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ABSTRACT

Sliding and tapered sliding window methods are the most
common approaches in computing dynamic correlations be-
tween brain regions. However, due to data acquisition and
physiological artifacts in resting-state fMRI, the sidelobes
of the window functions in spectral domain will cause high-
frequency fluctuations in dynamic correlations. To address
the problem, we propose to define the heat kernel, a general-
ization of the Gaussian kernel, on a circle continuously with-
out boundary. The windowless dynamic correlations are then
computed by the weighted cosine series expansion, where the
weights are related by the heat kernel. The proposed method
is applied to the study of dynamic interhemispheric connec-
tivity in the human brain in identifying the state space more
accurately than the existing window methods.

Index Terms— Dynamic functional brain connectivity,
windowless dynamic correlation, heat kernel, sliding window
method, resting state fMRI

1. INTRODUCTION

The windowed dynamic correlation is one of popular ap-
proaches to estimate dynamically changing functional brain
connectivity [1, 2]. The sliding window (SW) method us-
ing a square window [3, 4, 5] is the most commonly used
windowed methods. To remedy the zig-zag patterns in SW
method caused by the use of square windows, the tapered
sliding window (TSW) [4, 6] Hamming window [7] and
Tukey window [8] methods were proposed. However, the
sidelobes of the window functions in spectral domain [9] will
cause high-frequency fluctuations in the dynamic correlations
in all these methods. Instead of using a window function with
finite support, we propose to use the heat kernel in computing
dynamic correlations over the whole domain of the data. We
show that the heat kernel method is better than the SW and
TSW-methods with respect to the underlying state space. The
main contributions of the paper are as follows. 1) We present
a novel technique to compute the dynamic correlations with-
out finite windows that cause the zig-zag patterns. 2) The
proposed method is applied in determining the state space
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in the dynamic interhemispheric connectivity of resting-state
fMRI.

2. METHODS

2.1. Heat kernel convolution on a circle

Diffusion on [0, 1]. Consider 1D heat diffusion of time series
data f(t) on unit interval [0, 1]:

∂

∂s
h(t, s) =

∂2

∂t2
h(t, s) (1)

at diffusion time s with initial condition h(t, s = 0) = f(t).
The unique solution is given by the weighted cosine series
representation [11]

h(t, s) =

∞∑
l=0

e−l
2π2scflψl(t), cfl =

∫ 1

0

f(t)ψl(t)dt (2)

where ψ0(t) = 1, ψl(t) =
√
2 cos(lπt) are the cosine basis

and cfl are the cosine series coefficients of f .

Diffusion on a circle. To avoid the boundary effect in SW-
and TSW-methods [10], we project f(t) onto the circle by
connecting its mirror reflection in the following way:

g(t) = f(t) if t ∈ [0, 1], g(t) = f(2− t) if t ∈ [1, 2]

Then g is a periodic function defined on the circle C with
circumference 2. Then we solve (1) with initial condition
h(t, s = 0) = g(t) on circle C. It can be shown that solu-
tion is given by

h(t, s) =

∫ 1

0

Ks(t, t
′)f(t′)dt′, (3)

where heat kernel Ks(t, t
′) is given by

Ks(t, t
′) =

∞∑
l=0

e−l
2π2sψl(t)ψl(t

′). (4)

The parameter s is the bandwidth of the heat kernel and con-
trols the amount of diffusion. Unlike window functions, there
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Fig. 1. Left: heat kernels Ks(t, t
′) at t = 0 with diffusion

time or bandwidth s. Right: The heat kernel with s =0.1
has thicker tails compared to the Gaussian kernel of same
FWHM.

is no endpoint or boundary in the heat kernel defined on a cir-
cle. On the circle, which is a curved manifold, heat kernel has
a thicker tail compared to truncated Gaussian kernel (Figure
1). As bandwidth s increases, the tail regions get thicker and
eventually we have lims→∞Ks(t, t

′) = 1/2 [12].

2.2. Windowless dynamic correlation

For time series data x(t) and y(t) in interval [0, 1], instead of
using square window, we propose to use generalized kernel
w(t, t′) satisfying

∫ 1

0
w(t, t′)dt′ = 1 for any t. The data will

be mirror reflected to form periodic data on circle C. With the
normalized kernel, we define the windowless dynamic corre-
lation between x(t) and y(t) as

rx,y(t) =

∫ 1

0
w(t, t′)x(t′)y(t′)dt′ − µx(t)µy(t)

σx(t)σy(t)
, (5)

where µx(t) =
∫ 1

0
w(t, t′)x(t′)dt′ and

σ2
x(t) =

∫ 1

0

w(t, t′)x2(t′)dt′ − µ2
x(t)

are the dynamic mean and variance of x(t). µy(t) and σ2
y(t)

are defined similarly. Due to the symmetry, the integral is not
taken over the circle C, i.e., [0, 2].

Suppose cxl, cyl, cxyl, cxxl and cyyl denote the cosine se-
ries coefficients of x(t), y(t), x(t)y(t), x(t)x(t) and y(t)y(t)
in representing them as, for instance,

x(t) =

∞∑
l=0

cxlψl(t), x(t)y(t) =

∞∑
l=0

cxylψl(t).

If we use heat kernel w(t, t′) = Ks(t, t
′), correlation (5) can

be written as

rx,y(t) =

∑∞
l=0 e

−l2π2scxylψl(t)− µx(t)µy(t)
σx(t)σy(t)

,

Fig. 2. Left: brain parcellation using AAL template. The
hemispherically paired brain regions are displayed with the
same color. Right: average fMRI signals within left (region
1) and right (region 2) precentral gyri.

with

µx(t) =

∞∑
l=0

e−l
2π2scxlψl(t),

σ2
x(t) =

∞∑
l=0

e−l
2π2scxxlψl(t)− µ2

x(t).

In numerical implementation, the coefficients cxxl, cyyl and
cxyl can be obtained from cxl and cyl through the convolution
theory of cosine series. Then (5) can be computed using only
the cxl and cyl coefficients, which are estimated via the least
squares method [11].

3. APPLICATION

3.1. Resting-state fMRI data and preprocessing

Resting-state (rs) functional magnetic resonance images (rs-
fMRI) were collected on a 3T MRI scanner (Discovery
MR750, General Electric Medical Systems, Milwaukee, WI,
USA) with a 32-channel RF head coil array. T1-weighted
structural images (1 mm3 voxels) were also acquired axially
with an isotropic 3D Bravo sequence (TE = 3.2 ms, TR = 8.2
ms, TI = 450 ms, flip angle = 12◦). The functional scans were
undergone a series of data reduction, correction, registration,
and spatial and temporal preprocessing [13]. The resulting
rs-fMRI consists of 91 × 109 × 91 isotropic voxels at 295
time points. Excluding one subject that has no fMRI signals
in two brain regions, the average fMRI signals of 479 healthy
subjects ranging in age from 13 to 25 years were used in our
study.

We employed the Automated Anatomical Labeling (AAL)
brain template to parcellate the brain volume into 116 non-
overlapping anatomical regions [14]. The fMRI data were
averaged across voxels within each brain region resulting
in 116 average fMRI signals with 295 time points for each
subject. Figure 2 displays two representative average fMRI at
two brain regions.
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Fig. 3. Dynamic correlations (top) between the average fMRI
signals of left and right precentral gyri and the corresponding
state space (bottom) using the SW-, TSW- and heat kernel
methods.

3.2. Dynamic interhemispheric connectivity

For each subject, the 116 averaged rs-fMRI signals were
scaled to fit to unit interval [0, 1]. To reduce the boundary
effect, we continuously connected fMRI with its mirror re-
flection at the end points t = 0 and t = 1. Figure 2 displays
the rs-fMRI in the left and right precentral gyri connected
at the first (t = 0) and the 295-th scan (t = 1). This has
the effect of making fMRI a circular data on a circle with
circumference 2. Excluding the 8 vermis regions that do not
belong to the left or right brain hemisphere, we computed the
54 dynamic interhemispheric correlations from the remaining
108 fMRI time series.

In previous studies [4, 6], square window of size 22 TRs
convolved with a Gaussian kernel with bandwidth 3 TRs was
used in the TSW-method. Following the literature, the SW-
method with size 22 TRs and heat kernel method with band-
width s = 5×10−4 (FWHM 22 TRs) were used in this study.

Figure 3 displays the result of the dynamic correlation be-
tween the left and right precentral gyri using the three meth-
ods. The SW-method shows the severe zig-zag pattern caused
by the introduction of discrete window. The TSW-method
was able to remedy such zig-zag patterns but still showing
rapid changes from one time point to the next. On the other
hand, the heat kernel method has much fewer high-frequency
fluctuations and estimates the correlation more smoothly over
time, which is biologically more realistic.

3.3. Estimation of distinct state space

Rs-fMRI exhibits three distinct transient connectivity patterns
that repetitively occur throughout the time course [15]. These
discrete states serve as the basis of investigating brain con-
nectivity. They are reliably observed across different sub-
jects, groups and sessions [16, 17]. It has been shown that
additional measure of the fluctuations from one state to the
next state provides meaningful between-group variations [1,
18] and clinical status [19] and can be used as a potential
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Fig. 4. Accuracy of state space estimation of the SW-, TSW-
and heat kernel methods for different standard deviation σ of
noise. Average of 100 independent simulations was plotted.

biomarker for future studies. Such state spaces were first
identified using the k-means clustering [4] and subsequently
adopted by many others as the standard baseline method [1,
20, 5, 19].

In this study, we apply the baseline k-means clustering
to identify the distinct states in interhemispheric connectiv-
ity and compare the performance of the proposed method
against the SW- and TSW-methods. For each interhemi-
spheric pair, the estimated dynamic correlations at 295 time
points were concatenated across 479 subjects, which resulted
in 295·479 = 141305 total number of correlations that served
as the input to k-means clustering. In numerical implementa-
tion of k-means clustering, we repeated clustering 1000 times
with different initial centroids and chose the best result with
the lowest sum of squared distances. The clustering results
are shown in Figure 3, where the heat kernel method has the
least number of state changes, i.e., transitions.

3.4. Validation

We validated the proposed method in simulation studies with
ground truths. Assume there are 50 subjects, and each subject
has two time series xi and yi of n = 295 data points. We
first assigned the ground truth of state space for each subject.
For a small number of transitions, we divided the 295 time
points into 10 segments assigned with same state randomly
chosen from States 1, 2 and 3. We further assumed there is
no transition between States 1 and 3 according to the transi-
tion probability of real data (Figure 7). We simulated xi as
identical and independently distributed multivariate normal
across i, i.e., xi ∼ N(0, In). Let yi = xi for State 1 and
yi = −xi for State 1 which give correlation values 1 and -1
respectively. For State 2, let yi ∼ N(0, In) independent to
xi for correlation near 0. Then, we computed the dynamic
correlation between noisy time series xi + N(0, σIn) and
yi + N(0, σIn) by three methods and applied the k-means
clustering. The accuracy, given by the fraction of the esti-
mated state equals to the ground truth, is shown in Figure 4.
The MALAB code for obtaining the simulation result (Fig-
ure 4) is given in http://brainimaging.waisman.
wisc.edu/˜chung/circle.

http://brainimaging.waisman.wisc.edu/~chung/circle
http://brainimaging.waisman.wisc.edu/~chung/circle
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Fig. 5. The average standard deviation of the dynamic corre-
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Fig. 6. Average standard deviation within each state over all
interhemispheric pairs of regions. From the SW-method, the
average standard deviations are reduced by 3.4%, 5.5%, and
4.4% in the TSW-method, and reduced by 5.8%, 9.1%, and
7.1% in the heat kernel method.

3.5. Results

Variability in each interhemispheric pair. For each inter-
hemispheric pair, we averaged the standard deviations of
the dynamic correlations over 479 subjects. From the SW-
method, the average standard deviation is reduced between
7.1% and 14.6% by the TSW-method, and reduced between
14.2% and 29.5% by the heat kernel method (Figure 5).

Within state variability. We also computed the standard devi-
ations of the correlations within each state and averaged them
across 54 interhemispheric pairs. The results are displayed in
Figure 6. From the SW-method, the average standard devia-
tions are reduced 3.4%, 5.5%, and 4.4% by the TSW-method,
and reduced 5.8%, 9.1%, and 7.1% by the heat kernel method.

Transition probability. The state transitions can reveal the in-
teractions between different brain states. They can be mod-
eled as a Markov chain [21]. For each interhemispheric pair
and subject, we computed the transition probability of moving
from state i to state j. Figure 7 shows the average transition
probability over all subjects and all interhemispheric pairs.
The heat kernel method has the lowest transition probabili-
ties between different states and the highest probabilities of
remaining in the same state.
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Fig. 7. Transition probabilities averaged across all subjects
and interhemispheric pairs. The heat kernel method has the
lowest transition probabilities between different states and the
highest probabilities of remaining in the same state.
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Fig. 8. Top: the average correlations of the three states in
order of the values of the average correlations of State 1. Bot-
tom: the occupancy rates of the three states.

Figure 8 shows the average correlation and the occupancy
rate [20] of each state and interhemispheric connectivity. The
results are displayed in the descending order of correlation
in the most dominating state (State 1). Precuneus, cuneus,
lingual gyrus, paracentral lobule and superior occipital are
the five brain regions having the highest interhemispheric
correlations in the state space, and thus have the strongest
symmetry compared to other brain regions. The inferior
frontal gyrus (pars triangularis), parahippocampal gyrus, lob-
ule X of cerebellar hemisphere, olfactory cortex and lobule
III of cerebellar hemisphere are the five brain regions having
the weakest interhemispheric symmetry.
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