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Abstract. This study proposes a novel heterogeneous graph convolu-
tional neural network (HGCNN) to handle complex brain fMRI data at
regional and across-region levels. We introduce a generic formulation of
spectral filters on heterogeneous graphs by introducing the k−th Hodge-
Laplacian (HL) operator. In particular, we propose Laguerre polynomial
approximations of HL spectral filters and prove that their spatial local-
ization on graphs is related to the polynomial order. Furthermore, based
on the bijection property of boundary operators on simplex graphs, we
introduce a generic topological graph pooling (TGPool) method that can
be used at any dimensional simplices. This study designs HL-node, HL-
edge, and HL-HGCNN neural networks to learn signal representation
at a graph node, edge levels, and both, respectively. Our experiments
employ fMRI from the Adolescent Brain Cognitive Development (ABCD;
n = 7693) to predict general intelligence. Our results demonstrate the
advantage of the HL-edge network over the HL-node network when func-
tional brain connectivity is considered as features. The HL-HGCNN out-
performs the state-of-the-art graph neural networks (GNNs) approaches,
such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN.
The functional connectivity features learned from the HL-HGCNN are
meaningful in interpreting neural circuits related to general intelligence.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the non-invasive imag-
ing techniques to measure blood oxygen level dependency (BOLD) signals [8].
The fluctuation of fMRI time series signals can characterize brain activity. The
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synchronization of fMRI time series describes the functional connectivity among
brain regions for understanding brain functional organization.

There has been a growing interest in using graph neural network (GNN)
to learn the features of fMRI time series and functional connectivity that are
relevant to cognition or mental disorders [17,23].

GNN often considers a brain functional network as a binary undirected
graph, where nodes are brain regions, and edges denote which two brain regions
are functionally connected. Functional time series, functional connectivity, or
graph metrics (i.e., degree, strength, clustering coefficients, participation, etc.)
are defined as a multi-dimensional signal at each node. A substantial body of
research implements an convolutional operator over nodes of a graph in the spa-
tial domain, where the convolutional operator computes the fMRI feature of each
node via aggregating the features from its neighborhood nodes [17,23]. Various
forms of GNN with spatial graph convolution are implemented via 1) introduc-
ing an attention mechanism to graph convolution by specifying different weights
to different nodes in a neighborhood (GAT, [9]); 2) introducing a clustering-
based embedding method over all the nodes and pooling the graph based on
the importance of nodes (BrainGNN, [17]); 3) designing an edge-weight-aware
message passing mechanism [3]; 4) training dynamic brain functional networks
based on updated nodes’ features (dGCN, [23]). BrainGNN and dGCN achieve
superior performance on Autism Spectrum Disorder (ASD) [17] and attention
deficit hyperactivity disorder (ADHD) classification [23]. Graph convolution has
also been solved in the spectral domain via the graph Laplacian [2]. For the
sake of computational efficiency when graphs are large, the Chebyshev polyno-
mials and other polynomials were introduced to approximate spectral filters for
GNN [4,10]. For large graphs, the spectral graph convolution with a polynomial
approximation is computationally efficient and spatially localized [10].

Despite the success of the GNN techniques on cognitive prediction and disease
classification [17,23], the graph convolution aggregates brain functional features
only over nodes and updates features for each node of the graph. Nevertheless,
signal transfer from one brain region to another is through their connection,
which can, to some extent, be characterized by their functional connectivity.
The strength of the connectivity determines which edges signals pass through.
Therefore, there is a need for heterogeneous graphs with different types of infor-
mation attached to nodes, such as functional time series and node efficiency, and
edges, such as functional connectivity and path length.

Lately, a few studies have focused on smoothing signals through the topolog-
ical connection of edges [12,13]. Kawahara et al. [15] proposed BrainNetCNN to
aggregate brain functional connectivities among edges. However, brain functional
connectivity matrices at each layer are no longer symmetric as the construction
nature of the brain functional network. Jo et al. [13] employed a dual graph with
the switch of nodes and edges of an original graph so that the GNN approaches
described above can be applied (Hypergraph NN). But, the dual graph nor-
mally increases the dimensionality of a graph. To overcome this, Jo et al. [13]
only considered important edges. Similarly, Jiang et al. [12] introduced convo-
lution with edge-node switching that embeds both nodes and edges to a latent
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feature space. When graphs are not sparse, the computation of this approach can
be intensive. The above-mentioned edge-node switching based model achieved
great success on social network and molecular science [12,13], suggesting that
GNN approaches on graph edges have advantages when information is defined
on graph edges. Thus, it is crucial to consider heterogeneous graphs where mul-
tiple types of features are defined on nodes, edges, and etc. This is particularly
suitable for brain functional data.

This study develops a novel heterogeneous graph convolutional neural net-
work (HGCNN) simultaneously learning both nodes’ and edges’ functional fea-
tures from fMRI data for predicting cognition or mental disorders. The HGCNN
is designed to learn 1) nodes’ features from their neighborhood nodes’ features
based on the topological connections of the nodes; 2) edges’ features from their
neighborhood edges’ features based on the topological connections of the edges.
To achieve these goals, the HGCNN considers a brain functional network as a
simplex graph that allows characterizing node-node, node-edge, edge-edge, and
higher-order topology. We develop a generic convolution framework by intro-
ducing the Hodge-Laplacian (HL) operator on the simplex graph and design-
ing HL-spectral graph filters to aggregate features among nodes or edges based
on their topological connections. In particular, this study takes advantage of
spectral graph filters in [4,10] and approximates HL-spectral graph filters using
polynomials for spatial locations of these filters. We shall call our HGCNN as
HL-HGCNN in the rest of the paper. Unlike the GNNs described above [12,23],
this study also introduces a simple graph pooling approach based on its topology
such that the HL can be automatically updated for the convolution in succes-
sive layers, and the spatial dimension of the graph is reduced. Hence, the HL-
HGCNN learns spectral filters along nodes, edges, or higher-dimensional simplex
to extract brain functional features.

We illustrate the use of the HL-HGCNN on fMRI time series and functional
connectivity to predict general intelligence based on a large-scale adolescent
cohort study (Adolescent Brain Cognitive Development (ABCD), n = 7693). We
also compare the HL-HGCNN with the state-of-art GNN techniques described
above and demonstrate the outstanding performance of the HL-HGCNN. Hence,
this study proposes the following novel techniques:

1. a generic graph convolution framework to smooth signals across nodes, edges,
or higher-dimensional simplex;

2. spectral filters on nodes, edges, or higher-dimensional simplex via the HL
operator;

3. HL-spectral filters with a spatial localization property via polynomial approx-
imations;

4. a spatial pooling operator based on graph topology.

2 Methods

This study designs a heterogeneous graph convolutional neural network via the
Hodge-Laplacian operator (HL-HGCNN) that can learn the representation of



HL-HGCNN 281

brain functional features at a node-level and an edge-level based on the graph
topology. In the following, we will first introduce a generic graph convolution
framework to design spectral filters on nodes and edges to learn node-level and
edge-level brain functional representation based on its topology achieved via the
HL operator. We will introduce the polynomial approximation of the HL spectral
filters to overcome challenges on spatial localization. Finally, we will define an
efficient pooling operation based on the graph topology for the graph reduction
and update of the HL operator.

2.1 Learning Node-Level and Edge-Level Representation
via the Hodge-Laplacian Operator

In this study, the brain functional network is characterized by a heterogeneous
graph, G = {V,E} with brain regions as nodes, V = {vi}n

i=1, and their con-
nections as edges, E = {eij}i,j=1,2,··· ,n, as well as functional time series defined
on the nodes and functional connectivity defined on the edges. This study aims
to design convolutional operations for learning the representation of functional
time series at nodes and the representation of functional connectivity at edges
based on node-node and edge-edge connections (or the topology of graph G).

Mathematically, nodes and edges are called 0− and 1−dimensional simplex.
The topology of G can be characterized by boundary operator ∂k. ∂1 encodes how
two 0-dimensional simplices, or nodes, are connecting to form a 1-dimensional
simplex (an edge) [6]. In the graph theory [16], ∂1 can be represented as a tra-
ditional incidence matrix with size n×n(n−1)/2, where nodes are indexed over
rows and edges are indexed over columns. Similarly, the second order boundary
operator ∂2 encodes how 1-dimensional simplex, or edges, are connected to form
the connections among 3 nodes (2-dimensional simplex or triangle).

The goal of spectral filters is to learn the node-level representation of fMRI
features from neighborhood nodes’ fMRI features and the edge-level representa-
tion of fMRI features from neighborhood edges’ fMRI features. The neighbor-
hood information of nodes and edges can be well characterized by the boundary
operators ∂k of graph G. It is natural to incorporate the boundary operators of
graph G in the k-th Hodge-Laplacian (HL) operator defined as

Lk = ∂k+1∂
�
k+1 + ∂�

k ∂k. (1)

When k = 0, the 0-th HL operator is

L0 = ∂1∂
�
1 (2)

over nodes. This special case is equivalent to the standard Graph Laplacian
operator, L0 = Δ. When k = 1, the 1-st HL operator is defined over edges as

L1 = ∂2∂
�
2 + ∂�

1 ∂1. (3)

We can obtain orthonormal bases ψ0
k,ψ1

k,ψ2
k, · · · by solving eigensystem

Lkψj
k = λj

kψj
k. We now consider an HL spectral filter h with spectrum h(λk) as

h(·, ·) =
∞∑

j=0

h(λj
k)ψj

k(·)ψj
k(·). (4)
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A generic form of spectral filtering of a signal f on the heterogeneous graph G
can be defined as

f ′(·) = h ∗ f(·) =
∞∑

j=0

h(λj
k)cj

kψj
k(·), (5)

where f(·) =
∑∞

j=0 cj
kψj

k(·). When k = 0, f is defined on the nodes of graph G.
Equation (5) indicates the convolution of a signal f defined on V with a filter h.

Likewise, when k = 1, f is defined on the edges of graph G. Equation (5) then
indicates the convolution of a signal f defined on E with a filter h. Equation (5)
is generic that can be applied to smoothing signals defined on higher-dimensional
simplices. Nevertheless, this study considers the heterogeneous graph only with
signals defined on nodes and edges (0- and 1-dimensional simplices). In the fol-
lowing, we shall denote these two as “HL-node filtering” and “HL-edge filtering”,
respectively.

2.2 Laguerre Polynomial Approximation of the HL Spectral Filters

The shape of spectral filters h in Eq. (5) determines how many nodes or edges
are aggregated in the filtering process. Our goal of the HL-HGCNN is to
design h such as the representation at nodes and edges are learned through
their neighborhood. This is challenging in the spectral domain since it requires
h(λ) with a broad spectrum. In this study, we propose to approximate the fil-
ter spectrum h(λk) in Eq. (5) as the expansion of Laguerre polynomials, Tp,
p = 0, 1, 2, . . . , P − 1, such that

h(λk) =
P−1∑

p=0

θpTp(λk), (6)

where θp is the pth expansion coefficient associated with the pth Laguerre
polynomial. Tp can be computed from the recurrence relation of Tp+1(λk) =
(2p+1−λk)Tp(λk)−pTp−1(λk)

p+1 with T0(λk) = 1 and T1(λk) = 1 − λk.
We can rewrite the convolution in Eq. (5) as

f ′(·) = h ∗ f(·) =
P−1∑

p=0

θpTp(Lk)f(·). (7)

Analog to the spatial localization property of the polynomial approximation
of the graph Laplacian (the 0-th HL) spectral filters [4,10,21], the Laguerre
polynomial approximation of the 1-st HL spectral filters can also achieve this
localization property. Assume two edges, eij and emn, on graph G. The short-
est distance between eij and emn is denoted by dG(ij,mn) and computed as
the minimum number of edges on the path connecting eij and emn. Hence,
(LP

1 )eij ,emn
= 0 if dG(ij,mn) > P, where LP

1 denotes the P -th power of the
1-st HL. Hence, the spectral filter represented by the P -th order Laguerre poly-
nomials of the 1-st HL is localized within the P -hop edge neighborhood. There-
fore, spectral filters in Eq. (6) have the property of spatial localization. This
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proof can be extended to the k-th HL spectral filters. In Section of Results 3, we
will demonstrate this property using simulation data.

2.3 Topological Graph Pooling (TGPool)

The pooling operation has demonstrated its effectiveness on grid-like image data
[22]. However, spatial graph pooling is not straightforward, especially for het-
erogeneous graphs. This study introduces a generic topological graph pooling
(TGPool) approach that includes coarsening of the graph, pooling of signals,
and an update of the Hodge-Laplacian operator. For this, we take an advantage
of the one-to-one correspondence between the boundary operators and graph G
and define the three operations for pooling based on the boundary operators. As
the boundary operators encode the topology of the graph, our graph pooling is
topologically based.

Fig. 1. Topological Graph Pooling (TGPool). Panels (a) and (b) illustrate the topologi-
cal graph pooling of (a) 0-dimensional (nodes) and (b) 1-dimensional (edges) simplices.
The color at each node or edge indicates features and their similarity across nodes or
edges. (Color figure online)

For graph coarsening, we generalize the Graclus multilevel clustering algo-
rithm [5] to coarsen the k−dimensional simplices on graph G. We first cluster sim-
ilar k−dimensional simplices based on their associated features via local normal-
ized cut. At each coarsening level, two neighboring k−dimensional simplices with
maximum local normalized cut are matched until all k−dimensional simplices are
explored [19]. A balanced binary tree is generated where each k−dimensional sim-
plex has either one (i.e., singleton) or two child k−dimensional simplices. Fake
k−dimensional simplices are added to pair with those singletons. The weights of
k + 1−dimensional simplices involving fake k−dimensional simplices are set as
0. The pooling on this binary tree can be efficiently implemented as a simple 1-
dimensional pooling of size 2. Then, two matched k−dimensional simplices are
merged as a new k−dimensional simplex by removing the k−dimensional simplex
with the lower degree and the k + 1−dimensional simplices that are connected
to this k−dimensional simplex. To coarsen the graph, we define a new boundary
operator by deleting the corresponding rows and columns in the boundary oper-
ator and computing the HL operators via Eq. 2. Finally, the signal of the new
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k−dimensional simplex is defined as the average (or max) of the signals at the two
k−dimensional simplices. Figure 1 illustrates the graph pooling of 0-dimensional
and 1-dimensional simplices and the boundary operators of the updated graph
after pooling.

2.4 Hodge-Laplacian Heterogeneous Graph Convolutional Neural
Network (HL-HGCNN)

We design the HL-HGCNN with the temporal, node, and edge convolutional
layers to learn temporal and spatial information of brain functional time series
and functional connectivity. Each layer includes the convolution, leaky rectified
linear unit (leaky ReLU), and pooling operations. Figure 2 illustrates the overall
architecture of the HL-HGCNN model, the temporal, node, and edge convolu-
tional layers.

Filters. Denote ht, hv, he to be temporal filters, HL-node filters, HL-edge fil-
ters, respectively. ht is a simple 1-dimensional filter along the time domain with
different kernel sizes to extract the information of brain functional time series
at multiple temporal scales. hv and he are defined in Eq. (6), where θp are the
parameters to be estimated in the HL-HGCNN. As mentioned earlier, P deter-
mines the kernel size of hv and he and extracts the higher-order information of
the brain functional time series and functional connectivity at multiple spatial
scales.

Leaky ReLU. This study employs leaky rectified linear unit (ReLU) as an
activation function, σ, since negative functional time series and functional con-
nectivity are considered biologically meaningful.

Fig. 2. HL-HGCNN architecture. Panel (A) illustrates the overall architecture of the
HL-HGCNN model. Panels (B–D) respectively show the architectures of the HL-edge,
temporal, and HL-node convolutional layers.
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Pooling. In the temporal convolutional layer, traditional 1-dimensional max
pooling operations are applied in the temporal dimension of the functional time
series. In the edge and node convolutional layers, TGPool is applied to reduce
the dimension of the graph and the dimension of the node and edge signals.

Output Layer. We use one more graph convolutional layer to translate the
feature of each node or edge into a scalar. Then, we concatenate the vectorized
node and edge representations as the input of the output layer. In this study,
the output layers contain fully-connected layers.

2.5 Implementation

L0 and L1. Given a brain functional connectivity matrix, we first build a binary
matrix while the element in the connectivity matrix with its absolute value
greater than a threshold is assigned as one, otherwise zero. We compute the
boundary operator ∂1 with the size of the number of brain regions and the
number of functional connectivities. The i-th row of ∂1 encodes the functional
connection of the i-th vertex and the j-th column of ∂1 encodes how two vertices
are connecting to form an edge [6,7]. Hence, L0 = ∂1∂

�
1 .

According to Eq. (1), the computation of L1 involves the computation of ∂2

that characterizes the interaction of edges and triangles. The brain functional
connectivity matrix does not form a triangle simplex so the second order bound-
ary operator ∂2 = 0. Hence, L1 = ∂�

1 ∂1.

Optimization. We implement the framework in Python 3.9.13, Pytorch 1.12.1
and PyTorch Geometric 2.1.0 library. The HL-HGCNN is composed of two tem-
poral, node, and edge convolution layers with {8, 8}, {16, 1}, and {32, 32} filters,
respectively. The order of Laguerre polynomials for the 0-th and 1-st HL approx-
imation is set to 3 and 4, respectively. The output layer contains three fully
connected layers with 256, 128 and 1 hidden nodes, respectively. Dropout with
0.5 rate is applied to every layer and Leaky ReLU with a leak rate of 0.33 are
used in all layers. These model-relevant parameters are determined using greedy
search. The HL-HGCNN model is trained using an NVIDIA Tesla V100SXM2
GPU with 32 GB RAM by the ADAM optimizer with a mini-batch size of 32.
The initial learning rate is set as 0.005 and decays by 0.95 after every epoch.
The weight decay parameter was 0.005.

2.6 ABCD Dataset

This study uses resting-state fMRI (rs-fMRI) images from the ABCD study
that is an open-sourced and ongoing study on youth between 9–11 years old
(https://abcdstudy.org/). This study uses the same dataset of 7693 subjects
and fMRI preprocessing pipeline stated in Huang et al. [11]. A node represents
one of 268 brain regions of interest (ROIs) [18] with its averaged time series
as node features. Each edge represents the functional connection between any

https://abcdstudy.org/
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two ROIs with the functional connectivity computed via Pearson’s correlation
of their averaged time series as edge features. General intelligence is defined as
the average of 5 NIH Toolbox cognition scores, including Dimensional Change
Card Sort, Flanker, Picture Sequence Memory, List Sorting Working Memory,
and Pattern Comparison Processing Speed [1]. General intelligence ranges from
64 to 123 with mean and standard deviation of 95.3 ± 7.3 among 7693 subjects.

3 Results

This section first demonstrates the spatial localization property of HL-edge filters
in relation to the order of Laguerre polynomials via simulated data. We then
demonstrate the use of HL-edge filtering and its use in GNN for predicting fluid
intelligence using the ABCD dataset.

3.1 Spatial Localization of the HL-Edge Filtering via Laguerre
Polynomial Approximations

We illustrate the spatial location property of the HL-edge filtering by designing
a pulse signal at one edge (Fig. 3(a)) and smoothing it via the HL-edge filter.
When applying the HL-edge filter approximated via the 1st-, 2nd-, 3rd-, 4th-order
Laguerre polynomials, the filtered signals shown in Fig. 3(b–e) suggest that the
spatial localization of the HL-edge filters is determined by the order of Laguerre
polynomials. This phenomenon can also be achieved using multi-layer HL-edge
filters where each layer contains HL-edge filters approximated using the 1st-order
Laguerre polynomial (see Fig. 3(f)).

Fig. 3. Spatial localization of the HL-edge filtering. Panel (a) shows the simulated
signal only occurring at one edge. Panels (b–e) show the signals filtered using the
HL-edge filters with the 1st-, 2nd-, 3rd-, 4th-order Laguerre polynomial approximation,
respectively. Panel (f) illustrates the signals generated from the HL-edge convolution
networks with 4 layers. Each layer consists of the HL-filter approximated using the
1st-order Laguerre polynomial.
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3.2 HL-Node vs. HL-Edge Filters

We aim to examine the advantage of the HL-edge filters over the HL-node filters
when fMRI data by nature characterize edge information, such as the functional
connectivity. When functional connectivities are defined at a node, they form a
vector of the functional connectivities related to this node. In contrast, by nature,
the functional connectivity represents the functional connection strength of two
brain regions (i.e., edge). Hence, it is a scalar defined at an edge. We design the
HL-node network with the two HL-node convolutional layers (see in Fig. 2D)
and the output layer with three fully connected layers. Likewise, the HL-edge
network with the two HL-edge convolutional layers (see Fig. 2B) and the output
layer with three fully connected layers. We employ five-fold cross-validation six
times to evaluate the prediction accuracy between predicted and actual general
intelligence based on root mean square error (RMSE). Table 1 shows that the
HL-edge network has smaller RMSE and performs better than the HL-node
network (p = 1.51 × 10−5). This suggests the advantage of the HL-edge filters
when features by nature characterize the weights of edges.

3.3 Comparisons with Existing GNN Methods

We now compare our models with the existing state-of-art methods stated above
in terms of the prediction accuracy of general intelligence using the ABCD
dataset. The first experiment is designed to compare the performance of the
HL-node network with that GAT [9], BrainGNN [17], and dGCN [23]. We adopt
the architecture of BrainGNN and dGCN from Li et al. [17,23] as both methods
were used for fMRI data. The GAT is designed with two graph convolution lay-
ers, each consisting of 32 filters and 2-head attention, which is determined via
greedy search as implemented in our model. The functional connectivity vector
of each region is used as input features. Table 1 suggested that the HL-node net-
work performs better than the GAT (p = 0.0468) and BrainGNN (p = 0.0195),
and performs equivalently with dGCN (p = 0.0618).

Table 1. General intelligence prediction accuracy based on root mean square error
(RMSE). p-value is obtained from two-sample t-tests examining the performance of
each method in reference to the proposed HL-HGCNN.

GNN model RMSE p-value

GNN with node filtering HL-Node network (ours) 7.134 ± 0.011 4.01 × 10−6

GAT [9] 7.165 ± 0.020 1.91 × 10−5

BrainGNN [17] 7.144 ± 0.013 1.51 × 10−6

dGCN [17] 7.151 ± 0.012 9.83 × 10−6

GNN with edge filtering HL-Edge network (ours) 7.009 ± 0.012 2.48 × 10−2

BrainNetCNN [15] 7.118 ± 0.016 5.34 × 10−6

Hypergraph NN [13] 7.051 ± 0.022 3.74 × 10−5

GNN with node and edge filtering HL-HGCNN (ours) 6.972± 0.015 –
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Fig. 4. The saliency map of the brain functional connectivity. Red boxes highlight
brain networks with higher weights, indicating greater contributions to the prediction
of general intelligence. (Color figure online)

The second experiment compares the HL-edge network with BrainNetCNN
[15] and Hypergraph NN [13]. The Hypergraph NN comprises two graph con-
volution layers with 32 filters and one hypercluster layer after the first graph
convolution layer. The BrainNetCNN architecture follows the design in [15].
Table 1 shows that the HL-edge network has smaller RMSE and performs better
than the BrainNetCNN (p = 4.49 × 10−5) and Hypergraph NN (p = 0.0269).

Finally, our HL-HGCNN integrates heterogeneous types of fMRI data at
nodes and edges. Table 1 shows that the HL-HGCNN performs the best com-
pared to all the above methods (all p < 0.03).

3.4 Interpretation

We use the graph representation of the final edge convolution layer of the HL-
HGCNN to compute the saliency map at the connectivity level. The group-level
saliency map is computed by averaging the saliency maps across all the subjects
in the dataset. The red boxes in Fig. 4 highlight the functional connectivities of
the occipital regions with the prefrontal, parietal, salience, and temporal regions
that most contribute to general intelligence. Moreover, our salience map also
highlights the functional connectivities of the right prefrontal regions with bilat-
eral parietal regions, which is largely consistent with existing findings on neural
activities in the frontal and parietal regions [14,20].

4 Conclusion

This study proposes a novel HL-HGCNN on fMRI time series and functional
connectivity for predicting cognitive ability. Our experiments demonstrate the
spatial localization property of HL spectral filters approximated via Laguerre
polynomials. Moreover, our HL-node, HL-edge, and HL-HGCNN perform better
than the existing state-of-art methods for predicting general intelligence, indi-
cating the potential of our method for future prediction and diagnosis based
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on fMRI. Nevertheless, more experiments on different datasets are needed to
further validate the robustness of the proposed model. Our method provides a
generic framework that allows learning heterogeneous graph representation on
any dimensional simplices, which can be extended to complex graph data. The
HL-HGCNN model offers an opportunity to build high-order functional interac-
tion among multiple brain regions, which is our future research direction.
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