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Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which
pose significant challenges for analyses of morphological shapes. Existing shape models, such as the
widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are
unable to simultaneously parameterize multiple disjoint structures. In such a situation, SPHARM has
to be applied separately to each individual structure. We present a novel surface parameterization
technique using 4D hyperspherical harmonics in representing multiple disjoint objects as a single analytic
function, terming it HyperSPHARM. The underlying idea behind HyperSPHARM is to stereographically
project an entire collection of disjoint 3D objects onto the 4D hypersphere and subsequently simultane-
ously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a
holistic treatment of multiple disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult
human brains, we apply HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM represen-
tations are employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in
a support vector machine setting for object classification. HyperSPHARM yields nearly identical results as
SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies computationally;
HyperSPHARM possess greater computational efficiency than SPHARM because it can parameterize mul-
tiple disjoint structures using much fewer basis functions and stereographic projection obviates
SPHARM’s burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology,
unlike SPHARM, whose analysis is confined to topologically invariant structures.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multiple disconnected anatomical structures (MIDAS) refer to
two or more structures that are anatomically and/or functionally
separate, and their underlying mathematical feature is changing
topology (e.g. gaps, holes). Hence, the individual structures form-
ing the MIDAS do not have to be physically connected, as there
could be gaps separating the individual structures from each other,
and can have holes. Prominent examples include the limbic
structures (hippocampi and amygdalae) in the brain and the
unfused hyoid bone in the neck. Image-based parcellation of
MIDAS poses significant challenges for analyses of morphological
shapes; existing shape models assume topological invariance, so
can only be applied to a single connected structure. An important
problem then is formulating a single, coherent mathematical
parameterization that can allow for a holistic treatment of
MIDAS, i.e. treating the entire MIDAS as a single entity.

Probably the most widely applied shape parameterization tech-
nique for cortical structures is the spherical harmonic (SPHARM)
representation (Chung et al., 2010; Gerig et al., 2001; Shen et al.,
2004; Gu et al., 2004; Styner et al., 2006), which has been mainly
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used as a data reduction technique for compressing global shape
features into a small number of coefficients. The main global geo-
metric features are encoded in low degree coefficients while the
noise will be in high degree spherical harmonics. The method has
been used to model various brain structures such as ventricles
(Gerig et al., 2001), hippocampi (Shen et al., 2004) and cortical sur-
faces (Chung et al., 2010; Gu et al., 2004). SPHARM, however, can-
not represent MIDAS with a single parameterization. In such a
situation, SPHARM has to be applied separately to each individual
structure forming the MIDAS. In addition, SPHARM-representation
requires a 3D anatomical surface to be mapped onto a 3D sphere,
which is no simple task. Various computationally intensive surface
flattening techniques have been proposed as a result: diffusion
mapping (Chung et al., 2010), conformal mapping (Angenent
et al., 1999; Gu et al., 2004; Hurdal and Stephenson, 2004),
quasi-isometric mapping (Timsari and Leahy, 2000) and area pre-
serving mapping (Gerig et al., 2001; Brechbuhler et al., 1995).
The surface flattening is used to parameterize the surface using
two spherical angles. The angles serve as coordinates for represent-
ing the surface using spherical harmonics. Then the surface coordi-
nates can be mapped onto the sphere and each coordinate is
represented as a linear combination of spherical harmonics.

Any 3D object may be embedded onto the surface of a 4D
hypersphere via simple stereographic projection. Extending the
concept further, two or more disconnected 3D objects may be
stereographically projected onto the same 4D hypersphere.
Consequently, all the multiple disconnected 3D objects (forming
the MIDAS) exist on the same hypersphere, so the entire MIDAS
can be represented as the linear combination of 4D hyperspherical
harmonics (HSH), which are the multidimensional analogs of the
3D spherical harmonics. In other words, such a procedure enables
the entire MIDAS to be treated as a single entity existing along the
surface of a 4D hypersphere (see Fig. 1 for illustration).

The HSH have been mainly confined to quantum chemistry,
where their utility first became evident with respect to solving
the Schrödinger equation for the hydrogen atom. It had been solved
in position-space by Schrödinger, himself, but not in momentum-
space, which is related to position-space via the Fourier transform.
Sometime later, V. Fock solved the Schrödinger equation for the
hydrogen atom directly in momentum-space. In his classic paper
(Fock, 1935), Fock stereographically projected 3D momentum-
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Fig. 1. Holistic treatment of multiple disjoint structures: The underlying idea of
HyperSPHARM is stereographically projecting n-dimensional data onto the ðnþ 1Þ-
dimensional sphere in order to subsequently parameterize the data with the
ðnþ 1Þ-dimensional spherical harmonics. Here we illustrate the n ¼ 2 case. Three
disjoint 2D objects are mapped on the 3D sphere. Since each object is unique in 2D,
their projections onto the sphere will also be unique. Consequently, all three
disjoint objects exist on the same sphere, so according to Fourier analysis they can
be simultaneously parameterized by the 3D spherical harmonics. Please note that
the shapes’ angles are preserved since stereographic projection is conformal.
However, the projected shapes lying on the sphere will experience metric
distortion, e.g. the area of the rectangle existing on the sphere is different from
that of the rectangle lying on the 2D plane.
space onto the surface of a 4D unit hypersphere, and after this map-
ping was made, he was able to show that the eigenfunctions were
the 4D HSH. Recently, the HSH have been utilized in a wider array
of fields than just quantum chemistry, including computer graphics
visualization (Bonvallet et al., 2007) and crystallography (Mason
and Schuh, 2008). However, as of yet, they have remained elusive
for medical imaging.

In this paper, following the approach of Fock, we model multi-
ple disconnected 3D objects in terms of the 4D HSH by stereo-
graphically projecting each object’s surface coordinates onto the
same 4D hypersphere, and label such a representation
HyperSPHARM (Hosseinbor et al., 2013). The incorporation of an
extra (4th) dimension via stereographic projection imbues
HyperSPHARM with several key advantages over SPHARM:

1. Stereographic projection onto a 4D hypersphere obviates the
difficult and time-consuming 3D surface flattening required
by SPHARM.

2. HyperSPHARM is not constrained by topological variance,
unlike SPHARM. The parameterization of an object containing
a hole (e.g. doughnut) or the simultaneous parameterization
of multiple disjoint objects is not possible with SPHARM.
HyperSPHARM, however, treats MIDAS holistically by
representing it with a single (linear) mathematical parameter-
ization, given by the 4D HSH. SPHARM has to be applied sepa-
rately to each individual structure forming the MIDAS.

3. HyperSPHARM possesses greater computational efficiency than
SPHARM because it can more sparsely represent the MIDAS,
which we will demonstrate in this paper.

The method is applied to parameterize the MIDAS comprising
the left and right hippocampus and amygdala for an imaging data-
set of healthy adult human brains. The HyperSPHARM representa-
tions are employed as a surface smoothing technique, while the
HyperSPHARM coefficients are used in a support vector machine
(SVM) setting for gender classification.

The paper is organized as follows: in Section 2, we review the
4D HSH and its properties. In Section 3, we discuss in detail the
HyperSPHARM algorithm. Section 4 goes over the imaging dataset
used in this study and the necessary image processing steps. In
Section 5, we compare HyperSPHARM and SPHARM, utilize
HyperSPHARM representations as a data smoothing technique,
and employ HyperSPHARM coefficients as features of object classi-
fication using SVM. Lastly, we discuss our results and future appli-
cations of HyperSPHARM in Section 6.
2. 4D hyperspherical harmonics

Consider the 4D unit hypersphere S3 existing in R4 that is defined
by three angles: the azimuthal angle /, the 3D zenith angle h, and the
4D zenith angle b. The Laplace–Beltrami operator on S3 is defined as

DS3 ¼ 1

sin2 b

@

@b
sin2 b

@

@b
þ 1

sin2 b
DS2 ; ð1Þ

where DS2 is the Laplace–Beltrami operator on the unit sphere S2.
The eigenfunctions of Eq. (1) are the 4D hyperspherical harmonics
Zm

nlðb; h;/Þ:

DS3 Zm
nl ¼ �lðlþ 2ÞZm

nl:

The 4D HSH are defined as (Domokos, 1967)

Zm
nlðb;h;/Þ¼2lþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where X ¼ ðb; h;/Þ obey ðb 2 ½0;p�; h 2 ½0;p�;/ 2 ½0;2p�Þ;Clþ1
n�1 are

the Gegenbauer (ultra-spherical) polynomials, and Ym
l are the 3D

spherical harmonics. The index n refers to the degree of the HSH
and is commonly referred to as the principal quantum number;
and the three integers ðn; l;mÞ obey the conditions
n ¼ 0;1;2; . . . ;0 6 l 6 n, and �l 6 m 6 l. The number of HSH

corresponding to a given degree n is ðnþ 1Þ2. The HSH form an
orthonormal basis on the hypersphere, and the normalization con-
dition readsZ 2p

0

Z p

0

Z p

0
Zm

nlðXÞZ
m0�

n0 l0 ðXÞ sin2 b sin hdbdhd/ ¼ dnn0dll0dmm0 : ð3Þ

The first few 4D HSH are shown in Table 1. The n ¼ 1 4D HSH define
a 4D hypersphere of radius

ffiffiffi
2
p

=p. The spherical harmonics of any
dimension are discussed in Appendix A.

3. HyperSPHARM algorithm

In this section, we will elaborate on the HyperSPHARM algo-
rithm, which consists of five basic steps: translation, stereographic
projection, 4D HSH expansion, linear least squares estimation, and
interpolation. Before proceeding, we need to mathematically
define the MIDAS.

Suppose some MIDAS is composed of k individual structures.
Each structure is assumed to be both 3D finite and compact (i.e.
has no singularities) and comprising surface coordinates
pj ¼ ðp1

j p2
j p3

j Þ, where j ¼ 1;2; . . . ; k. We further assume that each
structure’s surface coordinates are unique, i.e. no two structures
have overlapping coordinates. Denote Nj as the number of mesh
vertices forming structure j, which means the dimension of pj is
Nj � 3. Lets combine the surface coordinates of all k structures in
order to facilitate a holistic treatment of the MIDAS. Define
v ¼ ðv1 v2 v3Þ as the combined 3D surface coordinates across all
k structures, where

v1 ¼ ðp1T
1 p1T

2 � � � p1T
k Þ

T

v2 ¼ ðp2T
1 p2T

2 � � � p2T
k Þ

T

v3 ¼ ðp3T
1 p3T

2 � � � p3T
k Þ

T

and the symbol T denotes transpose. In other words, the MIDAS’s
surface coordinates are defined by v. The dimension of v is M � 3,

where M ¼
Pk

j¼1Nj is the total number of mesh vertices comprising
the 3D MIDAS. We denote each (vector) coordinate component of v
as vi, where i ¼ 1;2;3.

3.1. Translation

Note that SPHARM and HyperSPHARM are not translation
invariant representations, which reduces their goodness of fit.
Translating the MIDAS’s surface coordinates v closer to the origin
ð0;0;0Þ improves the accuracy of the fitting. We achieve this shift
towards the origin by subtracting each vi by its mean value:

si ¼ vi � hvii;

where s ¼ ðs1 s2 s3Þ is the M � 3 matrix denoting the MIDAS’s
shifted surface coordinates and hvii is the mean of vi.
Table 1
List of a few HSH.
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3.2. Stereographic projection of 3D MIDAS’s surface coordinates onto
4D hypersphere

In order to model the MIDAS’s (shifted) surface coordinates
with the HSH, we need to map them onto a 4D hypersphere, which
can be achieved via stereographic projection (Fock, 1935). The sur-
face coordinates in 3D spherical space are s1 ¼ r sin h cos /;

s2 ¼ r sin h sin /, and s3 ¼ r cos h, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1Þ2 þ ðs2Þ2 þ ðs3Þ2

q
.

Consider a 4D hypersphere of radius po, whose coordinates are
defined as

u1 ¼ po sin b sin h cos /;

u2 ¼ po sin b sin h sin /;

u3 ¼ po sin b cos h;

u4 ¼ po cos b:

The relationship between ðs1; s2; s3Þ and ðu1;u2;u3; u4Þ, according to
stereographic projection, is

u1 ¼
2p2

os1

r2 þ p2
o
; u2 ¼

2p2
os2

r2 þ p2
o
;

u3 ¼
2p2

os3

r2 þ p2
o
; u4 ¼

poðr2 � p2
oÞ

r2 þ p2
o

: ð4Þ

Eq. (4) establishes a one-to-one correspondence between the 3D
volume and 4D hypersphere (Fig. 2). As shown in Fig. 2, stereo-
graphic projection’s inherent lack of volume preservation is not
an issue in HyperSPHARM analysis; the projected MIDAS lying on
the hypersphere experiences metric distortion, but we are solely
interested in the (HyperSPHARM-reconstructed) back-projected
MIDAS. We derive stereographic projection to any dimension in
Appendix B.

3.3. HSH expansion of MIDAS’s surface coordinates

Stereographically projecting the 3D MIDAS’s surface coordi-
nates onto a 4D hypersphere results in them existing along the
hypersphere’s surface. According to Fourier analysis, any square-
integrable function defined on a sphere can be expanded in terms
of the spherical harmonics. Thus, we can expand each coordinate
component si in terms of the 4D HSH:

si
po
ðb; h;/Þ �

XN

n¼0

Xn

l¼0

Xl

m¼�l

Ci
nlmZm

nlðb; h;/Þ; ð5Þ

where si
po

denotes the ith component of the surface coordinates s
existing on hypersphere of radius po. The realness of the surface
coordinates requires use of the real HSH, so we employ a modified
real basis proposed in (Koay et al., 2009) for Ym

l . N is the truncation
order of the HSH expansion, and for a given N the total number of
HSH expansion coefficients is

W ¼ ðN þ 1ÞðN þ 2Þð2N þ 3Þ=6:
3.4. Numerical implementation

Let Xj ¼ ðbj; hj;/jÞ denote the hyperspherical angles at the j-th
mesh vertex. Recall that our MIDAS consists of a total of M mesh

vertices, so each si is a M � 1 vector. Denote Ci as the W � 1 vector

of unknown HSH expansion coefficients Ci
nlm for each si, and A is

M �W matrix constructed with the HSH basis and given by

Z0
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10ðXMÞ Z�1
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NNðXMÞ

0BB@
1CCA:



Fig. 2. The 3D subcortical structures (left) in the coordinates ðv1;v2;v3Þ went through the 4D stereographic projection that resulted in conformally deformed structures
(right) in the 4D spherical coordinates ðb; h;/Þ. The 3D subcortical structure is then embedded on the surface of the 4D hypersphere with radius po ¼ 23.
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Thus, the general linear system representing Eq. (5) is described

by si ¼ ACi. This system of over-determined equations is solved via
linear least squares, yieldingbCi ¼ ðAT AÞ

�1
AT si: ð6Þ

The reconstructed (shifted) surface coordinates are then given bybsi ¼ A bCi .
Lastly, we want to estimate the actual surface coordinates v.

The reconstructed vi isbvi ¼ bsi þ hvii; ð7Þ

where we have translated the reconstructed (shifted) surface
coordinates back to the original object space. Hence, our recon-

structed 3D MIDAS is defined by the M � 3 matrix bv ¼ ðcv1 cv2 cv3Þ.
The mean squared error (MSE) between the original MIDAS and
the HyperSPHARM-reconstructed MIDAS can then be computed as

MSEHSH ¼ tr ðv � bvÞTðv � bvÞh i
=M: ð8Þ
3.5. Interpolation

Once the HSH coefficients are estimated by Eq. (6), the surface
coordinates of the MIDAS can be evaluated using a different sam-
pling along the 4D hypersphere. Unlike SPHARM, resampling for
HyperSPHARM interpolation is not as trivial. Simply resampling
points along the 3D MIDAS and then mapping them onto the 4D
hypersphere will not work; the mapped samples will not be uni-
formly distributed along the 4D sphere due to stereographic pro-
jection’s inherent nonlinearity. We now discuss isotropic
sampling along the 4D hypersphere, which we will employ for
HyperSPHARM interpolation.

Due to the fact that the stereographic projection of the MIDAS
usually lies on some regions of the hyperspherical surface, the
evaluation of the surface coordinates of the MIDAS on the 4D
hypersphere should be carried out on a sampling that is isotropic
on the surface of the 4D hypersphere. The problem of distributing
points uniformly on the 3D sphere is a well known problem and
was proposed by J.J. Thomson more than a century ago
(Thomson, 1904). Variants of the Thomson problem that incorpo-
rate antipodal symmetry and mirror-reflection symmetry have
been found useful in other scientific and engineering endeavors,
see (Koay, 2011; Koay, 2014a) and references therein. The problem
of generating uniformly distributed and antipodally symmetric
points on the unit 4D hypersphere can be solved via the discretized
and extended version of the pseudometrically constrained cen-
troidal Voronoi tessellations(Koay, 2014b). The antipodal symme-
try imposed on the current problem is for the sake of
computational efficiency. That is, one only needs the coordinates
of the upper hyper-hemisphere in order to obtain the coordinates
of the lower hyper-hemipshere by spatial inversion – a 50% saving
in terms of time and storage. A key disadvantage of such an
interpolation scheme is that it precludes the incorporation of the
MIDAS’s 3D triangular connectivity information.

We denote the uniformly distributed and antipodally
symmetric points along the surface of the 4D hypersphere as
hysph_mesh_interp. The HyperSPHARM coefficients are used to
interpolate the cortical surface coordinates using this hyperspheri-

cal mesh, and MSEinterp
HSH denotes the mean squared error

between the HyperSPHARM-interpolated values and the mesh
hysph_mesh_interp.

Note that the 3D MIDAS is finite, so it will not map onto the
entire surface of the 4D hypersphere. Rather, the stereographic
projection of the MIDAS will lie along a portion of the hyperspheri-
cal surface. Consider the illustration in Fig. 3. The MIDAS’s surface
coordinates are mapped onto the region S0 along the 4D hyper-
sphere. The MIDAS can be interpolated at different (hyperspheri-
cal) locations that reside within region S0; using hyperspherical
points outside of S0 will result in extrapolation. Therefore, we only
use the samples in hysph_mesh_interp that coincide with S0 in Fig. 3.
4. Data processing

4.1. Dataset

The dataset used in this study was part of a national study
(Midlife in US; http://midus.wisc.edu) for the health and well-be-
ing in the aged population (Van Reekum et al., 2011). It comprised
68 healthy adults (22 men; 46 women) ranging in age between 38
to 79 years (mean age = 58.0 ± 11.4 years).

High-resolution T1-weighted inverse recovery fast gradient
echo MRI images were obtained using a 3T GE SIGNA scanner with

http://midus.wisc.edu
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Fig. 3. HyperSPHARM interpolation: In this 3D illustration, a 2D object is
stereographically projected onto the 3D sphere S2. Since the object is finite, its
projection will not occupy the entire surface of the sphere; rather, it will lie along a
portion of the spherical surface, which in our illustration is denoted as S0 . Points
residing within S0 can be used for interpolation, whereas outside points will lead to
extrapolation.
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HSH as a function of the hypersphere radius po . The

HyperSPHARM coefficients are estimated using the population template, and then
used to interpolate along the hyperspherical mesh hysph_mesh_interp. The HSH of
truncation order N ¼ 6 are employed. The MSE is minimized at po ¼ 23, which we
adopt as our radius.
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a quadrature head RF coil. A 3D, spoiled gradient-echo (SPGR)
pulse sequence was used to generate T1-weighted images. 124
contiguous 1.2-mm axial slices were acquired (TE = 1.8 ms;
TR = 8.9 ms; flip angle = 10�; FOV = 240 mm; 256� 256 data acqui-
sition matrix).

4.2. Establishment of correspondence

Correspondence for SPHARM and HyperSPHARM was estab-
lished in a similar manner as proposed in (Chung et al., 2007).
Brain tissues in the MRI scans were automatically extracted using
Brain Extraction Tool (BET) (Smith, 2002) and trained raters manu-
ally segmented the amygdalae and hippocampi, which form our
MIDAS. A nonlinear image registration using the diffeomorphic
shape and intensity averaging technique with the cross-correlation
as the similarity metric through Advanced Normalization Tools
(ANTS) (Avants et al., 2008) was performed on the T1-weighted
images, and a study-specific template was constructed from a ran-
dom subsample of ten subjects. The deformation field is then used
to warp any individual brain to the template. Specifically, we
deformed the amygdala and hippocampus binary masks to the
template space. The normalized masks were then averaged to pro-
duce the subcortical masks. The iso-surfaces of the subcortical
masks were then extracted using the marching cube algorithm
(Lorensen and Cline, 1987). The number of mesh vertices for each
cortical structure are as follows: 1296 for left amygdala, 1324 for
right amygdala, 2444 for left hippocampus, and 2554 for right hip-
pocampus. Hence, the MIDAS comprises 7618 mesh vertices.

Using ANTS, we obtained the deformation vector field, which is
defined on voxels, that warps an individual brain to the template.
On the other hand, the vertices of the subcortical surfaces meshes
are located within the voxels, so we simply assigned the vector
field onto the mesh vertices by linear interpolation.

Please note that SPHARM and HyperSPHARM were not directly
used to establish correspondence for this dataset. As mentioned,
ANTS was used to align and establish non-linear correspondence,
so vertex-to-vertex correspondence was present before application
of HyperSPHARM/SPHARM. However, SPHARM and HyperSPHARM
further register the surfaces post-alignment via surface flattening
and stereographic projection, respectively. Hence, our approach
avoids the surface alignment done by coinciding the first order
ellipsoid meridian and equator in the SPHARM-correspondence
approach (Gerig et al., 2001; Styner et al., 2006). Surface meshes
obtained from other segmentation techniques such as FreeSurfer
(Fischl and Dale, 2000) may require the SPHARM-correspondence
approach.

4.3. SPHARM processing

HyperSPHARM is compared to the widely used SPHARM frame-
work. SPHARM processing somewhat differs from that of
HyperSPHARM, so we will now elaborate on it. SPHARM has to
be applied to each individual structure forming the MIDAS. Thus,

for a SPHARM representation of order L, a total of 3ðLþ 1Þ2 expan-

sion coefficients parameterize a single structure and 12ðLþ 1Þ2

coefficients all four disconnected structures (i.e. left and right hip-
pocampus and amygdala). First, each cortical structure is mapped
onto a unit sphere using diffusion mapping (Chung et al., 2010),
where the number of vertices of the spherical mesh is equal to that
of the cortical mesh. We denote this spherical mesh as sph_mesh_in-

terp. The spherical mesh is then refined by resampling to a uniform
grid along the sphere, whose number of vertices totals 40962.
SPHARM is then performed using this refined spherical mesh,
and MSESPHARM denotes the mean squared error between the
SPHARM reconstruction and refined spherical mesh. The SPHARM
coefficients are then used to interpolate the cortical surface coordi-

nates using the spherical mesh sph_mesh_interp, and MSEinterp
SPHARM

denotes the mean squared error between the SPHARM-in-
terpolated values and the mesh sph_mesh_interp. This analysis is
repeated for each cortical structure forming the MIDAS. Please note
that the translation of the surface coordinates closer to the origin is
also employed for SPHARM.

4.4. Selection of optimal po

Choosing the optimal hypersphere radius po for HyperSPHARM

reconstruction may be determined by plotting the MSEinterp
HSH versus

po for the MIDAS reconstruction. Note the analysis is done on the
mean population template instead of each individual subject so
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to minimize inter-subject variability. The HSH of truncation order
N ¼ 6 are used for the HyperSPHARM reconstruction of the tem-
plate. Lower truncation orders were found to interpolate poorly,
so are excluded from the analysis. Fig. 4 displays the plot of the

MSEinterp
HSH of each vi as a function of po, and indicates that

MSEinterp
HSH is minimized at po ¼ 23, which we adopt as our radius.

Table 2 displays the optimal radius for different truncation
orders of HyperSPHARM reconstruction. The optimal radius is
more or less the same across N.

5. Experiments and results

5.1. Rotational variance of HyperSPHARM

The rotational variance of stenographic projection depends on
the nature of an object’s symmetry. Axially symmetric objects will
be rotationally invariant over the projection. However, non-axially
symmetric objects, such as the limbic structures, will be rotation-
ally variant over the mapping. Hence, the rotation of the MIDAS
will affect the subsequent HyperSPHARM reconstruction.

Fig. 6 displays the plot of the MSEinterp
HSH of the population tem-

plate as a function of the rotation angle. The graph is approxi-

mately concave down, and the MSEinterp
HSH peaks at 30�.

5.2. Simulation study

We have performed two simulation studies to determine if
HyperSPHARM can characterize general shape differences between
two distinct populations. Hotelling T2 test and support vector
(a) Original (b) HyperSPHA

Subject 10

(d) Original (e) HyperSPHA

Subject 68

Fig. 5. HyperSPHARM (N ¼ 6) representations of amygdala and hippocampus surface
machines are used to assess HyperSPHARM’s effectiveness.
HyperSPHARM parameters are N ¼ 6 and po ¼ 23, which results
in W ¼ 140 expansion coefficients for each surface coordinate,
while L ¼ 20 SPHARM representation is employed.

Voxel-wise hotelling T-squared test. In the first simulation
experiment, we formed two distinct groups by selecting the right
amygdala and right hippocampus of subjects 10 and 68. As can
be seen in Fig. 7, there are obvious shape differences between
the two subject’s limbic structures. We simulated 30 versions of
each group by adding Gaussian noise Nð0;0:01Þ to each group’s
surface, thereby creating two distinct populations. HyperSPHARM
and SPHARM are then used to reconstruct the surfaces. We test
for group differences by carrying out the Hotelling T2 test at the
voxel level on the HyperSPHARM/SPHARM-parameterized sur-
faces. The resulting p-values were corrected for multiple compar-
isons across all vertices using false discovery rate (FDR)
(Benjamini and Hochberg, 1995), and are projected onto the aver-
age of the 60 simulated surfaces for each method (Fig. 8). We
detect group differences using each method, with all voxels being
statistically significant (p-value < 1e� 10), which is what we
expect given the manifest shape differences between the two
populations.

In the second simulation experiment, we looked at two distinct
groups that barely have any shape differences. We selected the
right hippocampus and right amygdala of subject 10. The first
group was formed by simulating 30 versions of subject 10’s right
limbic structures by adding Gaussian noise Nð0;0:01Þ to the sur-
face. The second group was formed by simulating 30 versions using
Gaussian noise Nð0;0:16Þ. Fig. 9 displays a member of each group.
HyperSPHARM and SPHARM are then used to reconstruct the
RM (c) Error

RM (f) Error

s for subjects 10 and 68. The vertex-wise reconstruction errors are also plotted.



Table 2
Optimal radius for a given truncation order N.

N W Optimal po MSEinterp
HSH

2 14 24 5.08
4 55 23 0.424
6 140 23 0.413

Fig. 6. We rotate the MIDAS by some angle to see how the subsequent
HyperSPHARM reconstruction is affected. Plot of MSEinterp

HSH as a function of the
rotation angle is shown above. The HyperSPHARM coefficients are estimated using
the population template, and then used to interpolate along the hyperspherical
mesh hysph_mesh_interp. HyperSPHARM parameters are N ¼ 6 and po ¼ 23. The plot
confirms the rotational variance of HyperSPHARM, which is due to stereographic
projection being dependent on rotation.
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surfaces. We test for group differences by carrying out the
Hotelling T2 test at the voxel level on the HyperSPHARM/
SPHARM-parameterized surfaces. The resulting p-values were cor-
rected for multiple comparisons across all vertices using FDR, and
are projected onto the average of the 60 simulated surfaces for
each method (Fig. 10). No group differences are detected using
each method, with all voxels being statistically insignificant (p-
value = 1), so indicating that both methods will not distinguish
between two groups that are nearly identical in shape.

Fig. 11 plots the number of statistically significant voxels
obtained by HyperSPHARM/SPHARM for each simulation experi-
ments as a function of the truncation order, indicating that the
(a) Group 1

Fig. 7. Simulation Experiment I: We select the right hippocampus and right amygdala of
by adding Gaussian noise Nð0;0:01Þ to each subject’s surface.
same detection results can be achieved using lower order
HyperSPHARM/SPHARM expansions. It should be noted that
L ¼ 2 SPHARM reconstruction greatly over-smoothens the MIDAS,
as shown in Fig. 12, while L ¼ 10 moderately over-smoothens.
For this reason, we feel L ¼ 20 is the most appropriate truncation
order for SPHARM.

These two experiments demonstrate that HyperSPHARM is cap-
able of detecting sufficiently large shape differences, and further
demonstrate that what HyperSPHARM detected in the real data
is of a sufficiently large shape difference. Otherwise, it would not
have the detected group-wise differences in the first place.

Support vector machines. For each simulation experiment, we
also employed the HyperSPHARM coefficients as features of object
classification using linear support vector machines (SVM). Linear
SVM (Cortes and Vapnik, 1995) seek an optimally separating
hyperplane to distinguish between two classes within a feature
space. In our situation, the shape invariants (i.e. HyperSPHARM
and SPHARM coefficients) form the feature space. Likewise, the
binary classes in each experiment are the two distinct groups.
We used MATLAB Statistics Toolbox (MATLAB, 2013) to perform
the SVM analysis.

Each surface is characterized by 420 HyperSPHARM features
and 2646 SPHARM features. The number of features for each
method is too large to train a good model given our total number
of surfaces, i.e. 60. Feature selection is needed.

Following (Shen et al., 2004), we test the effectiveness of the
features by employing a simple two-sample t-test on each feature.
We obtain a p-value associated with the test statistic

T ¼ Y1 � Y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1=N1 þ s2
2=N2

q ; ð9Þ

where N1 and N2 are the sample sizes, Y1 and Y2 are the sample
means, s2

1 and s2
2 are the sample variances, and the samples are

the values of each feature across all subjects in the two respective
classes. A lower p-value implies stronger group differences sta-
tistically and corresponds to a more significant feature.

We performed a leave-one-out test for each simulated surface,
where we selected the first n features ordered by p-value asso-
ciated with t-test applied to each leave-one-out training set sepa-
rately. Hence, different leave-one-out tests may have different
numbers of significant features. For an impartial comparison
between SPHARM and HyperSPHARM, we make sure the number
of significant features expended by each method is approximately
the same. In the first simulation experiment, the outputting of 1–2
significant features for each leave-one-out test by feature selection
yielded a 100% classification accuracy for both SPHARM and
(b) Group 2

two subjects that exhibit manifest shape differences, and create two distinct groups



(a) HyperSPHARM (b) SPHARM

Fig. 8. Simulation Experiment I results: We carry out a Hotelling T2 test to see if HyperSPHARM/SPHARM can distinguish between two groups that have manifest shape
differences. The p-values after FDR correction (i.e. q-value) are projected back onto the template, which is the average of the 60 simulated surfaces. Group differences are
detected using each method, with all voxels statistically significant.

(a) Group 1 (b) Group 2

Fig. 9. Simulation Experiment II: We select the right hippocampus and right amygdala of a subject. We create two distinct groups that barely have any shape differences. The
first group was formed by adding Gaussian noise Nð0;0:01Þ to the surface, while the second was created using Nð0;0:16Þ.
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HyperSPHARM. Likewise, the outputting of 40–44 significant fea-
tures for each leave-one-out test also resulted in a 100% classifica-
tion accuracy for both methods. In the second simulation
experiment, no significant features were yielded for either method.

The linear SVM results are consistent to those of the Hotelling
T2 test, and these two differing analyses demonstrate that both
the HyperSPHARM-parameterized surface coordinates and
HyperSPHARM coefficients are able to distinguish between
two groups that exhibit sufficiently large shape differences. Most
importantly, according to both the Hotelling T2 and SVM results,
HyperSPHARM’s performance is comparable to SPHARM in a con-
trolled simulation study.
5.3. HyperSPHARM reconstructions and comparison to SPHARM

HyperSPHARM was used to reconstruct the MIDAS comprising
the left and right hippocampus and amygdala for 68 subjects. For
the entire MIDAS, the HyperSPHARM parameters were radius
po ¼ 23 and N ¼ 6, which results in W ¼ 140 HSH expansion coeffi-
cients for each si. So a total of 420 HSH coefficients parameterize
the entire MIDAS. SPHARM has to be applied to each individual
structure forming the MIDAS. The L ¼ 20 SPHARM representation
was used, which results in 1323 SPHARM coefficients parame-
terizing each cortical structure and 5292 parameterizing the entire
MIDAS.
Fig. 5 shows the HyperSPHARM-reconstructed surfaces for two
different subjects. The length of the residual is also computed and
plotted on the reconstructed surfaces. The MSEHSH for the first sub-
ject is on the order of 10�6 while that of the second subject is 10�2.

Tables 3 and 4 display the reconstruction errors of SPHARM and
HyperSPHARM representations, respectively. According to the two
tables, MSESPHARM <MSEHSH for the amygdalae, which is not surpris-
ing since SPHARM performs very well on approximately spherical
objects. However, MSESPHARM > MSEHSH for the hippocampi, which
significantly deviate from a spherical-like shape. An impartial com-
parison of the interpolation errors between SPHARM and
HyperSPHARM is difficult because a different interpolating mesh
was used for each method. However, HyperSPHARM’s interpolation

error MSEinterp
HSH is reasonably low, and much smaller and less vari-

able than SPHARM’s interpolation error in the hippocampi. Hence,
we can conclude that HyperSPHARM is appropriate as an
interpolating scheme.
5.4. HyperSPHARM as a data smoothing technique: influence of age
and gender

HSH and SPHARM representations were obtained for hippocam-
pus and amygdala surfaces of all 68 subjects. Such representations
behave like a surface smoothing technique that removes high fre-
quency noise, as shown in Fig. 5. The 69 reconstructed surfaces are



(a) HyperSPHARM (b) SPHARM

Fig. 10. Simulation Experiment II results: We carry out a Hotelling T2 test to see if HyperSPHARM/SPHARM can distinguish between two groups that are nearly identical in
shape. The p-values after FDR correction (i.e. q-value) are projected back onto the template, which is the average of the 60 simulated surfaces. No group differences are
detected using each method, with all voxels statistically insignificant.
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(b) SPHARM

Fig. 11. Plot of the percentage of statistically significant voxels as a function of truncation order for each simulation experiments using HyperSPHARM and SPHARM.
Experiment I involves Hotelling T2 analysis of two distinct groups characterized by major shape differences between them, while Experiment II looks at two distinct groups
characterized by very little shape differences between them.
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then averaged to produce the population specific template. The 3D
displacement vector field from the template to individual surface is
taken as the response vector in the multivariate general linear
model (MGLM) (Chung et al., 2010) and its T-statistic is computed
and thresholded at p < 0:05. The random field based multiple com-
parisons are performed to give stringent results. Neither method
detected gender effects on any of the structures (see Fig. 13).
However, both methods detected statistically significant age
effects, mainly in the tail regions of the hippocampus and
small portions of the amygdala (see Fig. 14). The statistical results
given by both HyperSPHARM and SPHARM are nearly identical.

5.5. Hotelling T2 Test on HyperSPHARM coefficients to test for gender
effects

We then carried out the Hotelling T2 test on the HyperSPHARM/
SPHARM coefficients between each gender to see if any of the
coefficients were statistically significant in detecting gender
effects. For HyperSPHARM, each subject’s coefficient matrix is
140� 3, whereas for SPHARM each cortical structure of each sub-
ject is characterized by a 441� 3 matrix. Merging each subject’s
SPHARM coefficients across all four cortical structures results in a
1764� 3 matrix. The resulting statistical analysis yielded no sta-
tistically significant coefficients (corrected for multiple comparison
using FDR at 0.01 level) for both SPHARM and HyperSPHARM.
Hence, not a single coefficient from either method was found to
significantly differentiate between gender. Such a result is
consistent with the voxel-wise MGLM analysis, which detected
no gender effects in any of the structures.
5.6. Support vector machine classification of gender

SPHARM parameterization of the hippocampus has been uti-
lized in a support vector machine setting to classify schizophrenia



(a) L = 2 SPHARM (b) L = 10 SPHARM

Fig. 12. The SPHARM results for Simulation Experiment I using L ¼ 2 and L ¼ 10. Although consistent with L ¼ 20 SPHARM results, the lower-order SPHARM representations
over-smooth the MIDAS, especially L ¼ 2.

Table 3
SPHARM mean squared error.

MSESPHARM MSEinterp
SPHARM

Left Amygdala 0.0843 ± 0.0183 0.0947 ± 0.0195
Right Amygdala 0.0941 ± 0.0165 0.103 ± 0.0171
Left Hippocampus 0.364 ± 0.732 3.91 ± 3.42
Right Hippocampus 0.192 ± 0.314 1.28 ± 4.82

The mean squared error (MSE) and its standard deviation of reconstruction for
SPHARM L ¼ 20 reconstruction. MSE is computed over all mesh vertices and aver-
aged over all 68 subjects. Order 20 SPHARM representation expends 212 ¼ 441
basis functions for each surface coordinate of each cortical structure.

Table 4
HyperSPHARM mean squared error.

MSEHSH MSEinterp
HSH

Left Amygdala 0.147 ± 0.609 NA
Right Amygdala 0.148 ± 0.632 NA
Left Hippocampus 0.129 ± 0.511 NA
Right Hippocampus 0.127 ± 0.504 NA
hysph_mesh_interp NA 0.833 ± 1.09

The mean squared error (MSE) and its standard deviation of reconstruction for
HyperSPHARM N ¼ 6 reconstruction. MSE is computed over all mesh vertices and
averaged over all 68 subjects. Order 6 HyperSPHARM representation expends 140
basis functions for each surface coordinate of MIDUS. NA stands for ‘Not Applicable’.

(a) HyperSPHARM

Fig. 13. Statistical testing for gender effects in the hippocampi and amygdalae thresholde
No statistically significant gender effect was detected using either method.
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(Shen et al., 2004) and Alzheimer’s disease (Gutman et al., 2009).
We now assess the ability of the HyperSPHARM coefficients, which
form a global shape descriptor of the MIDAS, to classify gender in
the hippocampi and amygdalae using linear SVM. For gender, there
are 22 males and 46 females.

In order to make an impartial comparison to HyperSPHARM,
SPHARM SVM analysis is done on the MIDAS as a whole. Hence,
we combine the SPHARM coefficients across all four cortical struc-
tures. We define the classification accuracy rate as the probability
that a class is correctly identified when each subject is left out
once.

Each subject is characterized by 420 HyperSPHARM features
and 5292 SPHARM features. The number of features for each
method is too large to train a good model given our number of sub-
jects. We employ feature selection in the same manner as done for
the simulation experiments.

The yielding of 2–11 statistically significant features for each
leave-one-out test by feature selection resulted in a 57% gender
classification accuracy for both HyperSPHARM and SPHARM.
Likewise, the outputting of 19–37 significant features for each
leave-one-out test yielded a gender classification accuracy of 50%
and 54% for HyperSPHARM and SPHARM, respectively.
(b) SPHARM

d at p < 0:05 (corrected). A T-statistic exceeding 4.8 indicates statistical significance.



(a) HyperSPHARM (b) SPHARM

Fig. 14. Statistical testing for age effects in the hippocampi and amygdalae thresholded at p < 0:05 (corrected). A T-statistic exceeding 4.8 indicates statistical significance.
Statistically significant age effects were detected, mainly in the tail regions of the hippocampi, using both methods.
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Females make up a little more than 2=3 of the sample size, so
68% can be viewed as the baseline classification accuracy rate.
Both HyperSPHARM’s and SPHARM’s classification accuracies are
well below that, indicating that the coefficients are unable to well
classify gender based on shape differences in the limbic structures,
alone. Such an observation is consistent with the MGLM analysis of
the displacement vector field and Hotelling T2 test on expansion
coefficients, which detected no significant gender effects in the
limbic structures.

6. Discussion

The results from the MGLM analysis, Hotelling T2 test on expan-
sion coefficients, and SVM classification suggest that gender-driven
shape differences in the limbic structures are negligible. However,
it could also be that the limbic structures exhibit highly localized
shape differences between genders; both HyperSPHARM and
SPHARM, being global bases, would be unable to detect such
finely-drawn differences. Localization power, which can be
obtained via wavelets, is needed to detect subtle shape differences.

Based on our analyses, HyperSPHARM and SPHARM essentially
yield the same results. The power of HyperSPHARM, however, lies
in its simplicity, versatility, and efficiency. It is simple and fast
because it does not require any sort of laborious pre-processing
(e.g. surface flattening): mathematically, it is much easier to map
a 3D volume onto a 4D sphere than a 3D sphere. HyperSPHARM
is versatile because it can handle any geometry, independent of
topology, with relative ease. SPHARM, however, is confined to sin-
gle connected structures. Most significantly, HyperSPHARM pos-
sess greater computational efficiency than SPHARM because it
expends fewer basis functions in parameterizing multiple disjoint
objects.

Studying and quantifying the development of anatomical struc-
tures over time is important in medical image analysis. The topol-
ogy of anatomical structures can change during the course of
human growth, as is evidenced by the hyoid bone. At birth, the
(human) hyoid bone consists of three disjoint components, but
these components will eventually fuse together at around age 40.
In other words, before the age of 40 the hyoid bone constitutes a
MIDAS, but then develops into a single connected surface. In a
developmental study on the hyoid bone then, such longitudinal
bone fusion would not be an issue for HyperSPHARM because of
its ability to treat multiple disjoint structures as a single entity.
SPHARM, however, will initially parameterize three different struc-
tures, but eventually only a single structure once the components
have fused. Consequently, there will be a disparity in the number
of SPHARM coefficients between the two developmental stages
(i.e. 3 vs. 1), which poses significant statistical challenges in terms
of comparison of the coefficients between the two stages.

Another advantage of HyperSPHARM with regards to
developmental studies is illustrated by the following case exam-
ple: consider a longitudinal study of the hyoid bone that acquires
measurements of its bone density over time. The hyoid bone’s sur-
face coordinates x; y, and z and bone density constitute 4D data,
which can then be stereographically projected onto a 5D hyper-
sphere. Consequently, we will obtain a concurrent mathematical
representation of bone density and surface coordinates in terms
of the 5D HSH that can be used to examine the hyoid bone’s surface
evolution in terms of bone density.

7. Conclusion

In this paper, we presented a new analytic approach for
representing multiple disconnected shapes using a single parame-
terization, which is a linear combination of HSH. The method was
used to parameterize four disconnected subcortical structures (two
amygdalae and two hippocampi), and was found to be more effi-
cient than SPHARM because its parameterization expended fewer
basis functions. The resulting HSH coefficients are global and con-
tain information about all four structures as a whole, so they do not
provide any local shape information. HyperSPHARM, however,
could be adapted to sparse techniques such as wavelets, which will
be explored in future. Despite HSH being a global basis, by recon-
structing surfaces at each voxel and using HSH as a way to filter out
high frequency noise, it was possible to use HyperSPHARM for local
inference at vertex level as shown by our application. Although the
individual image volumes are registered to a template using diffeo-
morphic warping (Avants et al., 2008), we might only need an
affine registration to initially align the structures and simply match
the coefficients as in SPHARM (Chung et al., 2010), but the issue is
left as a future study. Additional future work includes investigating
whether the HyperSPHARM coefficients (employed in an object
classification setting) can boost the power of discrimination for
clinical populations.
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Appendix A. Generalized spherical harmonics

Consider the d-dimensional unit sphere Sd�1 existing in Rd. The

eigenfuctions of the Laplace–Beltrami operator on Sd�1 are the d-di-
mensional spherical harmonics Ykj...lmðXd�1Þ:

DSd�1 Ykj...lmðXd�1Þ ¼ �lðlþ d� 2ÞYkj...lmðXd�1Þ;

where Xd�1 ¼ ðgd�3; . . . ;g1; h;/Þ obey ðgd�3 2 ½0;p�; . . . ;g1 2 ½0;p�;
h 2 ½0;p�;/ 2 ½0;2p�Þ and are the set of angles defining a d-dimen-
sional sphere.

The d-dimensional spherical harmonics are defined as
(Aquilanti et al., 1997)

Ykj...lmðXd�1Þ ¼ 2jþd
2�2 jþ d

2
� 2

� �
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ d� 2Þðk� jÞ!
pðkþ jþ d� 3Þ!

s

� sinjðgd�3Þ � C
jþd

2�1
k�j ðcos gd�3Þ Yj...lmðXd�2Þ;

where Yj...lmðXd�2Þ are the ðd� 1Þ spherical harmonics and C
jþd

2�1
k�j

are the Gegenbauer polynomials. The index k is the grand orbital
angular momentum quantum number, and these ðd� 1Þ integers
obey the conditions k ¼ 0;1;2; . . . ;0 6 j 6 k; 0 6 l 6 j, and
�l 6 m 6 l. When d ¼ 4;Ykj...lmðXd�1Þ ¼ Zm

nlðb; h;/Þ, i.e. the 4D HSH.
The d-dimensional spherical harmonics form an orthonormal basis

on Sd�1.
Appendix B. Generalized stereographic projection

For centuries, cartographers have struggled with the problem of
how to represent the spherical-like surface of the Earth on a flat
sheet of paper. One way to achieve this is via stereographic projec-
tion. To illustrate it, consider the simpler 3D case. The goal of
stereographic projection is to associate each 2D point ðu;vÞ in
the equatorial plane with a unique point P ¼ ðx; y; zÞ on the unit
sphere. To achieve this, we construct the 3D line that passes
through the north pole N ¼ ð0;0;1Þ of the sphere and the given
point ðu;v ;0Þ. This line touches the surface of the sphere at exactly
one point, P, so the point P ¼ ðx; y; zÞ is the stereographic projection
of the point ðu;vÞ.

We will now derive the relationship between the coordinates of

a ðd� 1Þ-dimensional Cartesian lattice and those of the sphere Sd�1

based on stereographic projection. The d-dimensional sphere Sd�1

of radius q is defined by the coordinates

u1 ¼ q singd�3 � � � sing1 sin h cos /

u2 ¼ q singd�3 � � � sing1 sin h sin /

u3 ¼ q singd�3 � � � sing1 cos h

..

.

ud�1 ¼ q sin gd�3 cos gd�4

ud ¼ q cos gd�3:

The ðd� 1Þ-dimensional Cartesian lattice is defined by the coordi-
nates x ¼ ðx1; x2; . . . ; xd�1Þ. The d-dimensional line that passes

through the north pole of Sd�1; ð0; 0;0; . . . ;qÞ, and some point in
the Cartesian lattice is parameterized as
u1 ¼ tx1

u2 ¼ tx2

u3 ¼ tx3

..

.

ud ¼ qð1� tÞ;

where �1 < t <1. The line touches Sd�1 when t satisfies

q2 ¼ u2
1 þ u2

2 þ . . .þ u2
d ¼ t2ðx2

1 þ x2
2 þ . . .þ x2

d�1Þ þ q2ð1� 2t þ t2Þ;

whose solution is

t ¼ 2q2

jjxjj2 þ q2
:

Note that t ¼ 0 is a trivial solution because it corresponds to north

pole of Sd�1. Upon substitution, the relationship between the two
coordinate spaces is

u1 ¼ 2q2x1

jjxjj2þq2

u2 ¼ 2q2x2

jjxjj2þq2

u3 ¼ 2q2x3

jjxjj2þq2

..

.

ud ¼ qðjjxjj2þq2Þ
jjxjj2þq2 :
References

Angenent, S., Hacker, S., Tannenbaum, A., Kikinis, R., 1999. On the laplace-beltrami
operator and brain surface flattening. IEEE Trans. Med. Imaging 18, 700–711.

Aquilanti, V., Cavalli, S., Coletti, C., 1997. The d-dimensional hydrogen atom:
hyperspherical harmonics as momentum space orbitals and alternative
Sturmian basis sets. Chem. Phys.

Avants, B., Epstein, C., Grossman, M., Gee, J., 2008. Symmetric diffeomorphic image
registration with cross-correlation: evaluating automated labeling of elderly
and neurodegenerative brain. Med. Image Anal. 12, 26–41.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. Roy. Stat. Soc. 57, 289–300.

Bonvallet, B., Griffin, N., Li, J., 2007. 3D shape descriptors: 4D hyperspherical
harmonics ‘An exploration into the fourth dimension’. In: IASTED International
Conference on Graphics and Visualization in Engineering, pp. 113–116.

Brechbuhler, C., Gerig, G., Kubler, O., 1995. Parametrization of closed surfaces for 3d
shape description. Comput. Vision Image Understand. 61, 154–170.

Chung, M.K., Dalton, K.M., Shen, L., Evans, A.C., Davidson, R.J., 2007. Weighted
Fourier series representation and its application to quantifying the amount of
gray matter. IEEE Trans. Med. Imaging 26, 566–581.

Chung, M., Worsley, K., Brendon, M., Dalton, K., Davidson, R., 2010. General
multivariate linear modeling of surface shapes using SurfStat. NeuroImage 53,
491–505.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297.
Domokos, G., 1967. Four-dimensional symmetry. Phys. Rev. 159, 1387–1403.
Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex

from magnetic resonance imagings. PNAS 97, 11050–11055.
Fock, V., 1935. Zur theorie des wasserstoffatoms. Z. Phys. 98, 145–154.
Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J., 2001. Shape analysis of

brain ventricles using spharm. In: MMBIA, pp. 171–178.
Gu, X., Wang, Y., Chan, T., Thompson, T., Yau, S., 2004. Genus zero surface conformal

mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging
23, 1–10.

Gutman, B., Wang, Y., Morra, J., Toga, A.W., Thompson, P.M., 2009. Disease
classification with hippocampal shape invariants. Hippocampus 19, 572–578.

Hosseinbor, A.P., Chung, M.K., Schaefer, S.M., van Reekum C.M., Peschke-Schmitz, L.,
Sutterer, M., Alexander, A.L., Davidson, R.J., 2013. 4D hyperspherical harmonic
(HyperSPHARM) representation of multiple disconnected brain subcortical
structures. In: MICCAI, pp. 598–605.

Hurdal, M.K., Stephenson, K., 2004. Cortical cartography using the discrete
conformal approach of circle packings. NeuroImage 23, S119–S128.

Koay, C.G., 2011. A simple scheme for generating nearly uniform distribution of
antipodally symmetric points on the unit sphere. J. Comput. Sci. 2, 377–381.

Koay, C.G., 2014a. Distributing points uniformly on the unit sphere under a mirror
reflection symmetry constraint. J. Comput. Sci.

Koay, C.G., 2014b. Pseudometrically constrained centroidal voronoi tessellations:
generating uniform antipodally symmetric points on the unit sphere with a
novel acceleration strategy and its applications to diffusion and three-
dimensional radial MRI. Magn. Reson. Med. 71, 723–734.

http://refhub.elsevier.com/S1361-8415(15)00033-X/h0005
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0005
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0010
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0010
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0010
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0015
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0015
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0015
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0020
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0020
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0030
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0030
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0035
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0035
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0035
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0040
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0040
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0040
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0045
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0050
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0055
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0055
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0060
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0070
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0070
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0070
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0075
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0075
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0085
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0085
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0090
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0090
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0095
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0095
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0100
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0100
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0100
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0100


A. Pasha Hosseinbor et al. / Medical Image Analysis 22 (2015) 89–101 101
Koay, C.G., Ozarslan, E., Basser, P.J., 2009. A signal transformational framework for
breaking the noise floor and its applications in MRI. J. Magn. Reson. 197, 108–
119.

Lorensen, W., Cline, H., 1987. Marching cubes: a high resolution 3D surface
construction algorithm. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 163–169.

Mason, J.K., Schuh, C.A., 2008. Hyperspherical harmonics for the representation of
crystallographic texture. Acta Mater. 56, 6141–6155.

MATLAB, 2013. version 8.1.0.604 (R2013a). The MathWorks Inc., Natick,
Massachusetts.

Shen, L., Ford, J., Makedon, F., Saykin, A., 2004. Surface-based approach for
classification of 3D neuroanatomical structures. Intell. Data Anal. 8, 519–542.

Smith, S., 2002. Fast robust automated brain extraction. Human Brain Mapping 17,
143–155.
Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig,
G., 2006. Framework for the statistical shape analysis of brain structures using
spharm-pdm. In: Insight Journal, Special Edition on the Open Science Workshop
at MICCAI.

Thomson, J.J., 1904. On the structure of the atom: an investigation of the stability
and periods of oscillation of a number of corpuscles arranged at equal intervals
around the circumference of a circle; with application of the results to the
theory of atomic structure. Philos. Mag. 7, 237–265.

Timsari, B., Leahy, R., 2000. An optimization method for creating semi-isometric flat
maps of the cerebral cortex. In: The Proceedings of SPIE, Medical Imaging.

Van Reekum, C., Schaefer, S., Lapate, R., Norris, C., Greischar, L., Davidson, R., 2011.
Aging is associated with positive responding to neutral information but reduced
recovery from negative information. Social Cognit. Affect. Neurosci. 6, 177–185.

http://refhub.elsevier.com/S1361-8415(15)00033-X/h0105
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0105
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0105
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0115
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0115
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0125
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0125
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0130
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0130
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0140
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0140
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0140
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0140
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0150
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0150
http://refhub.elsevier.com/S1361-8415(15)00033-X/h0150

	4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: A holistic treatment of multiple disconnected anatomical structures
	1 Introduction
	2 4D hyperspherical harmonics
	3 HyperSPHARM algorithm
	3.1 Translation
	3.2 Stereographic projection of 3D MIDAS’s surface coordinates onto 4D hypersphere
	3.3 HSH expansion of MIDAS’s surface coordinates
	3.4 Numerical implementation
	3.5 Interpolation

	4 Data processing
	4.1 Dataset
	4.2 Establishment of correspondence
	4.3 SPHARM processing
	4.4 Selection of optimal ? 

	5 Experiments and results
	5.1 Rotational variance of HyperSPHARM
	5.2 Simulation study
	5.3 HyperSPHARM reconstructions and comparison to SPHARM
	5.4 HyperSPHARM as a data smoothing technique: influence of age and gender
	5.5 Hotelling ? Test on HyperSPHARM coefficients to test for gender effects
	5.6 Support vector machine classification of gender

	6 Discussion
	7 Conclusion
	Acknowledgement
	Appendix A Generalized spherical harmonics
	Appendix B Generalized stereographic projection
	References


