existing in R4. The
Laplace–Beltrami operator on S3 is defined as,

DS3 ¼ 1

sin2 b

@

@b
sin2 b

@

@b
þ 1

sin2 b
DS2

where DS2 is the Laplace–Beltrami operator on the unit sphere S2.
The eigenfuctions of DS3 are the 4D HSH Zm

nlðb; h;/Þ:

DS3 Zm
nl ¼ �lðlþ 2ÞZm

nl
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The 4D HSH are defined as (Domokos, 1967)

Zm
nlðb; h;/Þ ¼ 2lþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞCðn� lþ 1Þ

pCðnþ lþ 2Þ

s
Cðlþ 1Þ

� sinl b Glþ1
n�lðcos bÞ Ym

l ðh;/Þ ð3Þ

where ðb; h;/Þ obey ðb 2 ½0;p�; h 2 ½0;p�;/ 2 ½0;2p�Þ;Glþ1
n�1 are the

Gegenbauer (ultraspherical) polynomials, and Ym
l are the 3D spher-

ical harmonics. The Gegenbauer polynomials can be expressed in
terms of the Gaussian (ordinary) hypergeometric function:

Gk
aðxÞ ¼

Cðaþ 2kÞ
a!Cð2kÞ 2F1ð�a;aþ 2k; kþ 1

2
;
1
2
ð1� xÞÞ

The integers l and m denote the degree and order of the HSH,
respectively, and n ¼ 0;1;2; . . .. These three integers obey the con-
ditions 0 6 l 6 n and �l 6 m 6 l. The number of HSH corresponding
to a given value of n is ðnþ 1Þ2. The first few 4D HSH are shown in
Table 2. The HSH form an orthonormal basis on the hypersphere,
and the normalization condition readsZ 2p

0

Z p

0

Z p

0
Zm

nlðb; h;/ÞZ
m0�
n0 l0 ðb; h;/Þ sin2 b sin hdbdhd/ ¼ dnn0dll0dmm0

ð4Þ
2.2. 4D stereographic projection of q-space onto hypersphere

For centuries, cartographers have struggled with the problem of
how to represent the spherical-like surface of the Earth on a flat
sheet of paper. One way to achieve this is via stereographic projec-
tion. To illustrate it, consider the simpler 3D case. The goal of ste-
reographic projection is to associate each 2D point ðu;vÞ in the
equatorial plane with a unique point P ¼ ðx; y; zÞ on the unit sphere.
To achieve this, we construct the 3D line that passes through the
north pole N ¼ ð0;0;1Þ of the sphere and the given point ðu;v ;0Þ.
This line touches the surface of the sphere at exactly one point,
P, and so the point P ¼ ðx; y; zÞ is the stereographic projection of
the point ðu;vÞ.

In order to model the q-space signal with the HSH, we need to
map 3D q-space onto a 4D hypersphere of radius ro, which can be
achieved via stereographic projection. The q-space coordinates are
defined as

qx ¼ q sin h cos / qy ¼ q sin h sin / qz ¼ q cos h

The coordinates of the signal-hypersphere are defined by the 4D
vector s, whose components are

s1 ¼ ro sin b sin h cos /

s2 ¼ ro sin b sin h sin /

s3 ¼ ro sin b cos h

s4 ¼ ro cos b

Please note that the hypersphere radius ro has the same dimension
as q. We will now derive the relationship between q and s as given
by stereographic projection.
Table 2
List of a few HSH.

Z0
00ðb; h;/Þ ¼ 1

p
ffiffi
2
p Z0

10ðb; h;/Þ ¼
ffiffi
2
p

p cos b

Z�1
11 ðb; h;/Þ ¼ �

ffiffi
2
p

p sin b sin h sin / Z0
11ðb; h;/Þ ¼

ffiffi
2
p

p sin b cos h

Z1
11ðb; h;/Þ ¼ �

ffiffi
2
p

p sin b sin h cos / Z0
20ðb; h;/Þ ¼ 1

p
ffiffi
2
p ð3� 4 sin2 bÞ

Z�1
21 ðb; h;/Þ ¼ �

ffiffi
3
p

p sin 2b sin h sin / Z0
21ðb; h;/Þ ¼

ffiffi
3
p

p sin 2b cos h
The 4D line that passes through the north pole of the hyper-
sphere, ð0;0;0; roÞ, and some point in q-space ðqx; qy; qzÞ is parame-
terized as

s1 ¼ tqx; s2 ¼ tqy; s3 ¼ tqz; s4 ¼ roð1� tÞ; �1 < t <1
ð5Þ

The line touches the hypersphere when t satisfies

r2
o ¼ s2

1 þ s2
2 þ s2

3 þ s2
4 ¼ t2ðq2

x þ q2
y þ q2

z Þ þ r2
oð1� 2t þ t2Þ ð6Þ

whose solution is t ¼ 2r2
o=ðq2 þ r2

oÞ. Substituting our solution back
into Eq. (5) gives the relationship between the two coordinate
spaces:

s1 ¼
2r2

oqx

q2 þ r2
o
¼ ro sin b sin h cos /

s2 ¼
2r2

oqy

q2 þ r2
o
¼ ro sin b sin h sin /

s3 ¼
2r2

oqz

q2 þ r2
o
¼ ro sin b cos h

s4 ¼
roðq2 � r2

oÞ
q2 þ r2

o
¼ ro cos b

ð7Þ

According to Eq. (7), the center of q-space ð0;0;0Þ projects onto
the south pole ð0;0;0;�roÞ of the hypersphere. As q!1, the pro-
jection ðs1; s2; s3; s4Þ moves closer to the north pole ð0;0;0; roÞ. Eq.
(7) establishes a one-to-one correspondence between q-space
and the 4D hypersphere. The radius of the hypersphere ro controls
the density of the projected q-space points onto the surface of the
hypersphere.

Stereographic projection exhibits two important properties.
First, it is conformal, which means it preserves angles – the angles
ðh;/Þ in q-space are preserved in 4D hyperspherical space. How-
ever, stereographic projection does not preserve volume; in gen-
eral, the volume of a region in the 3D plane does not equal the
volume of its projection onto the hypersphere. In fact, the degree
of volume distortion in going from a differential volume element
in q-space d3q to that of the hypersphere dV ¼ r3

odX can be shown
to be

d3q ¼ q2 þ r2
o

2ro

� �3 1
r3

o
dV ¼ q2 þ r2

o

2ro

� �3

dX ¼ ro

1� cos b

� �3

dX ð8Þ

where dX ¼ sin2 b sin hdbdhd/ is the differential area of the hyper-
sphere. We will derive Eq. (8) in Section 2.4.

2.3. Diffusion signal modeling via HSH basis

Stereographically projecting q-space onto the hypersphere
results in the q-space signal existing along the surface of the hyper-
sphere. According to Fourier analysis, any square-integrable func-
tion defined on a sphere can be expanded in terms of the
spherical harmonics. Thus, stereographic projection allows the
3D q-space signal to be expanded in terms of the HSH:

Ero ðb; h;/Þ �
XN

n¼0

Xn

l¼0

Xl

m¼�l

CnlmZm
nlðb; h;/Þ ð9Þ

where Ero denotes the q-space signal existing on hypersphere of
radius ro and Cnlm are the HSH expansion coefficients. The realness
of the diffusion signal requires use of the real HSH, and so we
employ a modified real basis proposed in (Koay et al., 2009) for Ym

l .
An important axiom to state is that the q-space signal, itself,

remains invariant after the mapping - that is, for a given q-space
point ðqx; qy; qzÞ and its corresponding projection on the hyper-
sphere ðs1; s2; s3; s4Þ; Eðqx; qy; qzÞ ¼ Ero ðs1; s2; s3; s4Þ. In q-space, the
diffusion signal is even i.e. Eðqx; qy; qzÞ ¼ Eð�qx;�qy;�qzÞ. Evenness
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in q-space does not necessarily translate into evenness on the
hypersphere. According to Eq. (7), ð�qx;�qy;�qzÞ projects to
ð�s1;�s2;�s3; s4Þ, and so evenness in q-space is tantamount to

Ero ðs1; s2; s3; s4Þ ¼ Ero ð�s1;�s2;�s3; s4Þ

on the hypersphere, indicating that the signal is not even on the
hypersphere. In other words, stereographic projection destroys
evenness, i.e. a function even in the plane is no longer even on
the sphere upon projection. For this reason, we are free to use both
the even and odd HSH. Thus, for a given truncation order N, the total
number of expansion coefficients is

W ¼ ðN þ 1ÞðN þ 2Þð2N þ 3Þ=6

2D q-space 2D EAP-spaceFT

Fig. 1. Q-space and EAP-space, which are FT pairs, are each stereographically
projected onto a sphere. As a result, the diffusion signal and EAP each exist on a
sphere, and the question then is finding the integral transform that maps from the
signal-sphere to the EAP-sphere.
2.4. Relationship between EAP and q-space signal on hypersphere

Since our analysis of 3D q-space is confined to the hypersphere,
a natural course of action would be to stereographically project 3D
EAP-space onto its own hypersphere. But the Fourier relationship
given in Eq. (1) between the signal attenuation and EAP does not
hold true on the hypersphere. The question, then, is what integral
transform maps from the signal-hypersphere to the EAP-hyper-
sphere, and this problem is illustrated in Fig. 1. Phrasing the prob-
lem more generally, we seek the integral transform that describes
the relationship between any two functions individually existing
on some n-dimensional sphere Sn, given that the two functions
are Fourier Transform pairs on the ðn� 1Þ-plane. We will now pro-
ceed to derive this hyperspherical integral transform, which has
never been derived before.

Any point in 3D EAP space, the Fourier pair of q-space, is given
by

kx ¼ k sin h0 cos /0 ky ¼ k sin h0 sin /0 kz ¼ k cos h0

Now lets stereographically project 3D EAP-space onto a 4D hyper-
sphere of radius ro, whose coordinates are defined by the 4D vector
v ¼ ðv1;v2;v3;v4Þ. The relationship between k and v is then

v1 ¼
2r2

okx

k2 þ r2
o

¼ ro sin b0 sin h0 cos /0

v2 ¼
2r2

oky

k2 þ r2
o

¼ ro sin b0 sin h0 sin /0

v3 ¼
2r2

okz

k2 þ r2
o

¼ ro sin b0 cos h0

v4 ¼
roðk2 � r2

oÞ
k2 þ r2

o

¼ ro cos b0

ð10Þ

Lets now express the Fourier kernel in Eq. (1) in terms of the
hyperspherical coordinates displayed in (7) and (10). The dot prod-
uct of the 3D vectors q and k is

q � k ¼ qk½sin h cos / sin h0 cos /0 þ sin h sin / sin h0 sin /0

þ cos h cos h0� ð11Þ

Similarly, the dot project of the 4D vectors s and v is

s � v
r2

o sin b sin b0
¼ sin h cos / sin h0 cos /0 þ sin h sin / sin h0 sin /0

þ cos h cos h0 þ cos b cos b0

sin b sin b0
ð12Þ

We know from (7) that q2�r2
o

q2þr2
o
¼ cos b, which means q ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffi
1þcos b
1�cos b

q
.

Similarly, k ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcos b0

1�cos b0

q
. The relationship between the two dot

products, (11) and (12), is then

q � k ¼ 1
ð1� cos bÞð1� cos b0Þ ðs � v � s4v4Þ ð13Þ
The next and final step is to find the relationship between the

differential volume element in q-space, d3q, and that of the hyper-
sphere, dV. The differential volume element in q-space is simply

d3q ¼ q2 sin hdqdhd/, while that of the hyperpshere is

dV ¼ r3
o sin2 b sin hdbdhd/. Since cos b ¼ q2�r2

o
q2þr2

o
, it can be shown then

that db
dq ¼

2ro
q2þr2

o
and sin2 b ¼ 2roq

q2þr2
o

� �2
. Hence, we have

d3q ¼ q2 þ r2
o

2ro

� �3

dX ¼ ro

1� cos b

� �3

dX

which is simply Eq. (8).
Substituting relations (13) and (8) into Eq. (1) gives the integral

transform relating the signal-hypersphere to that of the EAP:

ProðvÞ ¼ r3
o

Z
Ero ðsÞ

e�2pi½s�v�s4v4 �=ð1�cos bÞð1�cos b0 Þ

ð1� cos bÞ3
dX ð14Þ

where Pro denotes the EAP existing on hypersphere of radius ro. Just
as with the q-space signal, the EAP remains invariant after the map-
ping. Eq. (14) is not one of the more familiar integral transforms
encountered in mathematics literature.

2.5. HSH metrics

A well-known q-space metric is Po 	 Pðk ¼ 0Þ (Assaf et al.,
2000; Wu and Alexander, 2007), which is a measure of how
minimally diffusive a water molecule is during the diffusion time.
The origin k ¼ 0 in 3D EAP-space corresponds to the south pole of
the EAP-hypersphere i.e. b0 ¼ p. Hence using Eq. (14) and the HSH
basis, we can derive Po on the hypersphere:

Po ¼ Pro ðb0 ¼ pÞ ¼
Z

X2S3

EroðsÞ
ð1� cos bÞ3

dX ¼
Z

X2S3

q2 þ r2
o

2ro

� �3

EroðsÞdX

ð15Þ

The integral in (15) is difficult to evaluate analytically, which is due
to the non-volume-preserving nature of stereographic projection;
the signal is now weighted by the distortion factor in the
integration.

The q-space inverse variance (QIV) (Wu et al., 2008; Hosseinbor
et al., 2013a) is a measure of the average diffusion displacements
from q-space measurements, and is an alternative measure of dif-
fusivity to the mean square displacement (MSD). The QIV is a more



Table 3
HYDI Encoding scheme.

Shell Ne q (mm�1) Dq (mm�1) b (s/mm2)

7 0 0
1st 6 15.79 15.79 300
2nd 21 31.58 15.79 1200
3rd 24 47.37 15.79 2700
4th 24 63.16 15.79 4800
5th 50 78.95 15.79 7500

Total = 132 q ¼ 78:95 Mean = 15.79
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robust measure of diffusivity than the MSD, especially when high
b-values are concerned, and exhibits white matter/gray matter
contrast unlike the MSD (Hosseinbor et al., 2012). The QIV is

defined mathematically as QIV ¼
R

q2EðqÞd3q
h i�1

. Taking into

account the volume distortion factor described by Eq. (8) upon ste-
reographic projection of the q-space signal, the QIV becomes

QIV ¼
Z

q2 q2 þ r2
o

2ro

� �3

Ero ðsÞdX

" #�1

ð16Þ

As with Eq. (15) for Po, Eq. (16) is difficult to evaluate analytically
due to the weighting of the distortion factor in the integration.

In order to evaluate the integrals in (15) and (16), we will first
compute uncorrected versions of Po and QIV by not weighting the
distortion factor in the integration. Let ! denote some metric of
interest that is derived from the integration of the q-space signal
along the surface of the hypersphere:

! ¼
Z

X2S3
EroðXÞdV ¼ r3

o

X
n;l;m

Cnlm

Z
X2S3

Zm
nlðXÞdX ¼ p

ffiffiffi
2
p

r3
oC000 ð17Þ

where we use the fact that Z0
00 ¼ 1

p
ffiffi
2
p . The QIV and Po can then be

obtained from ! by numerically performing a signal weighting
operation that will correct for the volume distortion, which will
be discussed in detail in the Numerical Implementation section.

2.6. Estimation of dODF

Given the intricacy of Eq. (14), it is difficult to estimate the EAP
analytically using the HSH framework. However, the classical dODF
w0ðrÞ can be numerically estimated from the signal measurements
using the FFT. Lets construct a 11 � 11 � 11 (�qmax : Dq : qmax)
Cartesian lattice, which we map onto the 4D hypersphere via Eq.
(7). Once we have computed the HSH expansion coefficients via
LLS from the acquired data, Eq. (9) can then be used the estimate
the signal at any location on the hypersphere, including the pro-
jected lattice points. The stereographic projection establishes a
one-to-one correspondence between the lattice and hypersphere,
meaning that a given lattice point and its corresponding projection
on the hypersphere have the same signal value. Hence, taking the
FFT of the HSH-estimated signal for the lattice gives the EAP. The
j ¼ 0 radial projection of the EAP, as given by Eq. (2), then yields
the dODF. Since the zeroth-order dODF is not inherently
normalized, we min–max normalize it (Tuch, 2004).

3. Materials and methods

3.1. Numerical implementation

In general, we are given k HARDI shell datasets. The number of
encoding directions in each shell does not have to be the same.
Each HARDI dataset corresponds to a different b-value. Across all
k shells, we have total of M diffusion measurements (including
the b ¼ 0 measurement). The task then is to estimate the coeffi-
cients Cnlm in Eq. (9) from the observed signal.

Let Xj ¼ ðbj; hj;/jÞ denote the hyperspherical angles correspond-
ing to the jth diffusion measurement. Denote G as the M x 1 vector
representing the M diffusion signal measurements across all k
shells, C the W x 1 vector of unknown expansion coefficients
Cnlm, and A the M x W matrix constructed with the HSH basis

A¼
Z0

00ðX1Þ Z0
10ðX1Þ Z�1

11 ðX1Þ Z0
11ðX1Þ Z1

11ðX1Þ � � � ZN
NNðX1Þ

..

. ..
. ..

. ..
. . .

. ..
.

Z0
00ðXMÞ Z0

10ðXMÞ Z�1
11 ðXMÞ Z0

11ðXMÞ Z1
11ðXMÞ � � � ZN

NNðXMÞ

0BB@
1CCA
Thus, we have a linear model of the form G ¼ AC. This system of
over-determined equations is solved via linear least squares with

Laplace–Beltrami regularization (LBR), yielding bC ¼ ðAT Aþ
klLregÞ�1AT G, where Lreg is the LBR diagonal matrix with entries

l2ðlþ 2Þ2 along the diagonal. The regularization serves to reinforce
the positivity constraint of the signal.

Comparing Eq. (15) and (17), we see that Po is distorted by a fac-
tor given by Eq. (8). We correct for this volume distortion by

weighting each signal shell in q-space by
q2

i
þr2

o

2ro

� �3
, where qi is the

radius of the ith shell, before signal fitting. The resulting ‘‘weighted’’
coefficients are then solely used for computing Po via Eq. (17). The
q-shell radii are listed in Table 3. Such q-shell weighting has been
employed in (Wu et al., 2008) in the estimation of Po.

Similarly, comparing Eq. (16) and (17), we see that the QIV is

distorted by a factor q2 q2þr2
o

2ro

� �3
. We correct for this volume distor-

tion by weighting each signal shell in q-space by q2
i

q2
i
þr2

o

2ro

� �3
before

signal fitting. The resulting ‘‘weighted’’ coefficients are then solely
used for computing QIV via Eq. (17).

3.2. Interpolation via HSH basis

Once the coefficients are estimated, the signal attenuation can
be evaluated at any location along the hypersphere using Eq. (9).
1000 uniformly distributed vertices on a unit sphere in q-space
(i.e. 1000 values of h and /) were acquired using the approach
described in (Wong and Roos, 1994), and then stereographically
projected onto the hypersphere. The q-space signal Ero ðb; h;/Þ
was then interpolated along these 1000 points.

3.3. Diffusion MRI data acquisitions for synthetic and in vivo data

The synthetic and in vivo datasets use a hybrid, non-Cartesian
q-space sampling scheme (HYDI) (Wu and Alexander, 2007),
shown in Table 3. Since ODF reconstruction is sensitive to angular
resolution, the number of encoding directions is increased with
each shell to increase the angular resolution with the level of
diffusion weighting. The number of directions in the outer shells
were increased to better characterize complex tissue architecture.

3.3.1. Synthetic data
At low b-values (i.e. b � 1000 s/mm2), the diffusion signal decay

is mono-exponential. However, dMRI experiments using high
b-values (>2000 s/mm2) have shown that the diffusion signal decay
is no longer mono-exponential. Studies in normal human brain,
with b-values over an extended range of up to 6000 s/mm2, have
shown that the signal decay is better described with a bi-exponen-
tial curve (Mulkern et al., 1999; Clark and Le Bihan, 2000). Similar
findings were made for rat brain, using multiple b-values of up to
10,000 s/mm2 (Niendorf et al., 1996). And according to (Assaf and
Cohen, 1998), a bi-exponential fit gives very good agreement with
the observed water signal attenuation in excised brain tissue from
max bmax ¼ 7500
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rats for b-values of up to 2� 3� 104 s/mm2. Therefore, the HSH
basis and BFOR were applied to simulations of crossing fiber con-
figurations generated by a bi-exponential mixture model.

In the bi-exponential mixture model,

Eðq;uÞ ¼
XNb

k¼1

f kf e
�buT Dkf u þ f kse

�buT Dksu
h i

ð18Þ

where Nb is the total number of simulated fibers, f kf the volume
fraction of the fast component of the kth fiber, and f ks the volume
fraction of the slow component. The summation of all volume frac-
tions is 1, i.e.,

PNb
k¼1½f kf þ f ks� ¼ 1. Dkf and Dks describe the diffusion

tensor for the fast and slow components, respectively, of the kth

fiber assuming no exchange between the fast- and slow-diffusion
compartments. The values of the fast and slow Gaussian diffusion
functions were taken from (Maier et al., 2004) and are shown in
Table 4. It should be noted that there is controversy over the assign-
ment of these components and whether the bi-exponential model
should take into account exchange between compartments
(Mulkern et al., 1999).

We look at two equally weighed fibers crossing at 45� and 75�,
and set eigenvalues of each diffusion tensor to be
[1.6,0.4,0.4]e�3 mm2/s, which gives FA = 0.7071. Monte Carlo
noise simulations were performed to investigate the effect of
SNR on the signal and dODF reconstructions. Five SNR levels ([10
20 30 40 80]) for the b ¼ 0 image were simulated, 1000 times each,
by adding Rician noise in a similar manner as in (Descoteaux et al.,
2007). The HSH estimations are performed using the N ¼ 2
(W ¼ 14 fitting parameters), 3 (W ¼ 30), & 4 (W ¼ 55) truncation
orders and kl ¼ 10�6. The appropriate hypersphere radius for each
truncation order will be discussed in the Results Section. BFOR
parameters are taken from (Hosseinbor et al., 2013a): the radial
and angular truncation orders are chosen to be 6 and 4, respec-
tively, yielding 90 fitting parameters.

We assess the quality of the signal fit by computing the normal-
ized mean squared error (NMSE):

NMSE ¼ jjS�
bSjj2

jjSjj2

where S is the ground truth signal given by Eq. (18) and bS is the HSH-
estimated signal described by Eq. (9). Similarly, the quality of the
dODF reconstruction is assessed by computing the Kullback–Leibler
divergence (KLD) and angular error (Tuch, 2004). The KLD is

KLD ¼
X

i

ln
wðriÞbwðriÞ

 !
wðriÞ

where w and bw are the ground truth and estimated dODFs, respec-
tively. The ground truth dODF was found by taking the FTT of Eq.
(18). The angular error metric is defined as

a ¼ arccos jðbr�ÞT r�j

where br� ¼ arg maxr
bwðrÞ and r� ¼ arg maxrwðrÞ.

3.3.2. Human brain data
HYDI was performed on a healthy, adult human using a 3 T GE-

SIGNA whole body scanner with ASSET parallel imaging. MR
Table 4
Fast/slow diffusion ADCs & component size fractions (from Maier et al. (2004)).

Region of interest Corpus callosum Internal capsule

ADCf (lm2/ms) 1.176 1.201
ADCs (lm2/ms) 0.195 0.176
ff 0.699 0.643
fs 0.301 0.357
parameters were TE = 102 ms, TR = 6500 ms, FOV = 24 cm,
matrix = 96 � 96, voxel size = 2.5 � 2.5 mm2, 43 slices with slice
thickness = 3 mm, and scan time = 15 min. Diffusion parameters
were gradient duration d ¼ 37:86 ms and gradient separation
D ¼ 43:1 ms.
4. Results

4.1. Results of synthetic data

On selecting the optimal hypersphere radius. Choosing the
optimal hypersphere radius ro for the HSH framework may be
determined by plotting the NMSE of the signal fit versus ro. Specif-
ically, the HSH-interpolated signal evaluations for a specific hyper-
sphere radius are merged across all five shells and then the NMSE
is computed with respect to the ground truth. We seek the radius
that yields the smallest NMSE. Fig. 2 shows plots of the NMSE as a
function of ro at 45� crossing, in absence of noise, for different trun-
cation orders of the HSH basis: N ¼ 2 (W ¼ 14), N ¼ 3 (W ¼ 30),
and N ¼ 4 (W ¼ 55). A unique value of ro that minimizes the NMSE
of the signal fit can be found for each truncation order N, and the
results are summarized in Table 5.

Fig. 3 shows plots of the NMSE as a function of ro at 75� crossing,
in absence of noise, and the optimal radius for each truncation
order is displayed in Table 6. Going from 45� to 75� fiber crossing
only slightly changes the optimal ro for N ¼ 2 and N ¼ 3 HSH
reconstruction. The influence of crossing angle on the choice of
hypersphere radius is moderately more pronounced for N ¼ 4
HSH reconstruction, going from po ¼ 54 to po ¼ 46. However, as
we will show later, using either po ¼ 54 and po ¼ 46 for N ¼ 4
HSH reconstruction will not significantly affect the dODF
reconstruction.

HSH signal reconstruction. Fig. 4 displays the HSH signal fit at
45� crossing, in absence of noise, for different truncation orders N
of the HSH basis. Naturally, as the truncation order increases, the
quality of the signal fit improves, with the N ¼ 4 HSH reconstruc-
tion fitting the signal attenuation nearly perfectly across all b-val-
ues. But even the N ¼ 2 HSH reconstruction, which is expending
only 14 coefficients, fits the signal quite well.

Fig. 5 displays the N ¼ 4 HSH signal fit at 75� crossing in
absence of noise using the optimal radius for both 45� and 75�
crossings. The signal fit is nearly identical, and indicates that the
20 30 40 50 60 70 80 90 100
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Fig. 2. 45� Fiber crossing: The normalized mean squared error (NMSE) of the signal
fit as a function of hypersphere radius for different truncation orders N of the 4D
HSH basis.



Table 5
Optimal radius for a given truncation order at 45� crossing.

N W Optimal ro (mm�1) NMSE

2 14 32 7.15e�4
3 30 44 8.50e�4
4 55 54 2.51e�4
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Fig. 3. 75� Fiber crossing: The normalized mean squared error (NMSE) of the signal
fit as a function of hypersphere radius for different truncation orders N of the 4D
HSH basis.

Table 6
Optimal radius for a given truncation order at 75� crossing.

N W Optimal ro (mm�1) NMSE

2 14 33 1.25e�3
3 30 46 1.54e�3
4 55 46 2.04e�4
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HSH signal reconstruction is not seriously affected when using the
optimal radius for 45� crossing in the 75� case.

dODF estimation. Fig. 6 shows the HSH-estimated dODF at var-
ious truncation orders, BFOR-estimated dODF, and ground truth
dODF for 45� crossing. Note that the N ¼ 2, 3, and 4 HSH-estima-
tions are remarkably similar to one another, with the KLD only
slightly increasing as the truncation order increases. At all three
truncation orders, the HSH basis successfully captures the geome-
try and orientation of the dODF profile. However, the HSH basis
somewhat smoothens the dODF peaks. The BFOR-estimated dODF
is not as accurate as those of the HSH, with even its KLD being
much higher than the N ¼ 2 HSH-estimation. Both Figs. 4 and 6
suggest that only 14 HSH-coefficients (i.e. N ¼ 2 HSH-estimation)
are sufficient to characterize the signal attenuation and dODF.

Fig. 7 displays the N ¼ 4 HSH-estimated dODF for 75� crossing
using the optimal radius for both 45� and 75� crossing cases. Again,
as with the signal fit, the dODF reconstructions are nearly identical,
so the HSH estimation of the dODR is not seriously affected when
using the optimal radius for 45� crossing in the 75� case. And sim-
ilar to the dODF reconstruction at 45� crossing, the HSH basis suc-
cessfully captures the geometry and orientation of the dODF
profile, but again somewhat smoothens the dODF peaks.

Although the optimal radius for N ¼ 4 HSH reconstruction is
somewhat more influenced by fiber crossing angle than that of
lower truncation orders, based on the results of both Figs. 5 and
7, we see that using the optimal radius for one fiber crossing angle
will not seriously affect the results for another crossing angle. For
this reason, we will henceforth employ each truncation order’s
optimal radius at the 45� crossing case for all subsequent analysis.

Robustness to noise. Fig. 8 displays the noise simulation results
on the signal fit for the HSH and BFOR bases, with the NMSE plot-
ted against SNR for each b-value. There is very little disparity
between the HSH and BFOR bases for the first three b-values. At
the fourth shell for SNR = 10, the NMSE of the HSH basis is less than
5%, while that of BFOR exceeds 5%. At the outermost shell for
SNR = 10, the NMSE of the HSH basis is at most 15%, while that
of BFOR is more than twice that.

Table 7 displays the noise simulation results on the dODF esti-
mation for 45� crossing, with the KLD and angular error computed
across 1000 trials at SNR = 10. As the truncation order of the HSH
basis decreases, both the KLD and angular error likewise decrease;
the KLD and angular error of the N ¼ 2 reconstructions is about
one-fifth and one-half, respectively, that of the N ¼ 4 reconstruc-
tion. The BFOR estimation is the most sensitive to noise, with its
KLD about twice as high as the N ¼ 4 HSH-estimation. BFOR’s
angular error is slightly lower that of the N ¼ 4 HSH
reconstruction.

Similarly, Table 8 displays the noise simulation results on the
dODF estimation for 75� crossing, with the KLD and angular error
computed across 1000 trials at SNR = 10. Again, as the truncation
order of the HSH of the HSH basis decreases, both the KLD and
angular error likewise decrease; the KLD and angular error of the
N ¼ 2 reconstructions is about one-fifth and one-half, respectively,
that of the N ¼ 4 reconstruction. Note that the KLD and angular
errors at 75� are similar to those at 45�.

The lack of robustness of higher order HSH expansion to noise
can simply be attributed to how the model fits the data. The HSH
basis expansion, like any Fourier expansion, wiggles around the
data in order to fit it in the least squares sense. In our situation,
at higher orders, we see that the HSH expansion wiggles more than
at lower orders, so it does not the fit the data as well. Equivalently,
lower order HSH expansions smoothen out the noise, while higher
order ones capture more noise.

Both Fig. 8 and Table 7 indicate that the HSH basis is more
robust to noise than BFOR, with even the lowest order HSH estima-
tion outperforming BFOR. The N ¼ 2 HSH reconstruction is slightly
more robust to noise than higher order HSH reconstructions, as
assessed by the NMSE of the signal fit. But in terms of the KLD
and angular error of dODF estimation, the N ¼ 2 HSH reconstruc-
tion is much more robust to noise than higher order HSH recon-
structions. Most importantly, the noise simulations suggest that
the 14 fitting parameters from the N ¼ 2 estimation are more than
adequate to accurately compute both the signal attenuation and
dODF.

4.2. Results of in vivo data

Imposing antipodal symmetry. The HSH basis is not symmet-
ric on the hypersphere (since both odd and even HSH are used),
which poses a problem with regards to in vivo dODF reconstruc-
tion. Unlike synthetic experiments, where the q-space signal is
guaranteed to be symmetric, the q-space signal acquired from
in vivo data may not be symmetric due to noise, motion, geometric
distortion, etc. Such asymmetry does not pose a problem for the
BFOR basis because its inherent symmetry will impose symmetry
on the in vivo data. However, for the HSH basis, asymmetric
in vivo data will result in asymmetric dODF profiles. Since the q-
space signal is theoretically a symmetric (i.e. even) function, we
get around this problem by requiring that the in vivo data satisfies

EðqÞ ¼ Eð�qÞ
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Fig. 4. (Signal fit for 45� crossing) The ground truth diffusion signal (green) and reconstructed signal (red) using HSH basis when noise was absent. Two equally weighted WM
fibers were simulated crossing at 45�. Measurements from all 5 shells were used. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 5. (Signal fit for 75� crossing) The ground truth diffusion signal (green) and reconstructed signal (red) using N ¼ 4 HSH basis when noise was absent. Two equally
weighted WM fibers were simulated crossing at 75�. Both the optimal radius for 45� (ro ¼ 54) and 75� (ro ¼ 46) crossings are employed for N ¼ 4 reconstruction. We see that
the overall signal reconstruction is not seriously affected when using the optimal radius for 45� crossing in the 75� case. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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That is, the mathematical reflection of the q-space coordinates
(used in the acquisition) outputs the measured in vivo signal. Essen-
tially, we are inflating our data not by acquiring more data, but by
exploiting prior information regarding the q-space signal (in this
case, its symmetry). Henceforth, symmetry will be imposed on all
in vivo calculuations using the HSH basis.

In vivo dODF profiles. In Fig. 9, a 4 � 4 ROI was drawn on the
splenium of corpus callosum. The dODF profile for each voxel in
the ROI was estimated using the HSH basis at N ¼ 2, 3, & 4. The
dODF profiles at each truncation order have the fundamental pea-
nut shape (i.e. mono-directional) of a single fiber. Although the
N ¼ 4 reconstruction is sharper, the N ¼ 2 and 3 reconstructions
are congruous with that of N ¼ 4 in terms of overall shape and ori-
entation of fibers, and so suggesting that 14 HSH coefficients are
sufficient to characterize single fibers.

In Fig. 10, a 4 � 4 ROI was drawn on a region of crossing fibers.
The dODF profile for each voxel in the ROI was estimated using the
HSH basis at N ¼ 2, 3, & 4. Fiber crossing configurations are recov-
ered and well discriminated by each truncation order. As expected,
the N ¼ 4 HSH reconstruction is sharper, whereas those of N ¼ 2
and 3 are more smoothened. However, congruity exists across all
three reconstructions in terms of overall shape and orientation.

Quantitative indices. Axial slices of Po, computed via HSH and
BFOR bases, are shown in Fig. 11. The N ¼ 2, 3, and 4 HSH-estima-
tions of Po are nearly identical and they closely resemble BFOR’s,
exhibiting both tissue/CSF and WM/GM contrasts. The HSH Po
maps, however, have sharper WM/GM contrast than BFOR’s (com-
pare the left and right putamen in both maps), which probably
arises from the signal weighting operation. The results suggest that
14 HSH coefficients, i.e. N ¼ 2 HSH reconstruction, are adequate in
estimating Po.

Axial slices of QIV, computed via HSH and BFOR bases, are
shown in Fig. 12. The N ¼ 2, 3, and 4 HSH-estimations of QIV are
nearly identical and they closely resemble BFOR’s, exhibiting both



Fig. 6. (dODF fit for 45� crossing) The HSH-estimated, BFOR-estimated, and ground truth dODF’s in absence of noise for two equally weighted fibers crossing at 45�. The dODF
is normalized to ½0 1�, and the KLD with respect to the ground truth is listed for both HSH and BFOR bases.

Fig. 7. (dODF fit for 75� crossing) The HSH-estimated and ground truth dODF’s in absence of noise for two equally weighted fibers crossing at 75�. The dODF is normalized to
½0 1�. Both the optimal radius for 45� (ro ¼ 54) and 75� (ro ¼ 46) crossings are employed for N ¼ 4 reconstruction. We see that the overall dODF reconstruction is not seriously
affected when using the optimal radius for 45� crossing in the 75� case.
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rich tissue/CSF and WM/GM contrasts. However, BFOR’s QIV map
has some voxels that blow up upon the division operation in com-
puting QIV, which are zeroed out in Fig. 12d, but this was not the
case for the HSH-estimated QIV. As with the Po estimation, the
results indicate that 14 HSH coefficients, i.e. N ¼ 2 HSH reconstruc-
tion, are adequate in estimating QIV.
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Fig. 8. The normalized mean squared error (NMSE) of the HSH signal fit for different truncation orders N and BFOR signal fit for each b-value plotted against SNR. 1000 Rician
noise trials were simulated for each SNR level for two equally weighted fibers crossing at 45�.

Table 7
KLD & angular error of dODF estimations at SNR = 10 for 45� crossing.

Method KLD Angular error

HSH N ¼ 2 0.100 ± 0.0247 7.85� ± 4.12�
HSH N ¼ 3 0.209 ± 0.0540 12.3� ± 5.30�
HSH N ¼ 4 0.528 ± 0.109 16.8� ± 5.55�
BFOR 1.02 ± 0.246 14.9� ± 4.78�

Table 8
KLD & angular error of dODF estimations at SNR = 10 for 75� crossing.

Method KLD Angular error

HSH N ¼ 2 0.109 ± 0.0242 7.89� ± 4.09�
HSH N ¼ 3 0.210 ± 0.0526 12.3� ± 5.21�
HSH N ¼ 4 0.472 ± 0.108 16.1� ± 5.52�
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5. Discussion

We have demonstrated that the N ¼ 2 HSH reconstruction,
which expends only 14 fitting parameters, is more than adequate
in resolving crossing fiber configurations and estimating quantita-
tive metrics like Po and QIV. The noise simulations indicate that it
is more robust than higher order HSH reconstructions and BFOR.

The HSH framework, as with MAP-MRI, captures both the radial
and angular contents of the q-space signal with a single basis
function, while BFOR employs two basis functions: one radial
(spherical Bessel function) and angular (spherical harmonics).
BFOR’s use of the spherical Bessel function to model the q-space
signal is unrealistic because it infinitely oscillates about zero, while
the q-space signal radially decays to zero. Table 9 compares the
number of fitting parameters between BFOR, HSH, and MAP-MRI.

The HSH framework also suffers several limitations. First, the
hyperspherical interpretation of q-space destroys, via stereo-
graphic projection, the q-space signal’s inherent symmetry. How-
ever, this can be remedied by imposing antipodal symmetry on
the in vivo data. Second, the complexity of fiber architecture, as
reflected by the crossing angle, somewhat affects the choice of
hypersphere radius, especially at higher truncation orders. How-
ever, as our synthetic results have shown, employing one crossing
angle’s optimal radius for some other crossing angle will not signif-
icantly affect the results.

The major drawback of the HSH framework is the difficulty in
analytically estimating the EAP via Eq. (14) due to the non-volume
preserving nature of stereographic projection. Although the signal
basis is analytical in the HSH framework, the dODF and q-space
metrics cannot be analytically estimated. The HSH framework
requires the q-space measurements to be regridded onto and inter-
polated on a Cartesian lattice, as done in DSI and HYDI, in order to
estimate the dODF. And ad hoc correction of the Po and QIV maps is
needed to correct for volume distortion. It should be noted, how-
ever, that such numerical computations do not significantly



(a) GFA(10) (b) N=2

(c) N=3 (d) N =4

Fig. 9. Axial slice of GFA(10) map of adult human brain, where a 4� 4 ROI is drawn on splenium of corpus callosum. Plotted are the HSH dODF profiles at N ¼ 2, 3, & 4
overlaid onto ROI.

(a) GFA(10) (b) N =2

(c) N =3 (d) N=4

Fig. 10. Axial slice of GFA(10) map of adult human brain, where a 4� 4 ROI is drawn on a region of crossing fibers. The genu of the corpus callosum is in the background.
Plotted are the HSH dODF profiles at N ¼ 2, 3, & 4 overlaid onto ROI.
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impede computational efficiency. BFOR’s key advantage over the
HSH framework is its analytical estimation of the diffusion propa-
gator and various q-space metrics.
Although the encoding scheme in this study consisted of hybrid
sampling along equally spaced concentric spherical shells, the HSH
framework does not require such a scheme. A minimum of two



(a) HSH N =2 (b) HSH N =3
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Fig. 11. Axial slices of Po computed via HSH and BFOR bases for a healthy, adult human. Note that antipodal symmetry was imposed on in vivo data in the computation of Po.

(a) HSH N =2 (b) HSH N =3

(c) HSH N =4 (d) BFOR

Fig. 12. Axial slices of QIV computed via HSH and BFOR bases for a healthy, adult human. Note that antipodal symmetry was imposed on in vivo data in the computation of
QIV.
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diffusion weightings is required, however. Random sampling along
q-space or even the use of unequally spaced concentric shells is
perfectly valid. This, however, leads to the important question of
what is the best way to sample N diffusion measurements in
q-space, which have started to be addressed (Assemlal et al.,
2009b; Merlet et al., 2011; Koay et al., 2012; Caruyer et al.,
2013). Although the HSH framework’s efficient representation of
the dODF may also make it conducive to compressed sensing



Table 9
Number of fitting parameters for different methods.

Method W

BFOR/SHORE NradialðNangular þ 1ÞðNangular þ 2Þ
HSH ðN þ 1ÞðN þ 2Þð2N þ 3Þ=6
MAP-MRI ðN þ 2ÞðN þ 4Þð2N þ 3Þ=24
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(Menzel et al., 2011; Merlet and Deriche, 2013; Paquette et al.,
2014), the HSH basis is global; localized functions, by virtue of pos-
sessing compact support, will have better sparsity than global
bases. Future work includes optimizing the HYDI q-space sampling
and exploring the sparsibility of the HSH basis.

The dODF profiles are not sharp enough to extract the true fiber
orientation, as clearly seen in Fig. 10. Rather, the fiber orientation is
given by the fiber orientation distribution function (fODF), which
can be computed via spherical deconvolution of some assumed
kernel (i.e. response function) from the q-space diffusion signal
(Tournier et al., 2004; Descoteaux et al., 2009). Analytical estima-
tion of the fODF using the HSH framework will be difficult because
of the stereographic projection’s volume distortion. However, sim-
ilar to the dODF estimation, the fODF can be estimated numerically
by evaluating the spherical deconvolution via the Richardson-Lucy
algorithm (Parker et al., 2013), which will be left as future work.

6. Conclusion

We have introduced a new orthonormal basis to model the 3D
q-space signal, and from which various q-space metrics can be
computed. 4D HSH signal modeling allows for the capture of the
radial and angular contents of the diffusion profile by a single basis
function, and the basis’ orthonormality provides robust numerical
stability. Importantly, we have demonstrated the HSH basis’ ability
to sparsely represent the diffusion process. In fact, the second order
HSH reconstruction, which expends 14 fitting parameters, can ade-
quately resolve crossing fiber configurations and estimate q-space
indices. Such robust performance by a sparse representation
implies that the HSH framework may be better suited to sparser
sampling schemes than BFOR, which will be explored in the future.
Although the hyperspherical interpretation of q-space destroys, via
stereographic projection, the signal’s inherent symmetry, this can
be remedied by imposing antipodal symmetry on the in vivo data.
The major drawback of the HSH framework is the difficulty in ana-
lytically estimating the EAP.
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Appendix A. 1D-to-2D analogue of Eq. (14)

A better understanding of the integral transform described by
Eq. (14) can be obtained by considering the simpler 1D-to-2D sce-
nario. Consider two infinite 1D lines, one defined by the variable x
and the other by k. We assume the integral transform mapping
from x-space to k-space is the Fourier transform; in other words,

FðkÞ ¼
Z 1

�1
f ðxÞe�2pikxdx ðA:1Þ

Now lets stereographically project each line onto a circle of radius
ro. Stereographic projection establishes a one-to-one correspon-
dence between the 1D plane and circle.
Let’s first consider 1D x-space. According to stereographic pro-
jection, any point x on the line maps to a unique point
ðu;vÞ ¼ ðro cos h; ro sin hÞ along the circle, where h 2 ½0;2p�. The
exact relationship between x and ðu;vÞ given by

u ¼ 2r2
ox

x2 þ r2
o
¼ ro cos h

v ¼ roðx2 � r2
oÞ

x2 þ r2
o
¼ ro sin h ðA:2Þ

Using Eq. (A.2), we can deduce that

x ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin h
1� sin h

r
ðA:3Þ

and

dh
dx
¼ 2r2

o

x2 þ r2
o
¼ 1� sin h

ro
ðA:4Þ

Similarly, we project 1D k-space onto a circle of radius ro.
According to stereographic projection, the relationship between a
point k on the line and the point ðu0;v 0Þ ¼ ðro cos h0; ro sin h0Þ along
the circle is

u0 ¼ 2r2
ok

k2 þ r2
o

¼ ro cos h0

v 0 ¼ roðk2 � r2
oÞ

k2 þ r2
o

¼ ro sin h0
ðA:5Þ

Using Eq. (A.5), we can deduce that

k ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin h0

1� sin h0

r
ðA:6Þ

The Fourier relationship between 1D x-space and k-space, as
described by Eq. (A.1), does not hold true on the circle. The ques-
tion, then, is what integral transform maps from the circle associ-
ated with x-space to the circle associated with k-space? We now
proceed to derive this integral transform.

Taking the product of Eqs. (A.3) and (A.6) gives

kx ¼ r2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin hÞð1þ sin h0Þ
ð1� sin hÞð1� sin h0Þ

s
ðA:7Þ

Substituting Eqs. (A.4) and (A.7) into Eq. (A.1) gives

Fðh0Þ ¼ ro

Z 2p

0

f ðhÞe�2pir2
oCðh;h0Þ

1� sin h
dh ðA:8Þ

where Cðh; h0Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þsin hÞð1þsin h0 Þ
ð1�sin hÞð1�sin h0 Þ

q
. Eq. (A.8) describes the relationship

between any two functions individually existing on a circle, given
that the two are Fourier transform pairs on the 1D plane.
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