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A B S T R A C T

Background: Recent studies have indicated that functional connectivity is dynamic even during rest. A common
approach to modeling the dynamic functional connectivity in whole-brain resting-state fMRI is to compute the
correlation between anatomical regions via sliding time windows. However, the direct use of the sample cor-
relation matrices is not reliable due to the image acquisition and processing noises in resting-sate fMRI.
New method: To overcome these limitations, we propose a new statistical model that smooths out the noise by
exploiting the geometric structure of correlation matrices. The dynamic correlation matrix is modeled as a linear
combination of symmetric positive-definite matrices combined with cosine series representation. The resulting
smoothed dynamic correlation matrices are clustered into disjoint brain connectivity states using the k-means
clustering algorithm.
Results: The proposed model preserves the geometric structure of underlying physiological dynamic correlation,
eliminates unwanted noise in connectivity and obtains more accurate state spaces. The difference in the esti-
mated dynamic connectivity states between males and females is identified.
Comparison with existing methods: We demonstrate that the proposed statistical model has less rapid state
changes caused by noise and improves the accuracy in identifying and discriminating different states.
Conclusions: We propose a new regression model on dynamically changing correlation matrices that provides
better performance over existing windowed correlation and is more reliable for the modeling of dynamic con-
nectivity.

1. Introduction

Findings of resting-state fMRI have revealed synchrony between
spontaneous BOLD signal fluctuations in sets of distributed brain re-
gions despite the absence of any explicit tasks. Traditionally, brain
functional connectivity between signals from distinct brain regions is
often measured by the static correlation over the entire scan duration.
However, this simplification of averaging over time cannot reveal the
complex dynamics of the resting-state functional connectivity. Recent
studies have suggested the dynamic changes in functional connectivity
over time, called dynamic functional connectivity, even during rest
(Chang and Glover, 2010; Hutchison et al., 2013; Hutchison and
Morton, 2015; Preti et al., 2017). The dynamic functional connectivity
is also referred to as time-varying (functional) connectivity in literature
(Calhoun et al., 2014; Lurie et al., 2018; Thompson et al., 2018).

A common approach to modeling the dynamic functional

connectivity is through the sliding-window method, where dynamic
correlation matrix is computed by the Pearson correlation over con-
secutive windowed segments of fMRI time series over predefined brain
parcellation (Keilholz et al., 2013; Hutchison et al., 2013; Kucyi and
Davis, 2014; Allen et al., 2014; Hutchison and Morton, 2015; Zalesky
and Breakspear, 2015; Shakil et al., 2016; Hindriks et al., 2016). Crucial
to subsequent inference is the estimation of the underlying dynamic
correlation matrix. Due to image acquisition and processing noises as
well as the low signal-to-noise ratio in fMRI data, data smoothing is
necessary.

In this paper, we develop an approach that uses a canonical series
representation and hence will be robust to model misspecification and
have the ability to more accurately capture transient dynamics in
connectivity. The proposed canonical series representation is related to
the regression problem on Riemannian manifolds. The computations on
Riemannian manifolds have been applied to various medical imaging
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applications such as interpolation, regularization and estimation of
diffusion tensors images (Arsigny et al., 2006; Fillard et al., 2007;
Barmpoutis et al., 2007; Cheng et al., 2012), shape modeling of corpus
callosum (Fletcher, 2013; Hinkle et al., 2014), nonlinear mixed effects
models on Cauchy deformation tensor for analyzing longitudinal de-
formations in brain imaging (Kim et al., 2017), and regression and
classification of brain networks (Qiu et al., 2015; Wong et al., 2018).

One can summarize the whole-brain dynamic functional con-
nectivity into a smaller set of dynamic connectivity states, defined as
distinct transient connectivity patterns that repetitively occur
throughout the resting-state scan (Hutchison and Morton, 2015).

The dynamic connectivity states are reliably observed across dif-
ferent subjects, groups, sessions and trials (Yang et al., 2014; Choe
et al., 2017; Ombao et al., 2018). In this paper, we apply the k-means
clustering on the proposed smoothed correlation matrices to identify
difference in dynamic connectivity states in resting-state fMRI between
males and females. The k-means clustering on resting-state fMRI was
introduced by (Allen et al., 2014) and subsequently adopted by many
others (Damaraju et al., 2014; Barttfeld et al., 2015; Hutchison and
Morton, 2015; Rashid et al., 2016; Samdin et al., 2017; Ting et al.,
2018b) to identify these recurring dynamic connectivity states. The
cluster centroids correspond to the connectivity patterns. It has been
shown that additional summary metrics of the fluctuations in these
clustering-derived states, such as the amount of time spent in specific
states and the transition probability between states, exhibit meaningful
between-group variations such as age (Hutchison and Morton, 2015;
Marusak et al., 2017) and clinical status (Damaraju et al., 2014; Rashid
et al., 2016; Su et al., 2016; Barber et al., 2018).

In this paper, we develop a robust estimate of the dynamic corre-
lation matrices, which serves as an input to the more refined state-space
analysis. The correlation matrices are modeled by a fixed set of matrices
whose matrix logarithms form an orthonormal basis in the space of
symmetric matrices. The proposed statistical model can preserve in-
formation of the underlying dynamic correlation and eliminate the ra-
pidly changing noise in the connectivity.

Our main contributions of this paper are as follows. (1) We develop
a new regression model for the dynamically-changing correlation ma-
trices across all time points and avoid regressing in each correlation
matrix separately. (2) The proposed method is applied to the dynamic
correlation matrices in resting-state fMRI, which are further partitioned
into disjoint brain states by the k-means clustering. (3) We apply sta-
tistical tests on the dynamic connectivity states and transition matrices
to identify difference between males and females in resting-state brain
connectivity.

2. Methods

2.1. Statistical model for dynamically-changing correlation matrices

The dynamically-changing correlation matrices are originally com-
puted by the sliding window method, which is defined as the Pearson
correlation of consecutive windowed segments of fMRI time series
(Keilholz et al., 2013; Hutchison et al., 2013). However, there are un-
wanted high-frequency fluctuations and noise in the original dynamic
correlation matrices. Thus, our goal is to produce the smooth estimates
of the dynamic correlation matrices.

Consider p× p dynamic functional connectivity such as correlation
and covariance matrices obtained from fMRI time series in p brain re-
gions. The observed connectivity C(t) at time t is modeled as

= +C t μ t e t( ) ( ) ( ),

where μ(t) is the true underlying dynamic functional connectivity that
has to be estimated, and e(t) is noise.

Let Symp be the space of all p× p symmetric matrices with inner
product 〈A, B〉=tr(AB). The space of p× p symmetric positive-definite
(SPD) matrices (Arsigny et al., 2007), denoted by +Symp , is a subspace of

Symp. The exponential of a symmetric matrix is SPD, and the logarithm
of an SPD matrix is a symmetric matrix. Moreover, the exponential map
is one-to-one between Symp and +Symp (Arsigny et al., 2007; Moakher
and Batchelor, 2006). Given X∈ Symp, its exponential map exp(X) is
defined by matrix exponential (Hall, 2015)
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Let Iij be the p× p matrix whose (i, j)th and (j, i)th entries are 1/ 2 if
i≠ j and all other entries are 0. Let Iii be the p× p diagonal matrix
whose (i, i)th entry is 1 and all other entries are 0. For instance, for
p=3,
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Then, we can show that Iij for i≥ j form an orthonormal basis in Symp.
The matrix exponential is computed as follows. Suppose that the

SPD matrix X has factorization X=UDU−1 where D is the diagonal
matrix with diagonal entries di. Then, the matrix exponential is com-
puted as

= −X U D Uexp( ) exp( ) ,1

where exp(D) is the diagonal matrix with diagonal entries given by exp
(di) (Hall, 2015). For instance, the matrix exponentials of I31 and I22 in
(1) are
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At fixed time point t, the p× p underlying dynamic connectivity μ(t)
is estimated as a linear combination of the p× p matrices exp(Iij),

∑=
≤ ≤ ≤

μ t b t I( ) ( )exp( ),
j i p

ij ij
1

where bij(t) is the time-varying expansion coefficient. We further esti-
mate coefficients bij(t) using the Fourier cosine basis in time domain.
The Fourier basis has been widely used to reveal the spectral in-
formation of time series for further processing such as smoothing, re-
gression and denoising. To simplify the problem, we restrict the time
domain of bij(t) to unit interval, i.e., t∈ [0, 1], by scaling the temporal
resolution of fMRI time series. Then, bij(t) can be represented by the
linear combination of cosine basis, 1 and πlt2 cos( ), and estimated as

∑= +
=

b t b b πlt( ) 2 cos( ),ij ij
l

L

ijl0
1

where bijl are the cosine series coefficients estimated by the least
squares method (Chung et al., 2010).

2.2. Clustering of the state space

The estimated dynamic functional connectivity is used in de-
termining the state space. Assume there are n subjects in the dataset. Let
Ci(tj) denote the p× p dynamic connectivity for the ith subject at time
point tj. Let d j

i denote the vectorization of the −p p( 1)/2 elements in
the upper (or lower) triangular part of matrix Ci(tj). The collection of d j

i

over all time points and subjects is fed into the k-means clustering in
identifying the recurring brain connectivity states that are common
across subjects (Barber et al., 2018). The optimal number of cluster K is
determined by the elbow method which has been widely used in pre-
vious studies (Allen et al., 2014; Rashid et al., 2014; Nomi et al., 2016;
Abrol et al., 2017; Lehmann et al., 2017; Barber et al., 2018; Ombao
et al., 2018). Figure 1 shows the schematic of the estimation of dynamic
connectivity states.
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2.3. Validation

We validated the proposed method in a simulation. The MATLAB
code for the simulation below can be downloaded from http://www.
stat.wisc.edu/∼mchung/statespaces. The simulation was in-
dependently performed 100 times, and their average is reported here.
We simulated the time series of 20 subjects. The data for each subject
consists of time series from p=20 regions, and the length of the time
series is T=300. Then we simulated three states for each subject as
follows.

The state of each subject was uniformly chosen from 1, 2 and 3 with
time duration of each state randomly chosen from 5, 10, …, 100 time
points. Using this random state space as the ground truth, we simulated
time series for p=20 regions for each subject as follows. We started
with generating five 5×1 data vectors … ∼ Ix x, , (0, )1 5 N , identical
and independently distributed multivariate normal with mean zero and
identity matrix I as the covariance. The data vector xi is a noisy time
series at 5 time points. Then the 5×1 data vector yi at region i was
generated with dependency as follows. We simulated y1,…, y4 identical
and independently distributed multivariate normal with

… ∼ Iy y x, , ( , 0. 1 ).1 4 1
2N

Similarly we generate

… ∼
⋮

… ∼

I

I
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y y x
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2
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2
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The above simulation produces modular structures in the network
(Chung et al., 2017).

Let Y1 be the 20×5 data matrix

= … ⊤Y y y[ , , ] .1 1 20

Then correlation matrix =C c( )ij
1 1 corresponding to data matrix Y1 is

given by =c y ycorr( , ).ij i j
1 We repeated the above procedure twice more

to obtain three independent data matrices Y1, Y2 and Y3 and corre-
sponding correlation matrices C1, C2 and C3 with spatial dependency
between regions. The random correlation matrices with values close to
each other may be difficult to discriminate. Hence, we only used Yk that
will give the mean squared error (MSE) between C1, C2 and C3 larger
than 0.5:
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Fig. 1. Schematic of estimation of dynamic connectivity states. (A) For each subject, T sample correlation matrices are computed by the sliding-window method. (B)
Original dynamic correlation matrices, composed of the T sample correlation matrices, are smoothed by the proposed statistical model. (C) Smoothed dynamic
correlation matrices of all n subjects are combined and partitioned by the k-means clustering to find K common states. (D) T× n estimated state labels are divided
into male and female groups (nM males and nF females).

S.-G. Huang, et al. Journal of Neuroscience Methods 331 (2020) 108480

3

http://www.stat.wisc.edu/~mchung/statespaces
http://www.stat.wisc.edu/~mchung/statespaces


We simulated the time series in p=20 regions for each subject as
follows. If the subject is in state k with time duration 5l, the time series
within this state are simulated by concatenating 20× 5 data matrix Yk

repeatedly l times. For instance, if the subject is in state 2 with time
duration 10, state 1 with time duration 25, followed by state 3 with
time duration 5, the time series were simulated as

= …Y Y Y Y Y Y Y Y Y[ , , , , , , , , ],2 2 1 1 1 1 1 3

where the size of whole data matrix Y is 20× 300 representing time
series at p=20 regions over 300 time points. We then added noise with
standard deviation σ in the range between 0.8 and 2.4 to make each
block Yk slightly different from each other.

The above process is repeated 20 times for 20 subjects. We applied
the sliding window method with window size 60 to obtain the original
estimation of dynamic connectivity. We also applied the proposed
method to smooth the dynamic connectivity. The proposed method has
much less rapid state changes caused by noise (Fig. 2 – left), and thus
has higher accuracy in state space estimation (Fig. 2 – right).

3. Application to resting-state fMRI

3.1. Dataset and preprocessing

The dataset is the resting-state fMRI of 412 subjects collected as part
of the Washington University – University of Minnesota Human
Connectome Project (HCP) (Van Essen et al., 2012, 2013). The resting-
state fMRI were collected over 14 minutes and 33 seconds using a
gradient-echo-planar imaging (EPI) sequence with multiband factor 8,
time repetition (TR) 720 ms, time echo (TE) 33.1 ms, flip angle 52∘,
104×90 (RO×PE) matrix size, 72 slices, 2 mm isotropic voxels, and
1200 time points. During each scanning, participants were at rest with
eyes open with relaxed fixation on a projected bright cross-hair on a
dark background (Van Essen et al., 2013).

The standard minimal preprocessing pipelines (Glasser et al., 2013)
were applied on the fMRI scans including: spatial distortion removal
(Jovicich et al., 2006; Andersson et al., 2003), motion correction
(Jenkinson and Smith, 2001; Jenkinson et al., 2002), bias field reduc-
tion (Glasser and Van Essen, 2011), registration to the structural MNI
template, and data masking using the brain mask obtained from Free-
Surfer (Glasser et al., 2013). The resulting volumetric data contains
resting-state functional time series with 91×109×91=902629 2-
mm isotropic voxels at 1200 imaging volumes.

3.1.1. AAL parcellation
We employed the Automated Anatomical Labeling (AAL) template

to parcellate the brain volume into 116 non-overlapping anatomical
regions (Tzourio-Mazoyer et al., 2002). Spatial denoising was applied

by averaging the fMRI data across voxels within each brain region,
resulting in 116 average fMRI time series with 1200 time points for
each subject.

3.1.2. Scrubbing
Previous studies reported that head movement produces spatially

structured artifacts in functional connectivity (Power et al., 2012, 2015;
Van Dijk et al., 2012; Satterthwaite et al., 2012; Caballero-Gaudes and
Reynolds, 2017). Thus, scrubbing was applied to remove fMRI volumes
with significant head motion (Power et al., 2012). We calculated the
framewise displacement (FD) from the three translational displace-
ments (x, y, and z axes) and three rotational displacements (pitch, yaw,
and roll) at each time point (Power et al., 2012) to measure the head
movement from one volume to the next. The first volume of each
subject is assumed to have zero FD. To reduce the effect of head
movement (Van Dijk et al., 2012), the volumes with FD larger than 0.5
mm and their neighbors (one back and two forward) were scrubbed
(Power et al., 2012, 2013). We excluded 12 subjects having excessive
head movement, and fMRI data of the remaining 400 subjects (168
males and 232 females) were used. More than one third of 1200 vo-
lumes were scrubbed in the excluded 12 subjects.

3.1.3. Data imputation and bandpass filtering
The imputation of the scrubbed data from the unscrubbed good data

is often performed using the cubic spline interpolation in the previous
studies (Allen et al., 2014; Rashid et al., 2014; Power et al., 2014;
Thompson and Fransson, 2015). Further, to suppress the influence of
low-frequency noise such as scanner drifts and high-frequency cardiac
or respiratory oscillations (Cordes et al., 2001; van den Heuvel et al.,
2008), temporal denoising by bandpass filtering is also often used
(Muschelli et al., 2014; Thompson and Fransson, 2015, 2016).

In this paper, we performed data imputation and bandpass filtering
together by the Fourier cosine basis (Lanczos, 1938; Hamming, 1998)
with cutoff frequencies of 0.01 and 0.1 Hz (Muschelli et al., 2014;
Thompson and Fransson, 2015, 2016).

3.2. Dynamic functional connectivity

For each subject, we measured the whole-brain dynamic functional
connectivity by the 116×116 dynamic correlation matrix computed
from the average fMRI signals in the 116 brain regions using the sliding
window method. Shirer et al. (2012), Leonardi (2015) have reported
that brain states may be correctly identified by a window size in the
range of 30–60 seconds. In Allen et al. (2014), window size 44 seconds
was suggested to provide a good tradeoff between the ability to resolve
dynamics and quality of covariance matrix estimation. Following Allen
et al. (2014), we adopted window size 60 TRs, i.e., 43.2 seconds as

Fig. 2. Left: Estimates of state space of the original and the proposed method compared to the ground truth. We only showed the results of one subject in one
simulation with noise standard deviation σ=2. The proposed method has less rapid changes caused by noise. Right: Accuracy of state space estimation for σ=0.8 to
2.4 measured by the fraction of the estimated states equal to the ground truth. The average of 100 independent simulations was plotted.
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TR=0.72 seconds in HCP dataset. The sliding window is related to a
smoother (low-pass filter) with bandwidth 1/43.2= 0.0231 Hz. To
further smooth out the remaining high-frequency noise and fluctuations
in the dynamic connectivity, we performed the proposed statistical
model with cosine series expansion of degree 40 (corresponding to
bandwidth 0.0231 Hz). We then compared the proposed method with
the original estimation of the dynamic connectivity.

3.3. Dynamic connectivity states

The baseline k-means clustering was used to identify the distinct
states that repetitively occur throughout the time course and are
common across subjects. These discrete states serve as the basis of in-
vestigating brain connectivity. We determined the number of clusters K
by the elbow method which has been widely used in literature (Allen
et al., 2014; Rashid et al., 2014; Nomi et al., 2016; Abrol et al., 2017;
Lehmann et al., 2017; Barber et al., 2018; Ombao et al., 2018). For each
value of K, we computed the within-cluster and between-cluster sums of
squares, i.e., the sums of squared Euclidean distances between the
cluster centroids and the data points within and outside the clusters.
Then, we plotted the ratio of within-cluster to between-cluster sum of
squares for K=2,…, 10 (Fig. 3). By the elbow method, we chose K=3
which gives the largest slope change in the elbow plot. Three states
were also adopted by many previous studies (Choe et al., 2017; Barber
et al., 2018; Ting et al., 2018b).

3.4. Results

3.4.1. Variability in each subject.
There are 116× 115/2=6670 connections between the 116 brain

regions. Fig. 4 – left shows the dynamic correlations of one subject at
two connections. Many high-frequency fluctuations and noise in the
dynamic correlations were smoothed out by the proposed statistical
model. For each connection, we computed the standard deviation of the
dynamic correlations over time. Then, we averaged the standard de-
viations across all 6670 connections. The average standard deviations
of the 400 subjects are displayed in Fig. 4 – right.

3.4.2. Average correlation matrix within each state
We applied the k-means clustering to the dynamic correlation ma-

trices obtained from the original estimation and the proposed method.
Fig. 5 shows the state-specific average correlation matrices, i.e., the
cluster centroids. The proposed method shows a wider range of average
correlations. The minimum and maximum average correlations of the
three states are (−0.22, 0.78), (−0.06, 0.88) and (−0.04, 0.93) for the
original estimation, and are (−0.34, 0.88), (−0.15, 0.93) and (−0.09,
0.96) for the proposed method. The residual of the average correlations
(proposed − original) ranges from −0.14 to 0.31, from −0.09 to 0.31,

and from −0.05 to 0.31 in the three states.
Fig. 6 is an alternative visualization of the average correlation

matrices, showing strong connections with average correlation larger
than 0.75. For the original estimation and proposed method, the four
most connected regions in states 1 and 2 are within the occipital lobe,
such as the calcarine fissure and surrounding cortex, cuneus and lingual
gyrus. In state 3, besides the occipital lobe, the most connected regions
also include the precentral gyrus, superior temporal gyrus, and median
cingulate and paracingulate gyri among other regions.

3.4.3. Topological differences between states
We determined if the three estimated states are topologically dif-

ferent using the exact topological inference (Chung et al., 2017, 2017,
2019). We computed the 0th Betti number β0 and 1st Betti number β1 of
the brain network in each state. We built brain networks with edge
weights being the average correlations of each state. By thresholding
the edge weights at higher correlation value, more edges in the net-
works were removed, and hence the number of connected components
(β0) increased while the number of cycles (β1) decreased. We used
threshold values ranging from −0.2 to 1 at an increment of 0.005. The
β0- and β1-plots of the average correlation matrices (cluster centroids)
of the three states are displayed in Fig. 7. For the original estimation
and proposed method, the β0 differences between any two states are all
larger than 34 with p-values smaller than 9.4×10−5. The β1 differ-
ences between any two states are all larger than 2152 with p-values
smaller than 10−16. The Bonferroni correction (Bonferroni, 1936;
Shaffer, 1995) rejects the null hypothesis that the three states are to-
pologically equivalent at a significance level of α=0.01.

3.4.4. Framewise displacement within each state
As mentioned previously, the framewise displacement (FD) was

used to measure the head movement. For each subject, we computed
the mean FD within each state. Fig. 8 shows the distributions (cumu-
lative distribution functions) of the mean FD of all subjects in the three
states, where the state spaces were obtained from the original estima-
tion, the proposed method, and the proposed method plus global signal
regression (GSR) (Murphy et al., 2009). We performed the Kolmogorov-
Smirnov test (Massey, 1951) with the Bonferroni correction to compare
the distributions of the three states. For the three methods, the p-values
are 4.7×10−4, 0.0326 and 0.1570 respectively. Thus, at a significance
level of α=0.01, there are state differences in head movement in the
original estimation but no state differences in head movement in the
proposed method with or without GSR. Thus, GSR was not used in this
study.

3.4.5. Occupancy rate and dwell time
To analyze the difference between males and females in dynamic

connectivity states, we further divided the clustering results into male
and female groups (168 males and 232 females). Fig. 9 shows the dy-
namic connectivity states of the 1st male and 1st female subjects as an
example. The proposed method has less number of rapid changes in the
dynamic connectivity states. Fig. 9 also shows the occupancy of the
three states for all male and female subjects. Let sij∈ {1, 2, 3} denote
the state of subject i at time point tj estimated by the k-means clustering.
The occupancy rate (Yaesoubi et al., 2015; Ombao et al., 2018) of state
k is computed as

∑ ∑ =
= =nT

s k1 ( ),
i

n

j

T

ij
1 1

where T=1200 time points and n=168 and 232 subjects for male and
female groups respectively. On average, males spent more time in state
2, while females spent more time in state 1 (Fig. 10 – left).

We also computed the dwell time (Damaraju et al., 2014; Lottman
et al., 2017; Barber et al., 2018), i.e., the period of time a male/female
remains in a given state before switching to another state. The average

Fig. 3. The ratio of within-cluster to between-cluster sum of squared distances
versus the number of clusters K=2, …, 10 for the original estimation and the
proposed method. By the elbow method, K=3 was chosen since the slope
changes the most drastically at the elbow point K=3.
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dwell time for males and females in each state is displayed in Fig. 10 –
right. On average, a subject dwelt in state 1 for a longer period, and
females had longer dwell time in state 1 than males. The proposed
method shows a longer average dwell time than the original estimation
due to less rapid state changes.

3.4.6. Transition probability
We used state transitions to reveal the interactions between dif-

ferent brain states (Baker et al., 2014). They can be modeled as a
Markov chain (Gilks et al., 1995). For subject i, the transition prob-
ability of moving from state k1 to state k2 is computed by

= =−P s k s k( | ),ij i j2 , 1 1

Fig. 4. Smoothness of the dynamic correlations by the proposed statistical model. Left: The two entries of the dynamic correlation matrix of a subject. Many high-
frequency fluctuations were smoothed out by the proposed model. Right: average standard deviations of the 400 subjects from averaging the standard deviations of
the dynamic correlations at the 6670 brain connections. They are sorted by the average standard deviations after the proposed model. The average standard
deviations became smaller after smoothing by the proposed model.

Fig. 5. Top and middle: average correlation matrices (cluster centroids) of the three states for the original estimation and the proposed method. The minimum and
maximum average correlations of the three states are (−0.22, 0.78), (−0.06, 0.88) and (−0.04, 0.93) for the original estimation, and are (−0.34, 0.88), (−0.15,
0.93) and (−0.09, 0.96) for the proposed method. Bottom: residual of the average correlations (proposed – original) with minimum and maximum given by (−0.14,
0.31), (−0.09, 0.31) and (−0.05, 0.31) in the three states.
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Fig. 6. Average correlation matrices (cluster centroids) of the three states for the original estimation (top) and proposed method (bottom). Only connections with
correlation larger than 0.75 are displayed. For both methods, the four most connected regions in states 1 and 2 are within the occipital lobe, such as the calcarine
fissure and surrounding cortex, cuneus and lingual gyrus. In state 3, besides the occipital lobe, the most connected regions also include the precentral gyrus, superior
temporal gyrus, and median cingulate and paracingulate gyri among other regions.

Fig. 7. Betti numbers β0 and β1 of the brain networks thresholded by correlation value ε. The edge weights of the networks are given by the average correlation
matrices (cluster centroids) of the original estimation (top) and proposed method (bottom). The β0 differences between any two states are all larger than 34 with p-
values smaller than 9.4× 10−5. The β1 differences between any two states are all larger than 2152 with p-values smaller than 10−16. In both the original estimation
and proposed method, the connectivity patterns of the three states are all topographically different.
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where sij is the state of subject i at time point tj estimated by the k-means
clustering. Fig. 11 shows the averages and standard deviations of the
transition probabilities of males and females. Each subject remained in
the same state for a long period of time before transitioning to another

state. The proposed method reduced the transition probabilities be-
tween different states and increased the probabilities of remaining in
the same state because some transitions caused by noise were removed.
The very low average transition probabilities between state 1 and state

Fig. 8. Cumulative distribution function of the mean framewise displacement (FD) of all subjects at each state, where the state spaces were obtained from the original
estimation (left), proposed method (middle), and proposed method plus GSR (right). We compared the distributions of the three states by the Kolmogorov-Smirnov
test with the Bonferroni correction. At a significance level of α=0.01, there are state differences in the original estimation (p=4.7×10−4) but no state differences
in the proposed method either with or without GSR (p=0.0326, 0.1570).

Fig. 9. In the (a) original estimation and (b) proposed method, the first row shows the dynamic connectivity states of the 1st male (left) and 1st female (right)
subjects. The proposed method has less rapid changes in the dynamic connectivity states. The 2nd to 4th rows are the plots of he state occupancy of all the 168 males
(left) and 232 females (right). Correlation matrices belonging to the state are marked by black.
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3 show the inability of transitioning directly between these two states.

3.4.7. Statistical analysis
To compare males and females in state transition probability,

comparison of mean sample proportions was utilized. Consider the null
hypothesis that the averages of estimated transition probabilities from
state k1 to k2 for males and females are the same. The z-score was
computed from

= −

+
Z P P¯ ¯

,M F

σ
n

σ
n

M
M

F
F

2 2

where P̄M and P̄F are the means of the transition probabilities for nM
males and nF females respectively, and σM

2 and σF
2 are the variances of

the transition probabilities. The z-scores and the corresponding p-values
are shown in Fig. 12. In the original estimation, there is a significant
difference at p-value< 0.05 in the transition probability from state 2 to
state 3 (2→ 3). In the proposed method, there are significant differ-
ences at p-values< 0.05 in the transition probabilities of (2→ 1) and
(2→ 3).

We further tested the statistical significance of state occupancy rates

between females and males, by setting the null hypothesis that males
and females have the same mean of occupancy rate. The p-values of the
z-test are shown in Table 1. For both the original estimation and pro-
posed method, there are differences in the occupancy rates of states 1
and 3 at significance level 0.05.

4. Discussion

4.1. Dynamic connectivity

In this study, we found that the average correlation matrices (cluster
centroids) of the three states followed similar connectivity patterns of
the previous study (Haimovici et al., 2017), which also used the AAL
parcellation but k-means clustering with four states. In Haimovici et al.
(2017), two of the four states show high average correlation in many
brain connections. In our result, the three states are not disjoint but
share similar connectivity patterns. This may be due to the small
number of clusters, which can also be observed in Cai et al. (2018).
Consider the resting state networks (Ting et al., 2018; Al-sharoa et al.,
2019). The average correlation matrices of the three states show re-
lative higher correlations in the occipital lobe, such as calcarine fissure

Fig. 10. Left: Occupancy rates of the three states, i.e., the percentage of the entire scan time that a male/female spends in each state. On average, males spent more
time in state 2 while females spent more time in state 1. Right: Average dwell time of the three states, i.e., the average period of time a male/female remains in a
given state before switching to another state. On average, a subject dwelt in state 1 for a longer period, and females had longer dwell time in state 1 than males. The
proposed method has a longer average dwell time than the original estimation due to less rapid state changes.

Fig. 11. Averages and standard deviations of transition probabilities of males (left) and females (right) computed from the dynamic connectivity states of the original
estimation (top) and the proposed method (bottom). The proposed method reduced the transition probabilities between different states and increased the prob-
abilities of remaining in the same state.
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and surrounding cortex, cuneus and lingual gyrus. Compared to other
resting state networks, the visual network has the strongest connectivity
across different states, followed by the somatomotor network including
brain regions such as the postcentral gyrus and precentral gyrus.

4.2. Transition probability of brain state

The resting-state networks tend to remain in the same state for a
long period before switching to another state (Allen et al., 2014; Shakil
et al., 2016; Calhoun and Adali, 2016; Abrol et al., 2017; Nielsen et al.,
2018). In this study, we showed that the state space of the proposed
method had a longer stability (less rapid changes and longer dwell
time) and a higher probability of remaining in the same state compared
to the original estimation.

4.3. Estimation of dynamic functional connectivity

The proposed model aims for smoothing out unwanted high-fre-
quency fluctuations in the original estimation of dynamic connectivity
which may introduce rapid changes in brain state estimation in resting
state. There are a variety of dynamic connectivity estimation methods
besides the sliding window method, such as the tapered sliding window
(Allen et al., 2014; Lindquist et al., 2014; Abrol et al., 2017), flexible
least squares (Liao et al., 2014), multiplication of temporal derivatives
(Shine et al., 2015), and jackknife correlation (Thompson et al., 2018;
Thompson and Fransson, 2018). It is still unclear which method is
optimal since the true dynamic connectivity is unknown. For instance,
Thompson et al. (2018) showed in simulations that the jackknife cor-
relation outperforms the sliding and tapered sliding window methods
when the state changes quickly, but the taped sliding window method
followed by the sliding window method performs the best when the
state changes slowly. In this paper, we used the sliding window method
as it may be the simplest and most widely used method, but the pro-
posed model can be applied to other estimation methods. The perfor-
mance of the proposed model would vary depending on the original
estimation of the dynamic connectivity.

4.4. Smoothing of dynamic functional connectivity

The proposed model contains a temporal smoothing, which fits the

time-varying coefficients to a cosine series representation and estimates
the cosine series coefficients by the least squares method (Chung et al.,
2010). Other least squares smoothing methods can be applied instead,
but the smoothing result might be different. For example, the least
squares smoothing in Selesnick et al. (2012), Baek et al. (2015) mini-
mizes the second-order difference to force the signal to be smooth. The
Savitzky–Golay filter (Savitzky and Golay, 1964; Madden, 1978) fits the
subsets of adjacent data points to a polynomial by linear least squares.
This is left as a future study.

5. Conclusion

In the proposed regression method, the dynamic correlation matrix
is modeled as a linear combination of symmetric positive-definite (SPD)
matrices combined with cosine series representation, which provides
superior performance over existing sample correlation matrices. We
represented the correlation matrix, at each time point, as a linear
combination of exponential map of the orthonormal basis in the space
of symmetric matrices. Doing so, we smoothed out the unwanted noise
in dynamic functional connectivity and achieved higher accuracy in
identifying and discriminating brain connectivity states.
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