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ABSTRACT
In resting-state fMRI, there is no external anchor that will lock
brain activation across voxels. Thus, correlation of fMRI time
series between voxels is often done by computing coherence
in the frequency domain. However, such approach ignores
the time lag of fMRI time series across voxels. To address the
problem, we propose to use the concept of circular Pearson
correlation in determining the time lag, which locks the time
series, and the maximum correlation at locking. We further
express the circular Pearson correlation analytically in terms
of cosine series expansion. The proposed method is applied to
208 twin pairs to determine if the time lag and the maximum
correlation are heritable genetic features.

1. INTRODUCTION

In resting-state fMRI, there is no starting time point to cor-
relate two signals across different voxels. There are often
time lags between fMRI time series in different voxels. Co-
herence, the correlation in the frequency domain, has been
mainly used to correlate time series in such a situation [1, 2].
In practice, coherence is usually estimated by Welch’s seg-
ment averaging method [3]. To reduce the sidelobe caused
by segment truncation, windowing is performed. There is a
trade-off between the variance and the spectral resolution and
bias of the estimate. Longer segment gives a better spectral
resolution and smaller bias but higher variance. If the ratio of
time lag to segment length is high, the bias can be consider-
able [4]. Increasing the overlap between segments can alle-
viate these problems, but the computational complexity will
increase rapidly. Although coherence is very useful, substan-
tial efforts are needed to make it work. Further, coherence
does not provide the explicit estimate of time lag.

To address the time lag issue in correlating fMRI time se-
ries, we propose to use the circular Pearson correlation [5],
where we can estimate the time lag and the maximum corre-
lation. As a demonstration, the proposed methods are applied
to resting-state fMRI of twins. We show that maximum cor-
relation is a sensitive heritable genetic feature. Further, we
will show that the time lag corresponding to the maximum
correlation is also a heritable feature.
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2. PRELIMINARY

Definition. Let s ∈ [0, 1). A rotation is a map defined as

Rs : [0, 1)→ [0, 1), Rs(t) = t+ s (mod 1),

where mod denotes the modulo operation.

Let Rs2 ·Rs1 denote applying rotation Rs2 after rotation
Rs1 . The set of all rotations G = {Rs : s ∈ [0, 1)} together
with the operation · forms an Abelian group, i.e., a commu-
tative group which satisfies the axiom of commutativity. This
Abelian group is called the rotation group [6]. Note we have
identity R0 and inverse R−1s = R1−s. Since the data under
analysis have finite support [0, 1), we can specify an action of
the rotation group on the set of all functions in [0, 1).

Definition. Let F be the set of all functions in [0, 1). An
action of the rotation group G on F is a map from G × F to
F written as Rsf(t) and defined as

Rsf(t) = f (Rs(t)) = f (t+ s (mod 1)) ,

for all Rs ∈ G and f ∈ F . This group action is referred to as
circular shift.

Circular shift is an action of the Abelian group built by
rotations on a circle.

3. METHODS

3.1. Motivation

We restrict the domain of fMRI signals to the unit interval
[0, 1). If not, we can always scale the domain to the unit
interval. Consider signals f(t) and g(t) in [0, 1). For sim-
plicity, normalize f and g to zero mean, i.e.,

∫ 1

0
f(t)dt =∫ 1

0
g(t)dt = 0. Then the integral version of Pearson correla-

tion between f(t) and g(t) is defined as

γf,g =

∫ 1

0
f(t)g(t)dt

σfσg
, (1)

where σ2
f =

∫ 1

0
f2(t)dt and σ2

g =
∫ 1

0
g2(t)dt are the vari-

ances of f(t) and g(t). In resting-state fMRI, functional con-
nectivity based on the usual zero-lag correlation (1) is heavily
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influenced by a complex time lag structure [7]. The goal and
the main contribution of this paper are to directly find corre-
lation measure that remains invariant to such time lag.

3.2. Circular Pearson Correlation

For resting-state fMRI, the signals under analysis may be of
the form Rs1f(t) and Rs2g(t) with unknown time lags s1
and s2. Since the integral version of Pearson correlation (1)
between Rs1f(t) and Rs2g(t) dependents on s1 and s2, it
needs to be modified such that it is invariant to time lag. For
this purpose, continuous circular correlation is used.

Definition. Given two signals f(t) and g(t) with t ∈ [0, 1),
the circular correlation of f(t) and g(t) is defined by

Rf,g(τ) =

∫ 1

0

f(t)Rτg(t)dt, (2)

where Rτ is in the rotation group G = {Rs : s ∈ [0, 1)}. The
normalized circular cross-correlation is then defined as [5, 8]

ρf,g(τ) = Rf,g(τ)/(σfσg). (3)

This definition will be simply called as the circular Pear-
son correlation through the paper. From (3), we have

ρf,Rs2−s1(mod 1)g(τ) = ρf,g(τ + s2 − s1(mod 1)).

Thus, we have the following rotation invariance.

Theorem 1. The circular Pearson correlation ofRs1f(t) and
Rs2g(t) is equivalent to the circular shift of the circular Pear-
son correlation of f(t) and g(t) with shift s2 − s1(mod 1),

ρRs1f,Rs2g
(τ) = Rs2−s1(mod 1) ρf,g(τ).

This invariant property implies that ρRs1f,Rs2g
(τ) has the

same correlation information as ρf,g(τ). Thus, they have the
same maximum value. Subsequently, the maximum of the cir-
cular Pearson correlation of Rs1f(t) and Rs2g(t) is invariant
to s1 and s2,

max
τ

ρRs1f,Rs2g
(τ) = max

τ
ρf,g(τ).

3.3. Cosine Series Expansion

To filter out noise, the resting-state fMRI signals f and g are
represented by the cosine series expansion:

f(t) =

∞∑
n=0

fnψn(t), g(t) =

∞∑
n=0

gnψn(t),

where ψ0(t) = 1, ψn(t) =
√
2 cosπnt, and fn and gn are the

cosine series coefficients [9].

Theorem 2. The circular Pearson correlation can be ex-
pressed in terms of cosine series coefficients

ρf,g(τ) =
Rf,g(τ)√∑∞

n=0 f
2
n

√∑∞
n=0 g

2
n

,

where Rf,g(τ) is given by

Rf,g(τ) =

∞∑
n=0

fngn cosπnτ

−
∞∑
n=1

2fngn(nmod 2)

(
τ cosπnτ +

1

πn
sinπnτ

)

+

∞∑
m,n=1
m6=n

4fmgn
(nmod 2)(−1)mm sinπmτ+(mmod 2)n sinπnτ

π(m2 − n2)
.

The theorem can be proved by expressing functions f and
g in (2) and (3) using the cosine series expansion and using
the orthonormality of ψk(t). The maximum correlation and
the time lag at the maximum correlation are given by

ρmaxfg = max
τ

ρf,g(τ) and τmaxfg = argmax
τ

ρf,g(τ).

Theorem 3. The circular Pearson correlation is not com-
mutable but has the property that ρf,g(τ) = ρg,f (1 − τ). It
follows that

ρmaxfg = ρmaxgf and τmaxfg = 1− τmaxgf .

4. APPLICATION

4.1. Dataset and image preprocessing

We used the resting-state fMRI of 208 twin pairs from the
Human Connectome Project [10]. fMRI consists of 2mm
isotropic voxels and 1200 time points over 14 min. 33 sec.
scanning session. The fMRI data has undergone spatial and
temporal preprocessing including motion and physiologi-
cal noise removal [11]. We used genetically confirmed 131
monozygotic (MZ) twin pairs (age 29.3±3.3 years, 56M/75F)
and 77 same-sex dizygotic (DZ) twin pairs (age 29.1 ± 3.5
years, 30M/47F) in this study. We employed the Automated
Anatomical Labeling (AAL) brain template to parcellate the
brain volume into 116 regions [12]. The fMRI data were
then averaged across voxels in each brain region for each
subject. Each averaged fMRI time series was scaled to fit to
unit interval [0, 1) and subtracted its mean over time. The
degree k = 119 cosine series expansion was fitted in the least
squares fashion such that fMRI data were compressed into
10% of the original data size and achieved the signal-to-noise
ratio 1.81 in average over all 116 regions.
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Fig. 1. Betti-plots showing Betti number β1 over changing
correlation value ε. Both of using maximum correlation and
time lag show that MZ-twins (dashed line) have more cycles
compared to DZ-twins (solid line). These plots show that β1
is a heritable topological feature.

4.2. Heritability of maximum correlation and time lag

The subject level connectivity cij between the i-th and j-th
parcellations is measured by the maximum correlation. The
twin correlation is computed by the Pearson correlation of
paired cij within each twin type. Since there is no prefer-
ence in the order of twins, permuting cij between pairs in
each twin type results in a different value of twin correlation.
Hence, the average of twin correlations from the random per-
mutations, denoted by cMZ

ij , is taken as the estimate of the ac-
tual twin correlation for MZ-twins. Similarly, we computed
the average twin correlation cDZij for DZ-twins. Due to high
correlation between twins, only 37 and 58 permutations were
required for MZ- and DZ-twins to guarantee the convergence
within 4 decimal places in terms of the mean of absolute error
of matrix entries.

The heritability index (HI), which determines the amount
of variation due to genetic influence in a population [13], is
estimated as hij = 2(cMZ

ij − cDZij ). The network differences
between MZ- and DZ-twin correlation matrices are consid-
ered mainly contributed to heritability and can be used to de-
termine the statistical significance of HI [13].

We also constructed twin correlations and HI by time lags.
The number of permutations required for time lags is 39 and
66 for MZ- and DZ-twin correlations to guarantee 4 decimal
accuracy.

4.3. Results

The statistical analysis of the significance of HI is done by
the exact topological inference on β1-plot [13]. The first Betti
number β1 counts the number of cycles in a network. More
cycles imply the connected components are more densely
connected. We built brain networks with twin correlations as
edge weights. By thresholding the correlations, more cycles
in the networks are removed and β1 decreases as the thresh-
old value increases. Figure 1 shows β1-plots of twins on the
maximum correlation and time lag. The test statistic is given
by the maximum difference in β1-plots [13]. Bigger differ-

ence implies higher heritability of the feature. At the same
correlation value, MZ-twins have more cycles than DZ-twins.
Such topological differences are contributed to heritability.

Maximum correlation. The maximum difference between
MZ- and DZ-twins in β1-plots is 3943 (p-value < 10−32),
which is larger than the maximum difference 3627 obtained
from the traditional Pearson correlation. The explicit account
of time lag increased the performance. Figure 2 displays the
HI which gives 100% heritability, i.e., hij ≥ 1, obtained from
the maximum correlation. The most heritable connections in-
clude the left and right middle frontal gyri, left and right supe-
rior frontal gyri, left and right thalami, right caudate nucleus,
left anterior and posterior cingulate gyri among other regions.
Most regions overlap with highly heritable regions observed
in resting-state connectivity of twins in a different study [14].
The right caudate nucleus and right superior frontal gyrus are
identified as most heritable hub nodes.

Time lag. Form Figure 1, the β1-plot of time lags also
shows that MZ-twins have more cycles than DZ-twins. The
maximum difference is 1271, which gives the p-value smaller
than 10−32. Thus, time lag is also a heritable feature of rs-
fMRI. Figure 2 displays the HI that gives 100% heritable con-
nections obtained from time lags. The most heritable connec-
tions include the left and right precuneus, left anterior cingu-
late gyrus, and left middle cingulate among other regions.

5. DISCUSSION

Circular Pearson correlation was represented by the group ac-
tion and computed using the cosine series expansion. We used
the circular Pearson correlation to determine maximum cor-
relation and time lag of fMRI time series between voxels. We
showed that the maximum correlation and time lag are genet-
ically heritable features. We further identified the most heri-
table brain network connections based on these two features.

Our time lag model only uses fMRI signals at two dif-
ferent voxels. It is possible to build a more sophisticated
time lag model that accounts for spatial dependency of time
lag using the random field theory [15]. In this paper, only
the maximum positive correlation is taken into account. One
can also use the circular Pearson correlation to compute the
maximum negative correlation and the corresponding time
lag. One can further use the time lag to analyze the neural
causality across brain regions [16]. These are left as future
studies.
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Fig. 2. Most highly heritable connections corresponding to maximum correlation (left two figures) and time lag (right two
figures). Only the connections with 100% heritability are shown.

ence and partial coherence analyses of fMRI data,” Neu-
roimage, vol. 21, no. 2, pp. 647–658, 2004.

[2] B. Thirion, S. Dodel, and J.-B. Poline, “Detection of
signal synchronizations in resting-state fMRI datasets,”
Neuroimage, vol. 29, no. 1, pp. 321–327, 2006.

[3] P. Welch, “The use of fast Fourier transform for the esti-
mation of power spectra: a method based on time aver-
aging over short, modified periodograms,” IEEE Trans-
actions on Audio and Electroacoustics, vol. 15, no. 2,
pp. 70–73, 1967.

[4] J.H. Miles, “Estimation of signal coherence threshold
and concealed spectral lines applied to detection of tur-
bofan engine combustion noise,” The Journal of the
Acoustical Society of America, vol. 129, no. 5, pp. 3068–
3081, 2011.

[5] R.J. Schilling and S.L. Harris, Fundamentals of digital
signal processing using MATLAB, Cengage Learning,
2011.

[6] L. Fuchs, Infinite Abelian groups, vol. 1, Academic
Press, 1970.
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Z. Vidnyánszky, “Resting state fMRI functional connec-
tivity analysis using dynamic time warping,” Frontiers
in Neuroscience, vol. 11, pp. 75, 2017.

[8] C. Chatfield, The analysis of time series: an introduc-
tion, CRC press, 2016.

[9] M.K. Chung, N. Adluru, J.E. Lee, M. Lazar, J.E. Lain-
hart, and A.L. Alexander, “Cosine series representation
of 3d curves and its application to white matter fiber
bundles in diffusion tensor imaging,” Statistics and Its
Interface, vol. 3, pp. 69–80, 2010.

[10] D.C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch,
T.E.J. Behrens, R. Bucholz, A. Chang, L. Chen, M. Cor-
betta, and S.W. Curtiss, “The Human Connectome

Project: a data acquisition perspective,” Neuroimage,
vol. 62, pp. 2222–2231, 2012.

[11] S.M. Smith, C.F. Beckmann, J. Andersson, E.J. Auer-
bach, J. Bijsterbosch, and et. al., “Resting-state fMRI in
the Human Connectome Project,” NeuroImage, 2013.

[12] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou,
F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and
M. Joliot, “Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcella-
tion of the MNI MRI single-subject brain,” NeuroImage,
vol. 15, pp. 273–289, 2002.

[13] M.K. Chung, V. Vilalta-Gil, H. Lee, P.J. Rathouz, B.B.
Lahey, and D.H. Zald, “Exact topological inference
for paired brain networks via persistent homology,” In-
formation Processing in Medical Imaging (IPMI), Lec-
ture Notes in Computer Science (LNCS), vol. 10265, pp.
299–310, 2017.

[14] D.C. Glahn, A.M. Winkler, P. Kochunov, L. Almasy,
R. Duggirala, M.A. Carless, J.C. Curran, R.L. Olvera,
A.R. Laird, S.M. Smith, C.F. Beckmann, P.T. Fox, and
J. Blangero, “Genetic control over the resting brain,”
Proceedings of the National Academy of Sciences, vol.
107, pp. 1223–1228, 2010.

[15] K.J. Worsley, J. Cao, T. Paus, M. Petrides, and A.C.
Evans, “Applications of random field theory to func-
tional connectivity,” Human Brain Mapping, vol. 6, pp.
364–7, 1998.

[16] S.M. Smith, K.L. Miller, G. Salimi-Khorshidi, M. Web-
ster, C.F. Beckmann, T.E. Nichols, J.D. Ramsey, and
M.W. Woolrich, “Network modelling methods for
FMRI,” Neuroimage, vol. 54, no. 2, pp. 875–891, 2011.

1777


