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Fast Polynomial Approximation of Heat Kernel
Convolution on Manifolds and Its Application to
Brain Sulcal and Gyral Graph Pattern Analysis

Shih-Gu Huang , Ilwoo Lyu , Anqi Qiu , and Moo K. Chung

Abstract— Heat diffusion has been widely used in brain
imaging for surface fairing, mesh regularization and cor-
tical data smoothing. Motivated by diffusion wavelets and
convolutional neural networks on graphs, we present a new
fast and accurate numerical scheme to solve heat diffusion
on surface meshes. This is achieved by approximating
the heat kernel convolution using high degree orthogonal
polynomials in the spectral domain. We also derive the
closed-form expression of the spectral decomposition of
the Laplace-Beltrami operator and use it to solve heat
diffusion on a manifold for the first time. The proposed
fast polynomial approximation scheme avoids solving for
the eigenfunctions of the Laplace-Beltrami operator, which
is computationally costly for large mesh size, and the
numerical instability associated with the finite element
method based diffusion solvers. The proposed method is
applied in localizing the male and female differences in
cortical sulcal and gyral graph patterns obtained from MRI
in an innovative way. The MATLAB code is available at
http://www.stat.wisc.edu/~mchung/chebyshev.

Index Terms— Heat diffusion, Laplace-Beltrami operator,
brain cortical sulcal curves, diffusion wavelets, Chebyshev
polynomials.

I. INTRODUCTION

HEAT diffusion has been widely used in brain image
processing as a form of smoothing and noise reduction

starting with Perona and Malik’s ground-breaking study [1].
Many techniques have been developed for surface mesh fair-
ing, regularization [2], [3] and surface data smoothing [4]–[7].
The diffusion equation has been solved by various numerical
techniques [4]–[6], [8], [9]. In [6], [10], [11], the heat dif-
fusion was solved iteratively by the discrete estimate of the
LB-operator using the finite element method (FEM) and the
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FDM. However, the FDM are known to suffer numerical
instability if the sufficiently small step size is not chosen in
the forward Euler scheme. In [8], [9], [12], [13], diffusion
was solved by expanding the heat kernel as a series expan-
sion of the LB-eigenfunctions. Although the LB-eigenfunction
approach avoids the numerical instability associated with the
FEM based diffusion solver [10], the computational complex-
ity of computing eigenfunctions is very high for large-scale
surface meshes.

In this paper, motivated by the diffusion wavelet transform
[14]–[18] and convolutional neural networks [19] on graphs
that all use Chebyshev polynomials, we propose a new spectral
method to solve the heat diffusion by approximating the
heat kernel by orthogonal polynomials. The previous works
did the spectral decomposition on mostly graph Laplacian
exclusively using Chebyshev polynomials. The LB-operator
with other polynomials were not considered before. We present
a new general theory for the LB-operator on an arbitrary
manifold that works with an arbitrary orthogonal polynomial.
Besides the Chebyshev polynomials, we provide three other
polynomials to show the generality of the proposed method.
We further derive the closed-form expression of the spectral
decomposition of the LB-operator and use it to solve heat dif-
fusion on a manifold for the first time. Taking the advantage of
the recurrence relations of orthogonal polynomials [20]–[22],
the computational run time of the proposed method is sig-
nificantly reduced. The proposed method is faster than the
LB-eigenfunction approach and FEM based diffusion solvers
[9]. We further applied the fast polynomial approximation
method to iterative convolution to obtain multiscale features,
which is shown to be as good as the diffusion wavelet in
detecting localized surface signals [14]–[18].

The proposed method is applied in quantifying brain sulcal
and gyral patterns. The sulcal and gyral features such as
gyrification index, sulcal depth, curvature, sulcal length and
sulcal area were widely used in revealing significant differ-
ences between populations [23]. In [24], the difference of the
superior temporal sulcus length was analyzed. Shi et al. [25]
computed the lengths of sulcal curves in characterizing the
Alzheimer’s disease (AD). Seong et al. [26] measured the
sulcal depth and average mean curvature along the sulcal lines
in the AD study. In [27], various metrics were proposed to

0278-0062 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Wisconsin. Downloaded on June 28,2020 at 05:07:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3479-5588
https://orcid.org/0000-0001-5868-9603
https://orcid.org/0000-0002-0215-6338
https://orcid.org/0000-0003-2852-9670


2202 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 6, JUNE 2020

measure the difference between sulcal graph features including
sulcal pits, sulcal basins and ridge points. Lyu et al. [28]
computed local gyrification index using shape-adaptive kernels
by performing wavefront propagation with sulcal and gyral
curves as the source. Im et al. [29] measured the similarity
between two sulcal graphs.

The main contributions of the paper are as follows. 1) The
development of a general polynomial approximation theory
for LB-operator and heat kernel and its application to solving
diffusion equations fast. The derivation of the closed-form
solutions of the expansion that enables faster computation of
heat diffusion than before. 2) New multiscale shape analysis
framework on manifolds that utilizes the iterative heat kernel
convolution property that is as powerful as diffusion wavelets.
3) Application of the faster solver in quantifying the sulcal
and gyral patterns on the large-scale brain surface meshes
with 370,000 vertices for 444 subjects obtained from 3T
MRI. We use the proposed method in performing diffusion
on cortical brain surfaces by taking the sulcal and gyral graph
patterns as the initial condition. The dataset is large enough to
demonstrate the effectiveness of our faster solver. Our fast
solver can perform diffusion in 40 minutes for the whole
dataset. The male and female differences are then localized
using both mass univariate and multivariate statistics.

II. METHODS

We present a new general spectral theory for diffusion
equations and the heat kernel using four different types of
polynomials (Jacobi, Chebyshev, Hermite, Laguerre) to show
the generality of the method. The analytic closed-form solu-
tions to the expansion coefficients are derived and used to
solve the heat diffusion fast. The new theory works for an
arbitrary orthogonal polynomial.

A. Diffusion on Manifolds

Let functional data f ∈ L2(M), the space of square
integrable functions on manifold M with inner product

〈 f, h〉 =
∫
M

f (p)h(p)dμ(p),

where μ(p) is the Lebesgue measure such that μ(M) is the
total area or volume of M. Let � denote the LB-operator
on M. Let ψ j be the eigenfunctions of the LB-operator with
eigenvalues λ j , i.e.,�ψ j = λ jψ j . Let us order the eigenvalues
as 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · .

The isotropic heat diffusion on M with f as the initial
observed data is given by

∂g(p, σ )

∂σ
+�g = 0, g(p, σ = 0) = f (p), (1)

where σ is the diffusion time. It has been shown that the
convolution of f with heat kernel Kσ is the unique solution
of (1) [8], [9], [30], [31]:

g(p, σ ) = Kσ ∗ f (p) =
∫
M

Kσ (p, q) f (q)dμ(q),

with the heat kernel given by

Kσ (p, q) =
∞∑
j=0

e−λ jσψ j (p)ψ j (q). (2)

The heat kernel convolution can be written as

g(p, σ ) = Kσ ∗ f (p) =
∞∑
j=0

e−λ jσ f jψ j (p) (3)

with coefficients f j computed as

f j =
∫
M

f (p)ψ j (p)dμ(p).

B. Basic Idea in 1D Diffusion

We explain the core idea with 1D example. Consider time
series data f on [0, 1]. The solution of heat diffusion (1) is
given by the weighted cosine series representation [32],

g(p, σ ) = Kσ ∗ f =
∞∑

j=0

e− j 2π2σ f jψ j , (4)

where ψ0(p) = 1 and ψ j (p) = √
2 cos( jπp) are the eigenfuc-

ntions of � = − ∂2

∂p2 . From Taylor expansion ez = ∑∞
n=0

zn

n! ,

Kσ ∗ f =
∞∑

n=0

(−σ)n
n!

∞∑
j=0

f j ( j2π2)nψ j .

Since �ψ j = j2π2ψ j and �nψ j = ( j2π2)nψ j , we have

Kσ ∗ f =
∞∑

n=0

(−σ)n
n! �n f.

Thus, heat diffusion can be computed simply by using the
power of Laplacian. If we can further compute the power of
Laplacian quickly using some recursion, the computation can
be done more quickly.

C. Fast Polynomial Approximation

Here we present a general new theory for an arbitrary
manifold that works in any type of image domain includ-
ing surface and volumetric meshes. Consider an orthogo-
nal polynomial Pn over interval [a, b] with inner product∫ b

a Pn(λ)Pk(λ)w(λ)dλ = δnk, the Dirac delta. The weight
w(λ) differs for polynomials. Pn is often defined using the sec-
ond order recurrence [22],

Pn+1(λ) = (Anλ+ Bn)Pn(λ)+ Cn Pn−1(λ) (5)

with initial conditions P−1(λ) = 0 and P0(λ) = 1. We expand
the exponential weight of the heat kernel by polynomials Pn :

e−λσ =
∞∑

n=0

cσ,n Pn(λ), cσ,n =
∫ b

a
e−λσ Pn(λ)w(λ)dλ. (6)

Substituting (6) into (3), the solution of heat diffusion can be
expressed in terms of the polynomials:

Kσ ∗ f =
∞∑

n=0

cσ,n

∞∑
j=0

Pn(λ j ) f jψ j . (7)
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Since �ψ j = λ jψ j , we have �lψ j = λl
jψ j . Assuming the

form Pn(λ) = ∑n
l=0 dlλ

l , we have

Pn(λ j )ψ j =
n∑

l=0

dlλ
l
jψ j =

n∑
l=0

dl�
lψ j = Pn(�)ψ j . (8)

By substituting (8) into (7), the heat diffusion equation is
solved by polynomial expansion involving the LB-operator but
without the LB-eigenfunctions,

Kσ ∗ f =
∞∑

n=0

cσ,n Pn (�) f.

Since Pn is a polynomial of degree n, the direct com-
putation of Pn (�) f requires the costly computation of
� f,�2 f, · · · ,�n f . Instead, we compute Pn (�) f by the
following recurrence

Pn+1 (�) f = (An�+ Bn)Pn (�) f + Cn Pn−1 (�) f

with initial conditions P−1(�) f = 0 and P0(�) f = f .
In practice, the expansion is truncated at degree m, which

is empirically determined. The expansion coefficients cσ,n can
be computed from the closed-form solution to (6). In the
following, we present three examples of the fast polynomial
approximation methods based on the Jacobi, Hermite and
Laguerre polynomials.

Jacobi Polynomials: The Jacobi polynomials P(α,β)n (λ),
which are orthogonal in [−1, 1] for α, β > −1, are defined
by the recurrence (5) with parameters given by [22],

An = (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
,

Bn = (α2 − β2)(2n + α + β + 1)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

Cn = − (n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
.

The Jacobi polynomials are orthogonal over interval [−1, 1]
with inner product [22],

∫ 1

−1
P(α,β)n (λ)P(α,β)k (λ)(1 − λ)α(1 + λ)βdλ

= 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)�(n + α + β + 1)n!δnk .

Many polynomials such as Chebyshev, Legendre and Gegen-
bauer polynomials defined in [−1, 1] are the special cases of
the Jacobi polynomials [22].

The eigenvalue λ of the LB-operator ranges over [0,∞).
Expanding the exponential weight e−λσ by the Jacobi polyno-
mials may not be able to provide a good fit outside the interval
[−1, 1]. Hence, we shift and scale Jacobi polynomials with
parameter b > 0

P
(α,β)
n (λ) = P(α,β)n

(
2λ

b
− 1

)
, (9)

which are orthogonal over [0, b]. Then, e−λσ is expanded in
terms of P

(α,β)
n .

Theorem 1: The Jacobi polynomial expansion of the solu-
tion to heat diffusion (1) is given by

Kσ ∗ f =
∞∑

n=0

cσ,n P
(α,β)
n (�) f, (10)

where the coefficients cσ,n have the closed-form solution

cσ,n = �(α + β + n + 1)

�(α + β + 2n + 1)
(−bσ)n1

×F1

(
β + n + 1

α + β + 2n + 2
; −bσ

)
,

and p Fq is the generalized hypergeometric function [22].
Proof: We first derive the expansion of e−λσ using the

Jacobi polynomials P(α,β)n . The algebraic derivation will show
that the expansion of e−λσ is given by

e−λσ =
∞∑

n=0

γn(−2σ)neσ 1 F1

(
β + n + 1

α + β + 2n + 2
; −2σ

)
P(α,β)n (λ),

where γn = �(α+β+n+1)
�(α+β+2n+1) , and p Fq is the generalized hyper-

geometric function [22], [33]. The expansion is only valid in
interval [−1, 1]. To obtain the expansion of e−λσ in terms of
the shifted and scaled Jacobi polynomial (9), we replace λ by
2λ
b − 1 and σ by bσ

2 and expand e−λσ+ bσ
2 as

∞∑
n=0

γn(−bσ)ne
bσ
2 1 F1

(
β + n + 1

α + β + 2n + 2
; −bσ

)
P
(α,β)
n (λ).

We divide the both sides of the equation by e
bσ
2 , and the

expansion of e−λσ follows.
Chebyshev Polynomials: The Chebyshev polynomials

Tn(λ) = cos(n cos−1 λ) defined in interval [−1, 1] are the
special cases of the Jacobi polynomials [22],

Tn(λ) = 4n(n!)2
(2n)! P

(− 1
2 ,− 1

2 )
n (λ). (11)

The Chebyshev polynomials satisfy the recurrence relation
(5) with parameters An = 2 − δn0, Bn = 0 and Cn = −1.
Similar to using the shifted and scaled Jacobi polynomials in
Theorem 1, we shift and scale the Chebyshev polynomials to

T n(λ) = Tn

(
2λ

b
− 1

)

for the expansion of exponential weight over interval [0, b].
Theorem 2: The Chebyshev polynomial expansion of the

solution to heat diffusion (1) is given by

Kσ ∗ f =
∞∑

n=0

cσ,n T n (�) f,

where the coefficients cσ,n have the closed-form solution

cσ,n = (2 − δn0)(−1)ne− bσ
2 In

(
bσ

2

)
,

and In is the modified Bessel function of the first kind [22].
Proof: We provide two different proofs. The first proof is

based on Theorem 1. The Chebyshev polynomial is a special
case of the Jacobi polynomial (11), and thus their shifted and
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scaled versions have the relation T n(λ) = 4n(n!)2
(2n)! P

(− 1
2 ,− 1

2 )
n (λ).

Identifying α = β = − 1
2 in Theorem 1 and noting

�(α+β+n+1)
�(α+β+2n+1) = 1 when n = 0, we have

cσ,n = 2 − δn0

22nn! (−bσ)n1 F1

(
n + 1/2
2n + 1

; −bσ

)
. (12)

The modified Bessel function is closely related to the gener-
alized hypergeometric function [22],

In(z) = zne±z

2nn! 1 F1

(
n + 1/2
2n + 1

; ∓2z

)
. (13)

Substitute In(z) in (13) with z = bσ
2 for the term 1 F1 in (12),

and the result follows.
The second proof is based on the generating function of the

modified Bessel functions [22]:

ez cos θ = I0(z)+ 2
∞∑

n=1

In(z) cos(nθ). (14)

We use the generating function to develop the relation between
exponential function and the Chebyshev polynomials. Let
θ = cos−1 λ, and then (14) can be rewritten in terms of the
Chebyshev polynomials Tn(λ) = cos(n cos−1 λ),

ezλ = I0(z)T0(λ)+ 2
∞∑

n=1

In(z)Tn(λ), (15)

where T0(λ) = 1. Replacing λ by 2λ
b − 1 and identifying

z = − bσ
2 in (15) give the expansion of e−λσ+ bσ

2 in terms of
the shifted and scaled Chebyshev polynomials T n :

e−λσ+ bσ
2 = I0

(
−bσ

2

)
T 0(λ)+ 2

∞∑
n=1

In

(
−bσ

2

)
T n(λ).

We divide the both sides of the equation by e
bσ
2 , and the expan-

sion of e−λσ follows. Note that In
(− bσ

2

) = (−1)n In
( bσ

2

)
.

In numerical implementation, given the maximum eigen-
value λmax of the discrete LB-operator, we set b = λmax such
that the Chebyshev polynomials provide good approximation
of the exponential weight over [0, λmax ] [14].

Hermite Polynomials: The Hermite polynomials

Hn(λ) = (−1)neλ
2 dn

dλn
e−λ2

with H−1(λ) = 0 and H0(λ) = 1 in (−∞,∞) satisfy the
recurrence relation (5) with parameters [22]

An = 2, Bn = 0,Cn = −2n.

The orthogonal condition of the Hermite polynomials [22] is
given by ∫ ∞

−∞
Hn(λ)Hm(λ)e

−λ2
dλ = √

π2nn!δnm .

Theorem 3: The Hermite polynomial expansion of the solu-
tion to heat diffusion (1) is given by

Kσ ∗ f =
∞∑

n=0

cσ,n Hn (�) f,

where the coefficients cσ,n have the closed-form solution

cσ,n = 1

n!
(−σ

2

)n

e
σ2
4 .

Proof: It follows that the expansion of e−λσ in terms of
the Hermite polynomials has coefficients

cσ,n = 1√
π2nn!

∫ ∞

−∞
e−λσ Hn(λ)e

−λ2
dλ.

The closed-form solution of the expansion coefficients can
be derived through the integral property involving the
Hermite polynomials

∫ ∞
−∞ e−(λ−y)2 Hn(λ)dλ = √

π2n yn [34]
with y = − σ

2 .
The statement can be also proved using the exponential

generating function [22],

e2λz−z2 =
∞∑

n=0

zn

n! Hn(λ).

Here, it is used to derive the expansion coefficients by dividing
the both sides of the equation by e−z2

and then identifying
z = − σ

2 .
Laguerre Polynomials: The Laguerre polynomials Ln satisfy

the recurrence relation (5) with parameters

An = − 1

n + 1
, Bn = 2n + 1

n + 1
,Cn = − n

n + 1

and L−1(λ) = 0 and L0(λ) = 1 in [0,∞) [22].
Theorem 4: The Laguerre polynomial expansion of the

solution to heat diffusion (1) is given by

Kσ ∗ f =
∞∑

n=0

cσ,n Ln(�) f,

where the coefficients cσ,n have the closed-form solution

cσ,n = σ n

(σ + 1)n+1 .

Proof: From the orthogonal condition of the Laguerre
polynomials [22],∫ ∞

0
Ln(λ)Lk(λ)e

−λdλ = δnk,

the expansion of e−λσ in terms of the Laguerre polynomials
has coefficients given as the inner product of e−λσ and Ln :

cσ,n =
∫ ∞

0
e−λσ Ln(λ)e

−λdλ.

The closed-form solution of the expansion coefficients can be
derived through the integral property

∫ ∞
0 e−λy Ln(λ)dλ = (y−

1)n y−n−1 [34] with y = σ + 1.
Alternately, we can prove the theorem using the exponential

generating function of the Laguerre polynomials [22],

1

1 − z
e− λz

1−z =
∞∑

n=0

zn Ln(λ).

Multiply the both sides of the equation by 1− z. Let z
1−z = σ ,

i.e., z = σ
σ+1 , and then the expansion of e−λσ follows.
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Fig. 1. Left: left hippocampus surface, heat diffusion with σ = 1.5 using
the Chebyshev, Hermite and Laguerre approximation methods with
degree m = 100. Right: MSE between the original surface and the
polynomial approximation methods for different expansion degree m. The
Hermite approximation method has the slowest convergence, while the
Chebyshev method converges slightly faster than the Laguerre method.
But the all the methods converge quickly with degree m = 100.

D. Numerical Implementation

The MATLAB code is available at
http://www.stat.wisc.edu/~mchung/chebyshev.

Expansion degree. The expansion degree m is empirically
determined to the sufficiently small MSE. Fig. 1 displays the
heat diffusion on the left hippocampus surface mesh with
2338 vertices and 4672 triangles, with diffusion time σ = 1.5
and expansion degree m = 100. The reconstruction error
is measured by the mean squared error (MSE) between the
polynomial approximation method and the original surface
mesh. Although all the methods converged with less than
degree m = 100, the Chebyshev approximation method
converges the fastest. The Chebyshev polynomials will be
mainly used through the paper but other polynomials can be
similarly applied.

In this study, we adopted the LB-operator discretization
[17] for the proposed method. This LB-operator discretization
differs from our previous cotan discretization used in the
FEM based diffusion solver [10], [11] and LB-basis com-
putation [12]. To rule out the potential accuracy differences
caused by different discretization methods, the LB-operator
discretization in the FEM based diffusion solver [10], [11]
and the LB-eigenfunction approach [8], [9] was replaced by
[17] for a fairer comparison.

The LB-operator is discretized in a triangle mesh via the
cotan formulation as �i j = Cij /Ai , where Ai is the estimated
area at vertex pi , and C = (Cij ) is the global coefficient matrix
[6], [9], [11], [12], [17]. The construction of Cij is as follows.
Let T +

i j and T −
i j be the two triangles sharing the same vertex

pi and its neighboring vertex p j . Let the two angles opposite
to the edge connecting pi and p j be φi j and θi j respectively
for T +

i j and T −
i j (Fig. 2-left). The off-diagonal entries of the

global coefficient matrix are Cij = −(cot θi j + cot φi j )/2 if
pi and p j are adjacent and Cij = 0 otherwise. The diagonal
entries are Cii = − ∑

j Ci j .
For the area Ai , we adopt the computation in [17], [35].

At each vertex pi , the neighboring triangles are separated into
three sets: Oi is the set of nonobtuse triangles, Ôi is the set
of obtuse triangles with obtuse angle at pi , and Õi is the set
of obtuse triangles with nonobtuse angle at pi (Fig. 2-right).
Then Ai is computed as

Ai =
∑

T ∈Oi

V (T )+ 1

2

∑
T ∈Ôi

A(T )+ 1

4

∑
T ∈Õi

A(T ),

Fig. 2. Left: φij and θij, angles opposite to the edge connecting pi
and pj corresponding to T+

ij and T−
ij , used for computing the global

coefficient matrix C = (Cij). Right: Computation of area Ai at vertex pi.
The neighboring triangles are decomposed into three sets: Oi is the set
of nonobtuse triangles, Ôi is the set of obtuse triangles with obtuse angle
at pi, and Õi is the set of obtuse triangles with nonobtuse angle at pi.

Fig. 3. We iteratively applied Chebyshev approximation method with
σ = 0.25 four times to the left hippocampus surface mesh coordinates
to obtain heat diffusion with σ = 0.25, 0.5, 0.75 and 1. As σ increases,
we are smoothing the surface more and MSE increases.

where V (T ) is the Voronoi region (gray area) computed
following [35]. Let p j and pk denote the other two vertices
of T with angles 
 p j and 
 pk and edge lengths |pi p j | and
|pi pk|. Then, the Voronoi region area V (T ) at pi is given
by 1

8 (|pi p j |2 cot 
 pk + |pi pk|2 cot 
 p j ) (gray area of Fig. 2-
right). The computation of A(T ) is done using the Heron’s
formula involving the three edge lengths of T . A simpler cotan
discretization in [9], [11], [12] can be also used.

Iterative kernel smoothing. We can obtain diffusion related
multiscale features at different time points by iteratively per-
forming heat kernel smoothing. Instead of applying the poly-
nomial approximation separately for each σ , the computation
can also be realized in an iterative fashion. The solution to heat
diffusion with larger diffusion time can be broken into iterative
heat kernel convolutions with smaller diffusion time [9],

Kσ1+σ2+···+σm ∗ f = Kσ1 ∗ Kσ2 ∗ · · · ∗ Kσm ∗ f.

Thus, if we compute K0.25 ∗ f , then K0.5 ∗ f can be simply
computed as two repeated kernel convolutions, K0.25 ∗(K0.25 ∗
f ). Heat diffusion with much larger diffusion time can be
done similarly. Fig. 3 displays heat diffusion with σ = 0.25,
0.5, 0.75 and 1 realized by iteratively applying the Chebyshev
approximation method with σ = 0.25 sequentially four times.
As σ increases, we are smoothing the surface more smoothly
and MSE increases.

E. Validation

We compared the Chebyshev method against the FEM based
diffusion solver [10], [11] and the LB-eigenfunction approach
[8], [9] on the unit sphere S2, where the ground truth can be
analytically obtained by the spherical harmonics (SPHARM)
Ylm , which are the eigenfunctions of the LB-operator with
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Fig. 4. Signal (initial condition in diffusion) and ground truth of heat
diffusion with σ = 0.01 and 163842 mesh vertices constructed from
degree 100 SPHARM. The LB-eigenfunction approach with 210 eigen-
functions, FEM based diffusion solver with 405 iterations, and Chebyshev
approximation method with degree 45 have similar reconstruction error
(MSE about 10−5).

eigenvalues l(l + 1). Given surface data f on the sphere

f (p) =
∞∑

l=0

l∑
m=−l

flm Ylm(p), p ∈ S2. (16)

The heat kernel convolution at time σ is given as [32]

g(p, σ ) =
∞∑

l=0

l∑
m=−l

e−l(l+1)σ flmYlm (p), (17)

where flm = ∫
S2 f (p)Ylm(p)dμ(p).

Ground Truth: Assign value 1 within one circular region,
−1 within the other circular region, and all other regions were
assigned value 0 on the spherical meshes with 2562, 10242,
40962, 163842, 655362 and 2621442 vertices (Fig. 4). We fit-
ted the above signal using SPHARM with degree l = 100,
which is high enough degree to provide numerical accuracy
up to 4 decimal places in terms of MSE. The above signals
were smoothed with σ = 0.01 using (17) and taken as the
ground truth.

We applied the three methods with different σ values
(0.005, 0.01, 0.02 and 0.05). Fig. 4 displays the result of
the LB-eigenfunction approach with 210 eigenfunctions, FEM
based diffusion solver with 405 iterations, and Chebyshev
approximation method with 45 degree that achieved the similar
reconstruction error of about 10−5 MSE.

Computational run time over mesh sizes. To achieve the sim-
ilar reconstruction error, the FEM based diffusion solver and
Chebyshev approximation method need more iterations and
higher degree for larger meshes, while the LB-eigenfunction
approach is nearly unaffected by the mesh size (Fig. 5-left).
Fig. 5-right displays the computational time of the three
methods at the similar accuracy (MSE about 10−5).

Computational Run Time Over Diffusion Times: The com-
putational run time for different σ (0.005, 0.01, 0.02, 0.05)
with fixed spherical mesh resolution (40962 vertices) was
also investigated. To achieve the similar reconstruction error,
the FEM based diffusion solver and Chebyshev expansion
method need more iterations and higher degree for larger σ ,
while the LB-eigenfunction approach requires less number of
eigenfunctions (Fig. 6-left). Fig. 6-right displays the compu-
tational run time over σ at the same MSE of about 10−7.

From Figs. 5 and 6, the LB-eigenfunction method is the
slowest. The polynomial approximation method is up to
40 times faster than the FEM based diffusion solver and took
5.7 seconds for σ = 0.01 on the sphere with 2621442 vertices.

Fig. 5. Left: MSE of the LB-eigenfunction approach, FEM based diffusion
solver and Chebyshev polynomial approximation method against the
ground truth (σ = 0.01) with different number of eigenfunctions, iterations
and expansion degree respectively on the unit sphere with 2562, 10242,
40962, 163842, 655362 and 2621442 mesh vertices. Right: the compu-
tational time versus number of mesh vertices at the similar reconstruction
error (MSE about 10−5).

Fig. 6. Left: MSE of the LB-eigenfunction approach, FEM based diffusion
solver and Chebyshev approximation method against the ground truth
with different number of eigenfunctions, iterations and expansion degree
respectively. The diffusion time σ = 0.005, 0.01, 0.02 and 0.05 and unit
sphere with 40962 mesh vertices were used. Right: the computational
time versus σ at similar accuracy (MSE about 10−7).

III. APPLICATION

A. HCP Dataset

We used the T1-weighted MRI of 268 females and
176 males in the Human Connectome Project (HCP) database
[36]. MRI were obtained using a Siemens 3T Connectome
Skyra scanner with a 32-channel head coil. The details on
image acquisition parameters and image processing can be
found in [37], [38].

A bias field correction was performed, and the T1-weighted
image was registered to the MNI space with a FLIRT affine
and then a FNIRT nonlinear registration [39]. The distortion-
and bias-corrected T1-weighted image was then undergone the
FreeSurfer’s recon-all pipeline [40]–[42] that includes the seg-
mentation of volume into predefined structures, reconstruction
of white and pial cortical surfaces, and FreeSurfer’s standard
folding-based surface registration to their surface atlas. Then,
the white, pial and spherical surfaces of the left and right
hemispheres were produced.

B. Sulcal and Gyral Curve Extraction

The automatic sulcal curve extraction method (TRACE)
[43], [44] was used to detect concave regions (sulcal fundi)
along which sulcal curves are traced. The method consists
of two main steps: (1) sulcal point detection and (2) curve
delineation by tracing the detected sulcal points. For sulcal
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Fig. 7. Top: gyral curves (black solid line), sulcal curves (black dashed
line), and the smoothed mean curvature of four subjects. Bottom: the
enlarged magenta regions of the top figures showing that there is no
sulcal curve between gyral curves in the left three subjects due to shallow
depth or low mean curvature).

TABLE I
REPRODUCIBILITY AND ROBUSTNESS TO NOISE MEASURED BY

AVERAGE AND HAUSDORFF DISTANCES (mm) (RESULTS FROM [44])

point detection, concave points are initially obtained from the
vertices of the input surface mesh by thresholding mean cur-
vatures. The concave points are further filtered by employing
the line simplification method [45] that simplifies the sulcal
regions without significant loss of their morphological details.
For curve delineation, the selected sulcal points are connected
to form a graph, and the curves are delineated by tracing
shortest paths on the graph. Finally, the sulcal curves are traced
over the graph by the Dijkstra’s algorithm [46]. We use similar
idea to gyral curve extraction by finding convex regions.

The TRACE method only identified the major gyral and
sulcal curves. Minor curves in almost flat regions like
plateau or with very low curvature, shallow depth or short
length were not extracted. Fig. 7 displays the sulcal and gyral
curves and the smoothed mean curvature of four subjects. In
the enlarged regions, the first three subjects have no sulcal
curves between the two gyral curves due to very low mean
curvature, while the fourth subject has sulcal curve in the same
region because of higher mean curvature.

The TRACE method was validated using the Kirby repro-
ducibility dataset with 21 T1-weighted scans [48]. The
reproducibility was measured by the distance between two cor-
responding surfaces (scan and re-scan sessions). The robust-
ness to noise compared to [47] was done using synthetic noisy
surfaces, which were generated by adding vertex-wise random
displacements to the original surfaces. The displacement at
each vertex follows an independent and identically distrib-
uted uniform distribution between 0 and 1.0 mm. We used
the average and Hausdorff distances [49]. The experimental
results from [44] (Table I) show higher reproducibility and
robustness to noise in TRACE than the existing method [47].
The paired T -test showed significant differences between these
two methods in both the average and Hausdorff distances,
with p-values 0.0045 and 0.003 respectively in reproducibility
and p-values< 10−16 in robustness. For the comparison

Fig. 8. The sulcal/gyral curves (left), mean curvature (middle) and SI
(right). 1st and 2nd rows: original data displayed on the white matter
surfaces and the enlarged magenta regions. The gyral and sulcal curves
are marked by solid and dashed black lines respectively and are assigned
heat values 1 and −1 when smoothing. The mean curvature is positive
for sulci and negative for gyri. The SI is positive for gyri and negative for
sulci. In the enlarged magenta regions, the noisy mean curvature and
SI show sulcal patterns in the middle of the gyral region, which is not
shown in the sulcal/gyral curve extraction method. Smoothing is done
with diffusion time σ = 0.001.

with manually labeled primary curves [50], [51], the MRIs
Surfaces Curves dataset (http://sipi.usc.edu/~ajoshi/MSC) con-
sisting of 12 subjects was used. The mean values of the
average and Hausdorff distances of the 26 primary curves are
1.32 and 3.77 mm in the TRACE method, which are smaller
than 1.38 and 4.20 mm in [47]. Even though the paired T -test
found no significant difference between the two methods in
the average distance (p-value = 0.0713), we found significant
difference in the Hausdorff distance ( p-value = 7.3 × 10−6).

C. Diffusion Maps on Sulcal and Gyral Curves

The junctions between sulci are highly variable [52]. A sul-
cus corresponding to a long elementary fold in one subject
may be made up of several small elementary folds in another
subject [5]. Each subject has different number of vertices
and edges in sulcal and gyral graphs, and they don’t exactly
match across subjects even after registration. It is difficult
to directly compare such graphs at the vertex level across
subjects. Thus, the proposed polynomial approximation was
used to smooth out the sulcal and gyral curves and obtain the
smooth representation of curves that enables the vertex-level
comparisons.

The extracted gyral curves were assigned heat value 1, and
sulcal curves were assigned heat value -1. All other parts
of surface mesh vertices were assigned value 0. Then heat
diffusion was performed on these values. The diffusion map
values range from -1 to 1. The close to the value of 1 indicates
the likelihood of the gyral curves while the close to the value
of -1 indicates the likelihood of the sulcal curves. The pro-
posed method is motivated by the voxel-based morphometry
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Fig. 9. The average diffusion maps of the sulcal/gyral curves (left), mean curvature (middle) and SI (right) of 268 females and 176 males displayed
on the average surface template. The T-statistic maps (bottom) show the localized sulcal and gyral pattern, mean curvature and SI differences
(female - male) thresholded at ±4.96 (uncorrected p-value of 10−6), having significant difference mainly in the temporal lobe.

(VBM) [53], [54], where the segmented white or gray matter
regions are compared in 3D volume. Due to the difficulty of
exactly aligning the white or gray matter regions separately,
Gaussian kernel smoothing with large bandwidth was used to
mask the shape variations across subjects and approximately
align the segmented regions. Also a similar approach was
used in the tract-based spatial statistics (TBSS) [55], [56] in
analyzing white matter regions in diffusion tensor imaging that
does not exactly align across subjects.

In the numerical implementation, a sufficient large expan-
sion degree m = 1000 were used. In a desktop with
4.2 GHz Intel Core i7 processor, the construction of the
discrete LB-operator took 5.76 seconds, the computation of
Chebyshev coefficients took 2.6 × 10−4 seconds, and heat
diffusion by the Chebyshev polynomials took 3.19 seconds
for the both hemispheres in average. The total computation
took 8.95 seconds per subject in average. The diffusion maps
were then subsequently used in localizing the male and female
differences. One example of diffusion map is displayed in
Fig. 8-left.

D. Univariate Two-Sample T-Test

The diffusion maps with σ = 0.001 were constructed
for 268 females 176 males. The average diffusion maps in
Fig. 9-left displays the major differences in the temporal lobe,
which is responsible for processing sensory input into derived
meanings for the appropriate retention of visual memory,
language comprehension, and emotion association [57].

The two-sample T -statistics maps are in the range of
[−6.5, 7.02]. Any T -statistic with absolute value above 2.75
(red and blue regions) is considered as statistically significant
using the false discovery rate (FDR) at 0.05. If the T -statistic
map shows high T -statistic value at a particular vertex, it indi-
cates that one group has consistently more gyral curves than
sulcal curves at the vertex. If we use slightly different diffusion
time σ , we still obtain similar results.

We did an additional analysis using the mean curvature and
shape index (SI). We estimated the curvatures and SI, which

are the functions of curvature, by fitting the local quadratic
surface in the first neighboring vertices [53], [58]

f (x1, x2)=β0+β1 x1+β2 y2+ 1

2
β3 x2

1 +β4 x1x2+ 1

2
β5 x2

2 .

The curvature and SI are expected to be noisy and require
smoothing to increase statistical sensitivity and the signal-
to-noise ratio [6], [7], [59] (Fig. 8). Smoothing surface data
before statistical analysis is often done in various cortical
surface features. Even the FreeSurfer package output the
smoothed mean and Gaussian curvatures [60], [61]. Fig. 8
displays the results of smoothed mean curvature and SI maps.

We performed the two-sample T -test on the smoothed
mean curvature and SI maps (Fig. 9-middle and right). The
results show significant gender difference mainly in the
temporal lobe, consistent to the findings in the proposed
sulcal/gyral curve analysis (Fig. 9-left).

E. Multivariate Two-Sample T-Test

The iterative kernel convolution was used to compute the
diffusion at different time points quickly. The values of diffu-
sion at different time points were then used in constructing
the multiscale features. In this study, we adopted 10 time
points σ = 0.0005, 0.001, · · · , 0.0045, 0.005. Fig. 10 shows
the diffusion maps of one representative subject. At each
vertex, the multiscale diffusion features are used to determine
the significant difference between the females and males.
We used the two-sample Hotelling’s T 2-statistic, which is
the multivariate generalization of the two-sample T -statistic
[16], [62]. Fig. 13 shows the Hotelling’s T 2-statistics and the
corresponding p-values in the log-scale. The heat diffusion
has T 2-statistics in the range of [0.13, 8.2] with minimum
p-value 3.4 × 10−12. Any T 2-statistic above 2.28 (yellow and
red regions) is considered as significant at FDR 0.05.

In comparison, we used the diffusion wavelet features
[14]–[17] at ten different scales and showed that the proposed
method can achieve similar performance in localizing signal
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Fig. 10. Heat diffusion with σ = 0.0005, 0.001, · · · , 0.005 computed by
the iterative convolution of subject 130114. At each vertex, 10 diffusion
values at different time points are used in constructing the Hotelling’s
T2-statistic to contrast males and females.

Fig. 11. Left: the exponential weight e−λσ in heat diffusion for diffusion
time σ = 0.0005, 0.0015, . . . , 0.0045. Right: the weight function g(λt) in
diffusion wavelet transform for scaling parameter t = 0.002, 0.004, . . . ,
0.01.

regions as the wavelet features. The diffusion wavelet [14],
[15], [17] has the similar algebraic form as the heat kernel:

Wt (p, q) =
∞∑

j=0

g(λ j t)ψ j (p)ψ j (q).

The difference between the heat kernel and diffusion wavelet
transform is the weight function g, which determines the
spectral distribution.

Compared to the heat kernel, the weight function g attenu-
ating all low and high frequencies outside the passband makes
the diffusion wavelet work as a band-pass filter. The wavelet
transform transform of f is then given by

Wt ∗ f (p) =
∞∑
j=0

g(λ j t) f jψ j (p), f j =
∫
M

f (p)ψj (p)dμ(p).

The proposed polynomial approximation scheme can be
applied to the diffusion wavelet transform through expanding
g(λt) by orthogonal polynomials. In this paper, we used the
following cubic spine as g(λt) [14]

g(x) =
⎧⎨
⎩

x−α
1 xα, x < x1

−5 + 11x − 6x2 + x3, x1 ≤ x ≤ x2

x−β
2 xβ, x > x2

, (18)

where α = β = 2, x1 = 1 and x2 = 2. The scaling parameter
t controls the passband of the diffusion wavelet (Fig. 11).

Diffusion at different diffusion time σ and diffusion
wavelets at different scaling parameter t contain different
spectral information of input data f (Fig. 11). Thus, the heat
diffusion with a varying σ and diffusion wavelet with varying t
provide multiscale features of f . All the heat diffusion features
contain low-frequency components. If the initial surface data
suffer from significant low-frequency noise, the diffusion
wavelet transform would be more suitable. On the other hand,

Fig. 12. Diffusion wavelet transform with scaling parameters t =
0.002,0.003, · · · , 0.011 of subject 130114. At each vertex, 10 diffusion
wavelet transform values at different scales are used in constructing the
Hotelling’s T2-statistic to contrast males and females.

Fig. 13. Top: Hotelling’s T2-statistics of left and right hemispheres of heat
diffusion maps with 10 different time points (left) and diffusion wavelet
transform with 10 different scales (right). The T2-statistic maps of left and
right hemispheres showing the localized sulcal and gyral pattern differ-
ences (female - male) thresholded at 4.9 (uncorrected p-value of 10−6).
Bottom: p-value maps of left and right hemispheres displayed in loga-
rithmic scale show the significance of the difference at the uncorrected
p-value of 10−6.

if most noises are in high frequencies, performance of the both
methods would be similar and we do not really needs diffusion
wavelet features [63].

In this study, we adopted 10 different values of
t = 0.002, 0.003, · · · , 0.011. Fig. 12 shows the flattened
diffusion wavelet maps of one representative subject. The
values of t were chosen empirically to match the amount of
smoothing (FWHM) in the wavelet to the amount of smoothing
in heat diffusion. Using the two-sample Hotelling’s T 2-statistic
on the multiscale diffusion wavelet features, we also contrasted
268 females and 176 males. Fig. 13 shows the Hotelling’s
T 2-statistics and the corresponding p-values in the log-scale.
The diffusion wavelet transform has T 2-statistics in the range
of [0.09, 7.6] with minimum p-value 3.4×10−11. For multiple
comparisons, any T 2-statistic above 2.37 (yellow and red
regions) is considered as significant using the FDR 0.05.
Although there are slight differences, the both methods show
the similar localization of sulcal and gyral graph patterns,
mainly in the temporal lobe.

The exponential weight in the heat diffusion has only
one parameter, i.e., the diffusion time σ , and leads to the
analytic closed-form solutions to the expansion coefficients.
The weight function in the diffusion wavelet transform is more
complicated, and it may not possible to derive the closed-form
expression for the expansion coefficients. The simpler weight
function in heat kernel and the iterative convolution scheme
lead to faster computational run time compared to the diffusion
wavelets. In heat diffusion, we only needed to compute the
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Fig. 14. (a) Correlations between the diffusion maps (σ = 0.001) of the sulcal/gyral curves and the mean curvature, SI and cortical thickness across
all subjects. We observe strongly negative correlation to the mean curvature (−0.77 ± 0.12) and strongly positive correlation to the SI (0.76 ± 0.13)
and high positive correlation to cortical thickness in many regions including the temporal lobe. (b) The green-colored circles in the enlarged region
show diffusion map close to 0 due to interwinding complex sulcal (dashed lines) and gyral curves (solid lines).

expansion coefficients for σ = 0.0005 and reused these
coefficients in the iterative convolution to obtain the other
nine features. The computation of the 1000 degree expansion
coefficients by the proposed closed-form solution costed only
2.6 × 10−4 seconds. In the diffusion wavelet transform, due
to the more complicated weight function, the 1000 degree
expansion coefficients were computed numerically, which took
1.26 seconds [14], [16].

F. Comparing to Other Cortical Folding Features

We computed the correlations between the diffusion maps of
the sulcal/gyral curves and the mean curvature, SI and cortical
thickness across all subjects with diffusion time σ = 0.001
[64], [65] (Fig. 14). We can observe strongly negative corre-
lation to mean curvature (−0.77 ± 0.12) and strongly positive
correlation to SI (0.76±0.13). Although the correlation to the
cortical thickness (0.23±0.20) is not as high as the correlation
to the mean curvature and SI, many regions have correlation
value larger than 0.4, especially in the temporal lobe. Most
of regions are all statistically significant after FDR correction
at 0.05.

IV. DISCUSSION AND CONCLUSION

The numerical computation of solving diffusion equations
has been thoroughly investigated and mostly solved using the
finite element method (FEM) and finite difference method
(FDM) on triangulated surface meshes for many decades [4]–
[7], [9]–[11]. It is extremely difficult if not impossible to
speed up the computation over existing methods any further.
Utilizing the proposed spectral decomposition of heat kernel,
we were able to come up with a new numerical scheme
that speeds up the computation 8-40 times (depending on the
mesh size) over these existing methods, which is a significant
contribution itself.

Due to the advancement of imaging techniques, we are
beginning to see ever larger meshes. For instance, [7]
smoothed the mean curvature of triangulated cortical surfaces
with 1.4 million vertices. Fan et al. [66] computed the heat
flux signature in a cortical tetrahedral mesh with more than
1.5 million vertices. Kay et al. [67] used six parallel surfaces
between the pial and white surfaces with 5 million vertices
in modeling fMRI BOLD activity patterns at sub-millimeter
resolution. Warner et al. [68] generated 3D tetrahedral head
and cortical surface meshes with 2.7 million vertices to build
high-resolution head and brain computer models for fMRI and
EEG. Thus, the increase of computational run time would be
of great interest.

In the sulcal and gyral graph pattern analysis, the sulcal
and gyral curves were assigned value -1 and 1 respectfully.
In the regions of higher diffusion value close to 1, there are
more gyral curves than sulcal curves. In the regions of lower
diffusion value close to -1, there are likely more sulcal curves
than gyral curves. If a group consistently higher diffusion
value in a particular region, it indicates there are likely to be
more gyral curves in that region. The regions of interwinding
complex sulcal and gyral curves will result in diffusion maps
close to 0 (Fig. 14). Thus, the statistically significant group
differences are not due to the complexity of interwinding
sulcal/gyral patterns but the consistent concentration of more
gyral or sulcal curves.

We found that the differences are mainly in the temporal
lobe, especially in the superior temporal gyrus and sulcus,
which is consistent with the literature. Harasty et al. [69]
reported that females have proportionally larger language areas
compared to males, such as the superior temporal cortex and
Broca’s area. Ochiai et al. [24] reported statistically differences
between males and females in the right superior temporal
sulcus and the most posterior point and center of the left
superior temporal sulcus. The significant gender differences
in sulcal width and depth were reported in the superior tem-
poral, collateral, and cingulate sulci in [70]. Also, there were
significant gender differences in the cortical area of the left
frontal lobe and in the gyrification index of the right temporal
lobe [71]. Luders et al. [72] detected higher gray matter con-
centrations in females in the left posterior superior temporal
gyrus and left inferior frontal gyrus. Crespo-Facorro et al. [73]
found significant differences between males and females in the
sulcal curvature index of the temporal and occipital lobes. Lyu
et al. [28] reported that females showed higher gyrification
in the superior temporal, right inferior frontal, and parieto-
occipital sulcal regions. In [74], the mean curvature of the left
superior temporal sulcus was identified as a highly discrimi-
native feature of sex classification. The consistent result with
previous studies shows that the sulcal/gyral curves are reliable
cortical surface features.

Sulcal and gyral curves can be interpreted with respect to
cortical folding. The cortical folding is usually measured by
the mean curvature and SI [60], [75]. Our result show that
the sulcal and gyral curves are almost linearly related to the
existing mean curvature and SI. This is the reason that we got
the similar statistical results in all three methods. The cortical
folding is known to correlate to cortical thickness. The gyri
are thicker than the sulci [76]–[78]. Observing higher diffusion
value at a vertex implies that the vertex is closer to gyri than
sulci, and thus larger thickness is expected at the vertex.
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In the cortical growth and folding development in human
fetal brains, many studies have reported changes in surface
and shape features such as the curvatures, sulcal depth, gyri-
fication index, sulcal pit based graphs and sulcal skeletons
[23], [79]–[83]. At 25 weeks, the cortical surface is still very
smooth [81]. There are few major sulcal and gyral curves, and
most surface vertices will have heat diffusion values close to
zero. With increasing gestational age, the cortical folds become
more complex with more sulcal and gyral curves and branches,
which will likely result in higher variability in diffusion values
across vertices.

The proposed general polynomial approximation of the
Laplace-Beltrami (LB) operator works for an arbitrary orthog-
onal polynomial. The proposed polynomial expansion method
speeds up the computation compared to existing numerical
schemes for diffusion equations. Our method avoids various
numerical issues associated with the LB-eigenfunction method
and FEM based diffusion solvers. The proposed fast and accu-
rate scheme can be further extended to any arbitrary domain
without much computational bottlenecks. Thus, the method
can be easily applicable to large-scale images where the
existing methods may not be applicable without additional
computational resources. Beyond the sulcal and gyral graph
analysis on 2D surface meshes, the proposed method can be
applied to 3D volumetric meshes [84]. This is left as a future
study.
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