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Dynamic Connectivity without Sliding Windows
Shih-Gu Huang, Moo K. Chung, Ian C. Carroll, and H. Hill Goldsmith

Abstract—Objective: Sliding and tapered sliding window meth-
ods are the most often used approaches in computing dynamic
correlations in biomedical signals such as the brain resting-
state fMRI. However, due to the discrete nature of windows, the
window methods suffer spurious high-frequency fluctuations and
the zig-zag pattern in dynamic correlations. Methods: To address
the problem and obtain more stable correlation estimates, we
propose a novel windowless approach for computing dynamic
correlations via heat kernel smoothing. The heat kernel, the
natural generalization of the Gaussian kernel to manifolds,
is used to defined a smoothing kernel without boundary or
end points. Results: We show that the proposed windowless
approach smooths out the unwanted high-frequency noise in
correlation estimations and is more stable in identifying and
discriminating state spaces in resting-state fMRI. The proposed
method is applied to the study of interhemispheric connectivity
and whole-brain network analysis. Conclusion: We present a
novel framework using heat kernel to compute the windowless dy-
namic correlation, which is more stable with less high-frequency
fluctuations than windowed methods. Significance: The proposed
windowless approach reduced the spurious rapid changes in the
state space of brain connectivity, and identified the strongest
connections in brain networks and symmetry in interhemispheric
connectivity.

Index Terms—Dynamic functional connectivity, windowless
dynamic correlation, heat kernel smoothing, sliding windows,
resting state fMRI

I. INTRODUCTION

Findings of resting-state fMRI have revealed synchrony
between spontaneous blood-oxygen-level-dependent (BOLD)
signal fluctuations in sets of distributed brain regions despite
the absence of any explicit tasks [1]–[4]. The time-invariant
static measures of functional connectivity are often computed
over the entire scan duration. However, this oversimplification
reduces the complex dynamics of the resting-state functional
connectivity to the time average. Recent studies have sug-
gested the dynamic changes in functional connectivity over
time even during rest, referred to as the dynamic functional
connectivity [1]–[4].

The most common approach to modeling dynamic con-
nectivity is through the sliding windows, where dynamic
correlations are computed over the consecutive windowed
segments of fMRI time series data over predefined brain
parcellation [3], [5]–[11]. The sliding window (SW) method
using a square window [2], [3], [5]–[10] is the most commonly
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used windowed methods. To remedy the zig-zag pattern in the
SW-method caused by the use of square window, the tapered
sliding window (TSW) using a square window convolved with
a Gaussian kernel [7], [12], [13], Hamming window [14],
Tukey window [15] and exponentially decaying window [12]
methods were proposed. However, the sidelobes of the window
functions in spectral domain will cause high-frequency fluctu-
ations in the dynamic correlations in all these methods [16]. To
address the problem caused by using a window function with
a finite support, we propose to use a kernel function without
endpoint or boundary in computing dynamic correlation over
the whole domain of the data, referred to as the windowless
dynamic correlation in this paper. By solving heat diffusion
on a circle, the heat kernel, the most natural generalization of
the Gaussian kernel, can be derived on the circle continuously
without boundary and can be represented in terms of the cosine
basis functions. The windowless dynamic correlations using
heat kernel are then computed by the weighted cosine series
expansion, where the weights are related by the heat kernel
[17]. We show that the proposed windowless method smooths
out unwanted high-frequency noises in dynamic correlation
estimation.

One can summarize the whole-brain dynamic functional
connectivity time courses into a smaller set of dynamic
connectivity states, defined as distinct transient connectivity
patterns that repetitively occur throughout the resting-state
scan [3]. They are reliably observed across different subjects,
groups and sessions [18], [19]. k-means clustering on resting-
state fMRI was introduced in [7] and subsequently adopted
by many others [3], [20]–[23] to identify these recurring
dynamic functional connectivity states that are common across
subjects. It has been shown that additional summary metrics
of the fluctuations in these clustering-derived states, such as
the amount of time spent in specific states and the transition
between states, exhibit meaningful between-group variations
such as age [3], [24] and clinical status [20], [22], [25],
[26]. We show that the proposed windowless method is more
stable than the SW- and TSW-methods in identifying and
discriminating states while reducing within state variability.

The main outline and main contributions of the paper are
the followings. 1) We present a novel framework to compute
the windowless dynamic correlations using heat kernel. 2)
The proposed windowless method is applied in identifying
and discriminating the state spaces in the dynamic interhemi-
spheric connectivity and dynamic whole brain connectivity in
the resting-state fMRI of 479 healthy subjects.

II. PRELIMINARY

We give a brief review widely used methods of windowed
dynamic correlation, which will be compared to the proposed
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Fig. 1. Dynamic correlations computed by the SW- and TSW-methods with
window size measured as the full width at half maximum (FWHM) 15 (top)
and 20 (bottom) TRs. The SW-method shows the zig-zag severe pattern.
The TSW-method reduced the zig-zag pattern but we can still observe high
frequency fluctuations. These zig-zag pattern and high-frequency fluctuations
were not eliminated and became even worse in some intervals (dashed circles)
when larger window size was used indicating they are in fact artifacts produced
by the use of discrete windows.

windowless dynamic correlation method through the paper.

Sliding window method. Consider time series x =
(x0, x1, · · · , xT−1) and y = (y0, y1, .., yT−1) with T data
points. To avoid the boundary effect in windowed methods
[27], we connect the data at the end points by their mirror
reflection and make them into the circular data with 2T data
points:

x = (· · · , x2, x1, x0, x1, x2, · · · , xT−1, xT−1, xT−2, · · · ),
y = (· · · , y2, y1, y0, y1, y2, · · · , yT−1, yT−1, yT−2, · · · ).

Let Wm(i) = [i− m
2 +1, i+ m

2 ] be the sliding window of size
m at time point i. The sliding window (SW) method computes
the correlation at time point i as

ρx,y(i) =

∑
j∈Wm(i)(xj − xi)(yj − yi)

σx(i)σy(i)
,

where xi and yi are the weighted means of x and y within
window Wm(i)

xi =
1

m

∑
j∈Wm(i)

xj

and σ2
x(i) and σ2

y(i) are the weighted variances given by

σ2
x(i) =

1

m

∑
j∈Wm(i)

(xj − xi)
2.

Figure 1 displays an example of the SW-method with
window sizes 15 and 20 TRs. The SW-method suffers from
severe zig-zag patterns caused by the use of the discrete
window, which could not be effectively reduced even if we
increase the window size from 15 to 20 TRs.

Tapered sliding window method. In [7], the authors suggested
to convolve the square window with a Gaussian kernel, called
tapered square window, so that the data points will gradually
enter and exit from the tapered window when moving across
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Fig. 2. square window, tapered window and heat kernel with the same size or
FWHM. The heat kernel is defined on a circle continuously without endpoint
or boundary. Here, we only showed the kernel at central 60 time points. Right:
absolute values of the first 100 cosine coefficients of the widow and kernel
functions. The sidelobes of the window functions in spectral domain will
cause high-frequency noise or fluctuations remaining.

time [12]. The correlation computed using the tapered sliding
window (TSW) is given by

ρx,y(i) =

∑
j∈Wm(i) ωj(xj − xi)(yj − yi)

σx(i)σy(i)
.

xi and yi are the means of x and y in Wm(i) weighted by
some weight ωj satisfying

∑
j ωj = 1, i.e.,

xi =
∑

j∈Wm(i)

ωjxj ,

and σ2
x(i) and σ2

y(i) are the variances weighted by

σ2
x(i) =

∑
j∈Wm(i)

ωj(xj − xi)
2.

Figure 1 shows the TSW-method using the square window
of sizes 15 and 20 TRs convolved with the Gaussian kernel
with bandwidth 3 TRs [12]. The TSW-method was able to
reduce the zig-zag pattern in SW-method significantly but still
showing rapid high frequency fluctuations. There were even
more high-frequency fluctuations in some time intervals when
larger window is used indicating that they are in fact artifacts
produced by the use of discrete windows. Such zig-zag pattern
and high-frequency fluctuations in the SW- and TSW-methods
are caused by the sidelobes of the window functions in spectral
domain [16] (Figure 2). To address the problem caused by
using a window function with finite support, we propose to
use a kernel function without boundary that is defined on the
whole domain of the data.

III. METHODS

In this section, we firstly define the heat kernel on a
circle, which will be used in the proposed windowless dy-
namic correlation. Next, the integral version of the Pearson
correlation is introduced and extended to the windowless
dynamic correlation by the use of a kernel function without
end endpoint or boundary. As the kernel is constructed by
the cosine basis, the windowless dynamic correlation can be
expressed in terms of the cosine basis functions.

A. Heat kernel convolution on a circle
Diffusion on [0, 1]. Consider 1D heat diffusion of time series
data f(t) on unit interval [0, 1]:

∂

∂s
h(t, s) =

∂2

∂t2
h(t, s) (1)
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Fig. 3. Left: time series data (blue) projected onto a circle by connecting its
mirror reflection (red). Right: heat kernels defined on the circle. Only plotted
Ks(t, t′) at t = 0.

Heat kernel Weights of heat kernel

Fig. 4. Left: heat kernels Ks(t, t′) at t = 0 with different diffusion time
or bandwidth s. The heat kernel has larger FWHM when s increases. Right:
weights e−l

2π2s of the heat kernels. As s increases, the wights in the high
frequencies become smaller compared to low frequencies, and more high-
frequency components will be smoothed out.

at diffusion time s with initial condition h(t, s = 0) = f(t).
The unique solution is given by the weighted cosine series
representation (WCSR) [17], [28]

h(t, s) =

∞∑
l=0

e−l
2π2scflψl(t),

where ψ0(t) = 1, ψl(t) =
√
2 cos(lπt) are the cosine basis

and cfl are the cosine series coefficients of f :

cfl =

∫ 1

0

f(t)ψl(t)dt.

Diffusion on a circle. To avoid the boundary effect as in
the SW- and TSW-methods [27], we project f(t) defined in
[0, 1] onto the circle by connecting its mirror reflection in the
following way (Figure 3):

g(t) = f(t) if t ∈ [0, 1], g(t) = f(2− t) if t ∈ [1, 2].

Then g is a periodic function defined on the circle C with
circumference 2. Then we solve diffusion equation (1) with
initial condition h(t, s = 0) = g(t) on circle C. It can be
shown that solution is given by heat kernel convolution

h(t, s) =

∫ 1

0

Ks(t, t
′)f(t′)dt′, (2)

where heat kernel Ks(t, t
′) is defined as

Ks(t, t
′) =

∞∑
l=0

e−l
2π2sψl(t)ψl(t

′). (3)

The diffusion time s, also referred to as the bandwidth of the
heat kernel, controls the amount of diffusion. Unlike window
functions, there is no endpoint or boundary in the heat kernel

Fig. 5. Original and smoothed fMRI time series computed by the heat kernel
convolution with degree L = 295 and heat kernel bandwidth s = 10−5 and
10−4. As s increases, the amount of smoothing increases.

defined on a circle (Figure 3) with non-zero values over the
entire circle. The heat kernel does not has the sidelobe problem
(Figure 2) as in the discrete window functions. Figure 4 shows
the heat kernels Ks(t, t

′) versus t′ at fixed t = 0 and the
weights e−l

2π2s for different bandwidth s.
In the numerical implementation, the heat kernel smoothing

of g(t) is estimated by the WCSR of f(t) with degree L:

h(t, s) =

L∑
l=0

e−l
2π2scflψl(t),

where cfl are the cosine series coefficients of f(t) estimated
via the least squares method [17]. In this study, we use degree
L = T . Figure 5 shows the original and smoothed fMRI time
series of T = 295 points, where heat kernel smoothing is
realized by the WCSR with L = 295 and s = 10−5 and
10−4. When s increases, the amount of smoothing increases.

B. Integral version of Person correlation

In this section, we introduces the integral generalization of
the Pearson correlation and analyzes its convergence to the
traditional Pearson correlation. The method is then applied in
computing windowless correlations. Given two discrete data
x = (x0, x1, ...xT−1) and y = (y0, y1, .., yT−1), the Pearson
correlation of x and y is defined as

ρx,y =

∑T−1
i=0 (xi − x)(yi − y)√∑T−1

i=0 (xi − x)2
√∑T−1

i=0 (yi − y)2
,

where x =
∑T−1
i=0 xi/T and y =

∑T−1
i=0 yi/T .

Consider continuous signals x(t) and y(t) in L2[0, 1]. Then
the integral version of Pearson correlation between x(t) and
y(t) is defined as

rx(t),y(t) =

∫ 1

0
(x(t)− µx)(y(t)− µy)dt√∫ 1

0
(x(t)− µx)2dt

√∫ 1

0
(y(t)− µy)2dt

,

where µx =
∫ 1

0
x(t)dt and µy =

∫ 1

0
y(t)dt are the means of

x(t) and y(t). As the sample size T increases, we have ρx,y →
rx(t),y(t). Through the paper, we will use the integral version
of Pearson correlation. The convergence is demonstrated in
the following example.
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Fig. 6. Left: Comparison of the Pearson correlation and its integral version.
The Pearson correlation approaches the integral version as number of samples
T increases. Right: Comparison of the Pearson correlation and the product of
cosine series coefficients. The error decreases when T increases because the
discrete cosine series approaches the continuous cosine series.

Example 1. Consider two continuous signals

x(t) = 1− cos(πt)− cos(2πt),

y(t) = −0.8
√
2 cos(2πt) + 0.6

√
2 cos(3πt).

The integral version of Pearson correlation between x(t) and
y(t) is exactly given by rx(t),y(t) = 1√

2
0.8 = 0.5657 (dashed

red line in Figure 6-left). If we let xi = x(ti) and yi = y(ti)
with ti = i/T , the Pearson correlation ρx,y (solid blue line)
converges to rx(t),y(t) as T increases. When T = 295, the
error is less than 9.1× 10−4.

Correlation as the product of cosine coefficients. If we use
the cosine series representation (CSR) on time series x(t) and
y(t), we can represent the integral correlation as the product
of CSR coefficients [17]. Consider the CSR of x(t) and y(t)
given by

x(t) =

∞∑
l=0

cxlψl(t), y(t) =

∞∑
l=0

cylψl(t),

where cxl =
∫ 1

0
x(t)ψl(t)dt and cyl =

∫ 1

0
y(t)ψl(t)dt are the

cosine series coefficients. Since ψ0(t) = 1, the means of x(t)
and y(t) are the first cosine series coefficients, i.e., µx = cx0
and µy = cy0. Due to the orthonormality of ψl(t), the integral
version of Pearson correlation can be computed by the cosine
series coefficients as

rx(t),y(t) =

∑∞
l=1 cxlcyl√∑∞

l=1 c
2
xl

√∑∞
l=1 c

2
yl

.

If x(t) and y(t) are normalized such that
∑∞
l=1 c

2
xl = 1

and
∑∞
l=1 c

2
yl = 1, and then the integral version of Pearson

correlation can be further given by the product

rx(t),y(t) =

∞∑
l=1

cxlcyl.

Example 2. Given discrete data x and y computed from

xi = ti sin(6πt
2
i ), y = t2i cos(5πti),

the solid line in Figure 6-right shows the Pearson correlation
while the dashed line shows the product of cosine series
coefficients. The error decreases when T increases and is
3× 10−4 when T = 295.

C. Windowless dynamic correlation

Consider time series data x(t) and y(t) in interval [0, 1]. To
avoid the discontinuity of data at the boundaries t = 0, 1, the
data will be mirror reflected to form periodic data on circle C
with circumference 2 such that

x̃(t) = x(t) if t ∈ [0, 1], x̃(t) = x(2− t) if t ∈ [1, 2].

ỹ(t) is defined using y(t) similarly.
Instead of using square windows, we propose to use kernel

w(t, t′) defined on circle C as follows. We start with defining
kernel on interval [0, 1] and then extend the definition to C:∫ 1

0

w(t, t′)dt′ = 1 for any t.

We further assume the kernel can be decomposed as

w(t, t′) =

∞∑
l=0

cwlψl(t)ψl(t
′),

where ψl are the cosine basis ψ0(t) = 1, ψl(t) =
√
2 cos(lπt).

Heat kernel is such a kernel defined as

w(t, t′) = Ks(t, t
′) =

∞∑
l=0

e−l
2π2sψl(t)ψl(t

′),

with cwl = e−l
2π2s. Due to the symmetry of cosine basis

functions, ψl(t′) = ψl(2− t′), we have w(t, t′) = w(t, 2− t′)
for any t. Then we have∫ 2

0

w(t, t′)dt′ =

∫ 1

0

w(t, t′)dt′ +

∫ 1

0

w(t, 2− t′)dt′ = 2.

Similarly, we also have∫ 2

0

w(t, t′)x̃(t′)dt′

=

∫ 1

0

w(t, t′)x̃(t′)dt′ +

∫ 1

0

w(t, 2− t′)x̃(2− t′)dt′

= 2

∫ 1

0

w(t, t′)x̃(t′)dt′ = 2

∫ 1

0

w(t, t′)x(t′)dt′

and ∫ 2

0

w(t, t′)ỹ(t′)dt′ = 2

∫ 1

0

w(t, t′)y(t′)dt′.

Since correlation is invariant under scaling, the windowless
dynamic correlation between x̃(t) and ỹ(t) over the circle C
is equivalent to the windowless dynamic correlation between
x(t) and y(t) over [0, 1]:

rx,y(t) =

∫ 1

0
w(t, t′)x(t′)y(t′)dt′ − µx(t)µy(t)

σx(t)σy(t)
, (4)

where

µx(t) =

∫ 1

0

w(t, t′)x(t′)dt′,

σ2
x(t) =

∫ 1

0

w(t, t′)x2(t′)dt′ − µ2
x(t)

are the dynamic mean and variance of x(t). µy(t) and σ2
y(t)

are defined similarly.
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Fig. 7. The SW-, TSW- and proposed windowless methods using either
window and kernel function of the same size with FWHM 15 (top) and 20
(bottom) TRs. The windowless method eliminated most of the zig-zag pattern
and high-frequency fluctuations in the SW- and TSW-methods.

Since kernel w is expressed in terms of the cosine basis
functions, the convolution of w and f can be rewritten as∫ 1

0

w(t, t′)f(t′)dt′ =
∞∑
l=0

cwlcflψl(t),

where cfl =
∫ 1

0
f(t′)ψl(t

′)dt′ is the cosine series coefficients.
Suppose cxl, cyl, cxyl, cxxl and cyyl denote the cosine series
coefficients of x(t), y(t), x(t)y(t), x2(t) and y2(t) in repre-
senting them as, for instance,

x(t) =

∞∑
l=0

cxlψl(t), x(t)y(t) =

∞∑
l=0

cxylψl(t).

Then, the windowless dynamic correlation correlation (4) can
be written as

rx,y(t) =

∑∞
l=0 cwlcxylψl(t)− µx(t)µy(t)

σx(t)σy(t)
, (5)

with

µx(t) =

∞∑
l=0

cwlcxlψl(t),

σ2
x(t) =

∞∑
l=0

cwlcxxlψl(t)− µ2
x(t).

Figure 7 shows the windowless dynamic correlation using
the heat kernel with s = 2.3 × 10−4 and s = 4.1 × 10−4,
which give FWHM 15 and 20 TRs respectively. The proposed
windowless method eliminated most of the zig-zag pattern and
high-frequency fluctuations in the SW- and TSW-methods, and
the bandwidth s of the heat kernel controls the smoothness of
the estimated dynamic correlation.

D. Clustering of the state space

The estimated dynamic correlations will be used in deter-
mining the state spaces. Assume there are n subjects in the
dataset. By computing the dynamic correlations between p
brain regions, we have p × p dynamic correlation matrices
Ci(tj) for the i-th subject at time points t = t1, ..., tT . Let
dij denote the vectorization of p× p matrix Ci(tj) such that
dij is a vector of size p2. The collection of dij over time and
subjects is feed into the k-means clustering following [26]
in identifying the recurring brain connectivity states that are

Fig. 8. Left: brain regions using AAL template. The left and right precentral
gyri regions are marked as regions 1 and 2. Right: average fMRI signals within
left and right precentral gyri (blue) projected onto a circle and connected with
their mirror reflections (red).

common across subjects. The optimal number of cluster k is
determined by the elbow method.

IV. APPLICATION

A. Dataset and preprocessing

Resting-state (rs) functional magnetic resonance images
(rs-fMRI) were collected on a 3T MRI scanner (Discovery
MR750, General Electric Medical Systems, Milwaukee, WI,
USA) with a 32-channel RF head coil array. T1-weighted
structural images (1 mm3 voxels) were also acquired axially
with an isotropic 3D Bravo sequence (TE = 3.2 ms, TR = 8.2
ms, TI = 450 ms, flip angle = 12◦). T2*-weighted gradient-
echo echo-planar pulse sequence images were collected during
resting state and the task with TE = 20 ms, TR = 2000 ms, and
flip angle = 60◦. The functional scans were undergone a series
of data reduction, correction, registration, and spatial and
temporal preprocessing [29]. The resulting rs-fMRI consists of
91× 109× 91 isotropic voxels at 295 time points. Excluding
one subject that has no fMRI signals in two brain regions, the
average fMRI signals of 479 healthy subjects ranging in age
from 13 to 25 years were used in our study.

We employed the Automated Anatomical Labeling (AAL)
brain template to parcellate the brain volume into 116 non-
overlapping anatomical regions [30]. The fMRI data were
averaged across voxels within each brain region, resulting
in 116 average fMRI signals with 295 time points for each
subject.

B. Dynamic functional connectivity

For each subject, the 116 average rs-fMRI signals were
scaled to fit to unit interval [0, 1]. To reduce the boundary
effect, we continuously connected fMRI with its mirror reflec-
tion at the end points t = 0 and t = 1. Figure 8 displays the
average fMRI in the left and right precentral gyri connected at
the first (t = 0) and the 295-th scan (t = 1). This has the effect
of making fMRI circular data on a circle with circumference
2.

We evaluated the dynamic functional connectivity between
brain regions through the dynamic correlations computed by
the SW-, TSW-, and the proposed windowless methods.
Smaller window size can capture more short-lived variations
in brain connectivity than larger windows [9], but will
increase the risk of creating high-amplitude variations and
spurious fluctuations even when the connectivity is actually
static [11], [12], [31]. In [32], it was shown that the accuracy
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Fig. 9. Dynamic interhemispheric correlations (top) between the average
fMRI signals of left and right precentral gyri and the corresponding dynamic
connectivity states (bottom). The SW-, TSW- and proposed windowless
methods with FWHM 15 (left) and 20 (right) TRs were used. The windowless
method estimated the dynamic correlations more smoothly over time and has
the least number of rapid state changes.
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Fig. 10. The ratio of within-cluster to between-cluster sum of squared
distances versus the number of clusters K = 2, ..., 8 for window/kernel
FWHM 15 (left) and 20 (right) TRs. By the elbow method, three clusters were
chosen since the slope changes the most drastically from steep to shallow at
the elbow point K = 3.

of brain-state classification remained high with imaging as
short as 30–60 seconds. Such window sizes can capture
variability not found in larger windows [33], [34] and have
been widely utilized in the previous studies [3], [11], [15],
[18], [31], [35]–[37]. In this study, square windows of size
15 and 20 TRs (i.e., 30 and 40 seconds) were used in the
SW-method. Following [7], [12], the tapered windows in the
TSW-method were obtained by convolving the square
windows with a Gaussian kernel with bandwidth 3 TRs. In
the proposed windowless method, we used heat kernels with
bandwidth s = 2.3 × 10−4 and 4.1 × 10−4. Then, the
window and kernel functions in all the three methods have
the same FWHM (i.e, 15 and 20 TRs).

Dynamic interhemispheric connectivity. Excluding the 8
vermis regions that do not belong to the left or right brain
hemisphere, we computed the 54 dynamic interhemispheric
correlations of the 54 hemispherically paired brain regions.
Figure 9 displays the result of the left and right precentral
gyri of one subject. The SW-method showed severe zig-zag
pattern. The proposed windowless method has much fewer
high-frequency fluctuations and estimated the dynamic
correlations more smoothly over time.

Dynamic whole-brain connectivity. For each subject, we mea-
sure the dynamic whole-brain connectivity by the 116 × 116
dynamic correlation matrix computed from the 116 average
fMRI signals. The dynamic correlation matrix of one subject
is shown in Figure 11, where the proposed windowless method

Fig. 11. 116 × 116 dynamic correlation matrices of one subject at time
points 1, 21, 41, ..., 281 using the proposed windowless method with FWHM
15 TRs.

State 3State 2State 1

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 12. The average correlation matrices (cluster centroids) of the three
states. The values of average correlations range from 0.03 to 0.98 in state
1, from -0.12 to 0.95 in state 2, and from -0.22 to 0.89 in state 3. Only
the windowless method with FWHM 20 TR was plotted because different
methods have similar result. Within each state, the absolute errors between
the centroids obtained from different methods are all smaller than 0.075.

with FWHM 15 TRs was used. Since the dynamic correlations
varies smoothly, we only showed the result every 20 time
points.

C. Estimation of distinct state space

The baseline k-means clustering was used to identify the
distinct states that repetitively occur throughout the time
course and are common across subjects. These discrete states
serve as the basis of investigating brain connectivity. We
applied the k-means clustering to the dynamic correlations to
compare the performance of the proposed windowless
method against the SW- and TSW-methods. The clustering
was repeated 100 times with different initial centroids, and
the best result with the lowest sum of squared distances was
chosen. To determine the number of clusters K, we applied
the elbow method which was widely used in literature such
as [7], [13], [15], [26], [37], [38]. For each value of K, we
computed the within-cluster and between-cluster sums of
squares, i.e., sums of squared Euclidean distances between
centroids and the data points within and outside the
clusters. Then, we plotted the ratio of within-cluster to
between-cluster sum of squares for K = 2, ..., 8 (Figure 10).
By the elbow method, we chose K = 3 which gives the
largest slope change from steep to shallow in the elbow plot.
Three clusters (partition states) were also adopted by many
previous studies [26], [39], [40].

Dynamic interhemispheric connectivity states. For each of
the 54 interhemispheric pairs, the dynamic correlations at
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Fig. 13. Dynamic whole-brain connectivity states of the 6th-10th subjects
when the SW-, TSW and proposed windowless methods with FWHM 15
(top) and 20 TRs (bottom). The windowless method eliminated many rapid
state changes in the SW- and TSW-methods.
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Fig. 14. The average standard deviations of the dynamic correlations of the
6670 brain connections, displayed in order of the result of the windowless
method. For FWHM 15 TRs (left), from the SW-method, the average standard
deviation is reduced between 10.6% and 23.6% by the TSW-method, and
reduced between 15.2% and 33.5% by the windowless method. For 20 TRs
(right), the average standard deviation is reduced between 8% and 16.6% by
the TSW-method, and reduced between 14.4% and 31.6% by the windowless
method.

295 time points were concatenated across 479 subjects,
which resulted in 295 · 479 = 141305 total number of
correlations that served as the input to k-means clustering.
The dynamic interhemispheric connectivity states of the left
and right precentral gyri of one subject are displayed in
Figure 9. The windowless method eliminated many state
changes, i.e., transitions, in the SW- and TSW-methods
caused by the zig-zag pattern and high-frequency fluctuations
in dynamic correlations.

Dynamic whole-brain connectivity states. We also applied
the k-means clustering to identify the dynamic connectivity
states of the whole-brain network. This was done by
concatenating 116 × 116 × 295 dynamic correlation matrices
across all 479 subjects, which results in 259 · 479 = 141305
correlation matrices, each of which is of size 116× 116. We
vectorized each correlation matrix to a 1162-dimensional
vector, and all the 141305 vectors are served as the input
data points of the k-means clustering algorithm. The
averages of the dynamic correlation matrices within each
state (i.e., cluster centroids) of the windowless method are
displayed in Figure 12. The dynamic connectivity states of
five representative subjects are shown in Figure 13. The
windowless method has the least number of rapid changes in
the state space.

D. Results

We compared the proposed windowless method to the
SW- and TSW-methods in the variability of the dynamic

Average standard deviation (15 TRs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

State 1

State 2

State 3

SW
TSW
Windowless

Average standard deviation (20 TRs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

State 1

State 2

State 3

SW
TSW
Windowless

Fig. 15. The average standard deviation within each state. For FWHM 15
TRs (left), from the SW-method, the average standard deviations are reduced
8.8%, 11% and 11.2% by the TSW-method, and reduced 12.5%, 15.8% and
15.3% by the proposed windowless method. For 20 TRs (right), the average
standard deviations are reduced 7.5%, 7.6%, and 5.9% by the TSW-method,
and reduced 12.6%, 13.8%, and 10.8% by the windowless method.

correlation matrices and the transition probability of dynamic
connectivity states. Then, we used the proposed windowless
method to show the interhemispheric symmetry of
paired brain regions from the dynamic interhemispheric
correlations, and the strongest connections in brain networks
from the dynamic correlation matrices.

Variability of each connection. There are 116 nodes (brain
regions) in the brain networks and 116 · 115/2 = 6670 brain
connections, i.e. the 6670 entries of the upper (or lower)
triangular part of correlation matrix. For each subject and
each connection, we computed the standard deviations of
dynamic correlations across 295 time points. Then, we
averaged the standard deviations across all 479 subjects
(Figure 14). The windowless method has the smallest
variability in each connection.

Variability within each state. The dynamic correlation
matrices of each subject were partitioned into three states.
Within each state, we computed the standard deviation of
correlations for each brain connection over all time points
and subjects and then averaged them across all brain
connections (Figure 15). The proposed windowless method
shows lower variability within each state than the SW- and
TSW-methods.

Transition probability. We computed the state transitions to
reveal the interactions between different brain states [41]. They
can be modeled as a Markov chain [42]. For subject i, the
transition probability of moving from state k1 to state k2 is
computed by

P (sij = k2| si,j−1 = k1) , (6)

where sij ∈ {1, 2, 3} are the state labels obtained from
k-means clustering. Figure 16 shows the average transition
probability over all subjects. Each subject remained in the
same state for a long period of time before transitioning
to other brain state. The very low average transition
probabilities between state 1 and state 3 show the inability
of transitioning directly between these two states. The
proposed windowless method has the lowest transition
probabilities between different states and the highest
probabilities of remaining in the same state.

Interhemispheric symmetry. Figure 17 shows the average cor-
relation and the occupancy rate [43], [44] of each state and
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Fig. 16. Transition probabilities averaged across all 479 subjects. The
transition probabilities between different states decrease when larger window
or bandwidth (bottom) is used, and are the lowest when the proposed
windowless method (right) is used. The probabilities of remaining in the same
state increase when larger window or bandwidth (bottom) is used, and are the
highest when the windowless method (right) is used.
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Fig. 17. Dynamic interhemispheric correlations: the average correlations (top)
of the three states in order of the values of the average correlations of state 1,
and the occupancy rates (bottom) of the three states. The proposed windowless
method with FWHM 20 TRs was used. Each interhemispheric connectivity has
different occupancy rate because k-means clustering was applied separately.

interhemispheric connectivity, where the proposed windowless
method with FWHM 20 TRs was used. The occupancy rate
of state k is computed as

1

nT

n∑
i=1

T∑
j=1

(sij = k) ,

where n = 479 subjects and T = 295 time points. The state
space of each interhemispheric connectivity was estimated
separately, and thus has different occupancy rates. Precuneus,
cuneus, lingual gyrus, paracentral lobule and superior
occipital are the five brain regions having the highest
interhemispheric correlations in the state space, and thus have
the strongest symmetry compared to other brain regions. The
parahippocampal gyrus, inferior frontal gyrus (pars
triangularis), lobule X of cerebellar hemisphere, olfactory
cortex and lobule III of cerebellar hemisphere are the five
brain regions having the weakest interhemispheric symmetry.

Strong connections in whole-brain networks. From the average
correlation matrices of the three states (Figure 12), we listed
the first 50 brain connections (matrix entries) having the
highest average correlations in state 1 (Figure 18). 11 of
the 50 connections are the hemispherically paired regions.
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Fig. 18. Dynamic correlation matrices: the average correlations of the three
states in order of the values of the average correlations of state 1. The proposed
windowless method with FWHM 20 TRs was used. Only showed the results
of the first 50 connections with highest average correlations in state 1. All the
connections shared the same occupancy rate: 0.23, 0.43 and 0.34 for states 1,
2 and 3 respectively.

Fig. 19. The average correlation matrices (cluster centroids) of the three states
using the windowless method with FWHM 20 TRs. Only strong connections
with correlation larger than 0.8 are displayed. State 1 includes all the strong
connections in states 2 and 3, and state 2 includes all the strong connections
in state 1. Left and right precunei, right superior parietal lobule, left cuneus
and right lingual gyrus are the five most connected regions in state 1.

Among these 11 paired regions, calcarine sulci, cunei, lingual
gyri, superior occipital gyri and middle occipital gyri also
have strong connections between each other. Figure 19 is an
alternative visualization of the average correlation matrices,
showing strong connections with correlation values larger than
0.8.

V. DISCUSSIONS

Brain state transition probability. The resting-state networks
tend to remain in the same state for a long period before the
transition to another state [7], [9], [13], [45], [46]. In this
study, the proposed windowless method showed a longer
stability (less rapid changes) in the state space and exhibited
a higher probability of remaining in the same state compared
to the SW- and TSW-methods.

Dynamic whole-brain connectivity. In this study, the average
correlation matrices (cluster centroids) of the three states
follow similar connectivity patterns to the previous study [47]
in which the AAL parcellation and k-means clustering were
also used except that four states were adopted. Besides, the
three states shared similar connectivity pattern except for
different overall correlation values. This may be due to the
small number of clusters, which can also be observed in
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[48]. We showed that different methods (SW-, TSW-, and
windowless) and different window size or kernel bandwidth
(15 and 20 TRs) have little influence to the average correlation
matrices within states. However, the proposed windowless
method achieved smaller noise-induced variability of corre-
lations within states.

The average correlation matrices of the three states showed
relative higher correlations between calcarine sulci, cunei,
lingual gyri, superior occipital gyri and middle occipital gyri.
All these regions belong to the occipital lobe and are the
nodes of the visual network, which is one of the resting state
networks [49], [50]. Compared to other resting state
networks, the visual network has the strongest connectivity
across different states, followed by the somatomotor network.

Dynamic interhemispheric connectivity. Previous studies have
demonstrated high correlations between hemispherical paired
brain regions [51]–[54]. In [51], it was shown that the median
cingulate and paracingulate gyri, thalamus, precuneus, anterior
cingulate and paracingulate gyri are some of the regions
with highest interhemispheric correlations. [52] demonstrated
higher interhemispheric correlation in primary sensory-motor
cortices, including postcentral gyrus, occipital pole, lingual
gyrus, cuneal cortex, precentral gyrus among other regions. In
[54], the authors showed the trend toward higher interhemi-
spheric connectivity near the midline, such as the frontal pole,
occipital cortex and medial parietal lobe, deep gray nuclei,
and cerebellum. Further, it was showed that younger subjects
have higher interhemispheric correlations in the supplementary
motor area, precuneus and occipital lobe.

While most of previous research focuses on the static
functional connectivity, in this paper, the dynamic change
of interhemispheric connectivity was analyzed and further
summarized into three distinct states. The results showed that
hemispherically paired regions with high correlations in state
1 also have high correlations in state 2, where states 1 and
2 dominate the brain state with occupancy rate over 75%.
Consistent with previous studies, we observed relatively higher
interhemispheric correlations in precuneus, cuneus, lingual
gyrus, paracentral lobule, superior occipital, supplementary
motor area, midcingulate area, calcarine sulcus among other
regions. Many of these regions are close to the midline.
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