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Many brain diseases or disorders, such as depression, are known to be associated with abnormal functional con-
nectivity in neural networks in the brain. Some bivariatemeasures of electroencephalography (EEG) for coupling
analysis have been used widely in attempts to explain abnormalities related with depression. However, brain
network evolution based on persistent functional connections in EEG signals could not be easily unveiled. For a
geometrical exploration of brain network evolution, here, we used persistent brain network homology analysis
with EEG signals from a corticosterone (CORT)-induced mouse model of depression. EEG signals were obtained
from eight cortical regions (frontal, somatosensory, parietal, and visual cortices in each hemisphere). The persis-
tent homology revealed a significantly different functional connectivity between the control and CORT model,
but no differences in common coupling measures, such as cross correlation and coherence, were apparent. The
CORTmodel showed a more localized connectivity and decreased global connectivity than the control. In partic-
ular, the somatosensory and parietal cortices were loosely connected in the CORT model. Additionally, the CORT
model displayed altered connections among the cortical regions, especially between the frontal and somatosen-
sory cortices, versus the control. This study demonstrates that persistent homology is useful for brain network
analysis, and our results indicate that the CORT-induced depression mouse model showsmore localized and de-
creased global connectivitywith altered connections, whichmay facilitate characterization of the abnormal brain
network underlying depression.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Depression is one of themost prevalentmood disorders. It is charac-
terized by diverse symptoms including sad mood, loss of interest, and
unhappiness, and shows high comorbidity with other brain dysfunction
(Banks and Kerns, 1996; Currie and Wang, 2004; DeRubeis et al., 2008;
Patten, 2001). Epidemiological studies have shown that depression is
common throughout the lifespan of an individual, with 20% of the pop-
ulation worldwide experiencing a depressive episode during their life-
time and 2–5% of the population being affected by severe depression
(Kessler et al., 2003, 2005). Depression is unlikely to result from aber-
rant function of a single gene or brain region (Ressler and Mayberg,
2007). Many studies have reported that numerous regions of the brain
are affected by depression, and that the symptoms of depression are

associated with the dysregulation of distributed neural networks,
encompassing cortical regions, rather than the functional breakdown
of a single discrete brain region (Buckner et al., 2009; Davidson et al.,
2002a; Drevets et al., 2008; Price and Drevets, 2010; Ressler and
Mayberg, 2007; Seminowicz et al., 2004). Thus, to explain in depth the
heterogeneous domains of depression symptoms, it is important to
use methods that analyze the global functional networks rather than a
single region or a local circuit.

Functional connectivity, defined as the temporal correlation be-
tween spatially remote neurophysiological events (Friston et al.,
1993), is believed to serve as the mechanism for the coordination (or
discoordination) of activity between different neural populations or
systems across the cortex (Fingelkurts et al., 2005; Friston, 2000).
According to recent interpretations of large-scale neural interactions,
functional connectivity between the distributed events across the neu-
ral networks is important for particular brain actions (Breakspear and
Terry, 2002; David et al., 2004; Stam et al., 2003). Electroencephalo-
graphic (EEG) signals have been used in the analysis of functional
connectivity in patients with depression (Kito et al., 2014; Leuchter
et al., 2012; Shafi et al., 2012; Suhhova et al., 2009; Sun et al., 2011).
EEG coherence analysis is one of the most widely used approaches to
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measuring functional connectivity in coupled neural systems. However,
coherence analysis may show increased, decreased, or no change in
functional connectivity in the depressed brain (Suhhova et al., 2009).
A potential explanation for this varied/unstable result is that coherence
determines only the linear characteristics of the EEG time series and can
detect only particular sensitivity profiles (Suhhova et al., 2009). Cross-
correlation analysis is also used widely for measuring functional con-
nectivity in coupled neural systems. In the correlation approaches to
constructing a brain connectivitymap, the coupling strengths are decid-
ed depending on the optimal threshold level. An issue with these
standardmethods is that there are no generally accepted criteria for de-
termining the appropriate threshold (Lee et al., 2012), and thus some of
the functional connections are not revealed readily (hidden connectivi-
ty). To obtain the proper threshold, a multiple-comparison correction
over every possible connection could be applicable. However depending
onwhat p-value is used for the threshold, the resulting connectome also
changes (Bohland et al., 2009; Ferrarini et al., 2009; Rubinov et al., 2009;
vanWijk et al., 2010). Thus, it is important for an inclusive approach to
ensure the optimal use of the wealth of information present in EEG sig-
nals, in seeking to understand the functional dynamics that underlie the
mechanism of depression-related symptoms.

Recently, a multi-scale hierarchical network-modeling framework
that addressed the problem of determining one optimal threshold was
developed; this framework traces the evolution of network changes
over different thresholds (Lee et al., 2012). This concept is persistent
brain network homology; it handles and analyzes multi-scale networks
by identifying the persistent topological features over the changing
scales. Using persistent brain network homology with signals from
FDG-PET in attention-deficit hyperactivity disorder, it was possible
to elaborate functional brain connectivity (Lee et al., 2012; Suhhova
et al., 2009).

Although it is difficult to mimic the exact nature of human depres-
sion in animals, various animal models showing depression-like behav-
iors have been developed. These models can help in understanding the
pathophysiological mechanisms of human depression (van der Staay
et al., 2009). For example, chronic exogenous exposure to corticoste-
rone (CORT) via drinking water in mice stably mimics the increased
secretion of glucocorticoids induced by stress exposure in humans, in-
ducing depression-like behavior and neurochemical changes (Ardayfio
and Kim, 2006; David et al., 2009; Gourley et al., 2008). Additionally, it
has been shown that chronic treatment with antidepressants, such as
fluoxetine, can reverse the depression-like phenotype of the CORT
model (David et al., 2009; Murray et al., 2008).

In this study, we investigated functional connectivity by applying
persistent brain network homology to EEG data from eight cortical re-
gions (frontal, somatosensory, parietal, and visual cortices in each hemi-
sphere) of a CORT-induced mouse model of depression. The hidden
brain network in the pathological brain of the CORTmodelwas revealed
using the persistent brain network homology technique.We present re-
sults that suggest aberrant functional connectivity in the cortical circuit-
ry in the CORT model that may translate into the affective illness of
depression.

Material and methods

Animals and generation of the CORT-induced mouse model

Adult male C57BL/6 mice (7–8 weeks old) were used. The animal
model of depression was generated by chronic exposure to CORT
(Sigma, St. Louis,MO) as described previously (David et al., 2009). Brief-
ly, 35 μg/mL CORT (equivalent to 5 mg/kg/day) was dissolved in drink-
ing water with 0.45% β-cyclodextrin (β-CD, Sigma) for the mice (CORT
group). CORTwas delivered in light-protected bottles, andwas replaced
every 3 days for up to 28 days. Control mice received β-CD only
(vehicle, VEH group). Mice were housed under a 12/12-h light/dark
cycle and had access to food and water ad libitum. Animal care and

handling were carried out in accordance with the guidelines approved
by the Institutional Animal Care and Use Committee at the Korea Ad-
vanced Institute of Science and Technology (KAIST).

Behavioral tasks

Depression-associated behavior tests were conducted: the forced
swim task for despair behavior, the elevated plus maze for anxiety,
and the open field test for locomotion (Supplementary text and
Fig. S1). The results were similar to those in previous reports (David
et al., 2009; Gourley et al., 2008). Behavioral experiments were
performed after the CORT or vehicle treatment. Behavioral tests were
conducted between 4 pm and 8 pm at a light intensity of 80 lx, and
were performed as described previously (Jeon et al., 2010; Jung et al.,
2013).

Electrode implantation and in vivo electrophysiology for EEG

Animals underwent EEG surgery immediately after the CORT or
vehicle treatment. Animals were anesthetized by intraperitoneal injec-
tion of ketamine (90 mg/kg) and xylazine hydrochloride (40 mg/kg).
Electrode implantation was performed with a stereotaxic apparatus
(Kopf Instruments, Tujunga, CA, USA). EEG recordings were obtained
with tungsten electrodes (0.005 in. 2 MΩ), positioned in eight
cortical regions, based on a mouse brain atlas (Paxinos and Franklin,
2012): frontal cortices (AP +1.5 mm, L ±0.2 mm, and DV −1.0 to
−1.1 mm), somatosensory cortices (AP 0.0 mm, L ±1.5 mm, and DV
−1.0 to −1.1 mm), parietal cortices (AP −2.0 mm, L ±2.5 mm, and
DV −1.0 to−1.1 mm), and visual cortices (AP −3.5 mm, L ±1.5 mm,
and DV −1.0 to −1.1 mm) in each hemisphere (Fig. 1). A reference
electrode was inserted on the skull above the cerebellum. The elec-
trodes were fixed to the skull with cyanoacrylate adhesive and dental
acrylic cement. EEG recordings were combined with video monitoring,
and EEG-video recording data were obtained continuously, 24 h/day,
for at least 5 days. EEG activity was recorded after the signal was ampli-
fied 1200-fold, band pass-filtered at 0.1–70 Hz, and digitized at a sam-
pling rate of 400 Hz using a digital EEG system (Comet XL, Astro-Med,
West Warwick, RI, USA). The EEG-video data obtained were analyzed
offline using PSG Twin (Astro-Med), Clampfit (Axon Instruments, Foster
City, CA, USA), and Matlab (MathWorks, Natick, MA, USA).

EEG analysis and persistent brain network homology

Continuous EEG signals from the animals for three epochs, each
consisting of 1 min of data from different days, in which they were in
a resting state (i.e., awake and no movement), were analyzed to check
the stability of the findings (Supplementary Fig. S3). Then, continuous
1-min-long EEG signals from the last day of recording were used for
analyses (Fig. 1b). The five EEG frequency-bands—delta (1.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–
60 Hz)—were analyzed using a persistent brain network homology
approach for functional connectivity.

EEG measurements were obtained in the eight selected ROIs (left
frontal cortex, right frontal cortex, left somatosensory cortex, right so-
matosensory cortex, left parietal cortex, right parietal cortex, left visual
cortex, right visual cortex) in ten control mice (β-CD vehicle, VEH
group) and nine CORT-drinking mouse models of depression-like be-
havior (corticosterone, CORT group).

The measurement set was denoted as M = {m1, m2,…, m8}
consisting of eight nodes (i.e., the eight brain regions) where we had
measured mi at the ith node. We calculated the distance matrix cM
between two EEG measurements mi and mj, using the following
equation:

cM mi;mj

! "
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−corr mi;mj

! "r
ð1Þ
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where corr mi;mj

! "
¼ mi

mik k ;
mj

mjk k

$ %
refers to the sample correlation

betweenmi andmj. Thus, we used the square root of (1-correlation) dis-
tance metric to construct binary network.

The brain network can be viewed as aweighted graph (M, cM)where
M is a set of measurements at each brain region (=node) and cM is the
metric defined on that set. We connect the nodes i and j with an edge if
the distance cM (mi, mj)≤ ε for some threshold value, ε. Then, the binary
network B(M,ε) at threshold ε is a graph consisting of the nodes and the
edges as depicted in Supplementary Fig. S2b. The binary network
B(M,ε) consists of 0-simplices (nodes) and 1-simplices (edges).

Previous studies on brain network modeling used a single fixed
threshold, ε, whereas persistent brain network homology is a novel
multi-scale hierarchical network modeling framework that traces the
evolution of network changes over different thresholds (Lee et al.,
2012), starting with ε = 0 and increasing ε at each iteration. The
value of ε is taken discretely from the smallest cM(mi, mj) to the largest
cM(mi, mj). By increasing ε, more connected edges may become in-
volved. If two nodes are already connected, directly or indirectly, via
other intermediate nodes with a smaller ε then at a larger ε they will
not be connected. When ε is larger than any distance cM(mi, mj), the
iteration terminates because the graph does not change further.
Suppose Gk is the graph obtained at the kth iteration with ε = εk.
Then, upon changing the threshold, for ε0≤ ε1≤…≤ εn. we obtain a se-
quence of graphs that correspond to binary networks B(M,ε0), B(M,ε1),
B(M,ε2),…. Furthermore, the sequence of graphs follows a hierarchy
G1⊂G2⊂G3⊂…. Such a sequence of nested graphs is termed a graph fil-
tration in algebraic topology.

More specifically, given a point cloud data M, the Rips complex
R(M,ε) is a simplicial complex whose k-simplices correspond to unor-
dered (k + 1)-tuples of points that are pair-wise within distance ε.

Given a point cloud data set consisting of p nodes (i.e., the number
of nodes), the Rips complex has at most (p − 1) simplices whereas
a binary network has at most 1 simplex (see Supplementary
Fig. S2). The Rips complex can also have faces. When ε increases,
the subsequent Rips complex becomes larger than all previous Rips
complexes. Thus, we have R(M, ε0) ⊆ R(M, ε1) ⊆ … ⊆ R(M, εn) for
ε0 ≤ ε1 ≤ … ≤ εn. The nested sequence of the Rips complex is
known as a Rips filtration, which is a major theme in persistent homol-
ogy. A binary network is a subset of the Rips complex (Lee et al., 2012).
Thus, we can have a graph filtration for the case of binary networks as
B(M, ε0) ⊆ B(M, ε1) ⊆ … ⊆ B(M, εn).

As shown in Fig. 2(a), as the filtration value, ε, changes, the topolog-
ical characteristics of the binary network change. The topological
change in the filtration can be visualized using the barcode, constructed
by plotting the changing topological features over different filtration
values. The topological feature is displayed using a bar that starts and
ends when the feature appears and disappears. The barcode represents
the changes in topological features when the filtration value changes.
Among the many topological features, here, the zeroth Betti number,
which counts the number of connected components in a network,
is our interest. Because the pth Betti number is estimated by the
p- and (p + 1)-simplices, the binary network B(M,ε) contains enough
information to compute β0. In Fig. 2(b), we plotted the zeroth Betti
number β0 (vertical axis) of the Rips complex over the filtration values
ε0, ε1,…, εn (horizontal axis).

Other brain network studies, such as characteristic path length, clus-
tering coefficients, assortativity, andmodularity, focus on reflecting dif-
ferent topological characteristics of the brain network and measuring
similarities between them. These measures quantify the network prop-
erties after all nodes are connected. However, the change in β0 shows
topological changes in a network before all nodes are connected.

Fig. 1. A schematic drawing of electrode positions and EEG signals. (a) Drawing of a top view of the mouse brain indicating the electrode positions and names of the regions/nodes.
(b) Representative original traces of electroencephalogram (EEG) recordings in the eight cortical regions: lfc (left frontal cortex), rfc (right frontal cortex), lsc (left somatosensory cortex),
rsc (right somatosensory cortex), lpc (left parietal cortex), rpc (right parietal cortex), lvc (left visual cortex), rvc (right visual cortex), in order.
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While the barcode in Fig. 2(b) represents global topological changes
in a network, rearranging the bars in the barcode and connecting the
bars according to the node index and the Rips filtration, we obtain a
single-linkage dendrogram (SLD).

Consider the Rips filtration. Let Cmk and Cnk be the two disconnected
components of the Rips complex R(M, εk). Suppose there exist two
nodes mi in Cmk and mj in Cnk such that the distance d between them is
less than the next filtration value εk + 1. Then, these two disconnected
components will be connected at εk + 1 if

d Ck
m;C

k
n

! "
¼ min min

xi∈Ck
m ;x j∈Ck

n

d xi; xj

! "
b εkþ1:

The sequence of merged components during the Rips filtration is
identical to the sequence of the merging in dendrogram construction
(Lee et al., 2012). The linking of two nodes corresponds to merging
two leaves in the dendrogram.

Regardless of which node we start with, a consistent dendrogram is
always generated. In Fig. 2(c), the SLD shows the local network charac-
teristics of the subnetworks that are clustered together at earlier filtra-
tion values before merging into one large component. Using SLD, we
can recompute the distance between the nodes in the network using
the single-linkage distance, a model predictive distance using SLD.
Mathematically the single-linkage distance is given by:

dM mi;mj

! "
¼ min max

l¼0;⋯;k−1
cM wl;wlþ1

& '
=mi ¼ w0; ⋯;wk ¼ mj

( )
ð2Þ

where mi = w0,…, wk = mj is a path between mi and mj.

Statistics

For intergroup comparisons of behaviors, Student's t-test was used,
and all data for behaviors are presented as means ± standard error of
mean (SEM). A p-value b0.05 was considered to indicate statistical sig-
nificance. The Mann–Whitney U-test and the Wilcoxon rank-sum test
were used for intergroup comparisons of EEG data. The SPSS software
(ver. 21.0; SPSS Inc., Chicago, IL) and Matlab were used for statistical
analyses.

For the calculation of p-values of slopes and final filtration values in
the barcode, we resampled the correlation matrix of each subject using
bootstrapping (1000 replications), and obtained the slopes and final fil-
tration values of the barcode based on resampled data sets. Then, the
Wilcoxon rank-sum test was performed for the statistical comparison
of slopes and final filtration values of the barcodes between the groups.
The Mann–Whitney–Wilcoxon test was used to compare pair-wise
single-linkage matrices with a Bonferroni correction.

Results

We computed correlation-based distance matrices cM (1) for the
CORT and VEH groups (Fig. 3). Each ijth entry in the distance matrix is
a correlation-based functional distance between two nodes mi and mj,
calculatedwith Eq. (1). Visually, neither group displayed a clear separa-
tion of clusters arising from regional couplings (Fig. 3).

Next, we applied the persistent homology approach to explore func-
tional connectivity at the network level for each frequency band of the
EEG data recorded from the CORT and VEH groups. We obtained the
persistent topological features in the brain network, changing over in-
creasing filtration values using barcodes. Filtration was performed be-
tween 0 and 1 because all of the brain regions or nodes merged
together before filtration reached 1, eliminating the need to consider
distance values larger than 1. Based on the barcodes, we also construct-
ed connectivity maps to incorporate the geometrical information about
the positions of the connected nodes (the eight brain regions). Further-
more, we computed single-linkage distance matrices and the dendro-
gram for the predicted distances between the eight nodes and for the
single-linkage hierarchical clustering, respectively.

Fig. 4(a–c) shows the connectivity map and barcode at the delta-
frequency band for the VEH and CORT groups. In Fig. 4(c), the overlaid
barcodes are presented for the intergroup comparison between the
VEH and CORT groups. The CORT group showed an increased number
of connected components (zeroth Betti number, β0) at filtration values
from 0.4 to 0.8 in the barcode versus the VEH group. The maximum
single-linkage distances (i.e., the final filtration value) of the VEH and
CORT groups were 0.7281 and 0.7979, respectively. The final filtration
value for the two groups were CORT N VEH at 95% level of confidence
(tested with the Wilcoxon rank-sum test for resampled datasets,

Fig. 2. Schematic drawing of network evolution over increasing filtration values, ε0, ε1, ε2, and ε3. (a) Node set M and the Rips filtration at filtration values ε0, ε1, ε2, and ε3; (b) barcode
showing the changing topological features. The y-axis is the zeroth Betti number (counts the number of connected components) and filtration values are shown on the x-axis.
(c) Single-linkage dendrogram (SLD) indicating geometrical information on subnetwork formation before merging into one large connected component.
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Fig. 3. Distance matrices indicating statistical dependencies. Correlation-based distance matrices at delta-, theta-, alpha-, beta-, and gamma-frequency EEG bands in the VEH (a, c, e, g,
and i) and CORT groups (b, d, f, h, and j). The distance matrices provide visually inefficient information for ascertaining group differences.

Fig. 4. Trace of network evolution over changing filtration values in the delta-frequency band. Connectivity maps of the VEH (a) and CORT (b) groups at filtration values ε= 0.5, 0.6, and
0.8, where color strength in the color bar represents the functional distance between the nodes. Altered and decreased functional connectivity in the CORT group is seen in the brain net-
work connectivity map. The overlaid barcodes of the VEH and CORT groups show brain network evolution over the different filtration values in (c) where the final filtration value of the
CORT group (=0.7979) N the VEH group (=0.7281) at the 95% level of confidence (Wilcoxon rank-sum test of resampled data sets). Thus, the CORT group with a longer, heavy tail ex-
hibited decreased global connectivity at the 95% level of confidence.
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when resamplingwas performedusing a bootstrap approach). These re-
sults indicate decreased global connectivity in the CORT group. Taken
together, the higher β0 with changing filtration values and the longer
heavy tail in the shape of the barcode of the CORT group indicate
more localized and decreased global connectivity. Moreover, the de-
creasing slopes of the barcodes were slope CORT (=18.1871) N slope
VEH (=15.6128), with a significance level of 0.05 (Wilcoxon rank-
sum test for resampled data sets). Here, interpretation of local connec-
tivity should not be confused with the criteria for reading the barcode
graph for global connectivity, which is how a large subnetwork is
reached at an earlier threshold. Local connectivity is an indicator of
how many local connected clusters there are at a particular filtration
value. For example, the VEH group had four local clusters of connected
components at a filtration value of 0.6. However, the CORT group had
six local clusters of connected components at the same value (Fig. 4),
indicating a more localized connectivity. The connectivity maps at
three different values (ε = 0.5, 0.6, 0.8) from the barcodes are shown
in Fig. 4(a–b). The color of the color bar is simply a filtration value, serv-
ing as an edge weight between two connected nodes. A lower filtration
value, or a cooler color indicates increased connectivity and less func-
tional distance, whereas a high filtration (anti-correlation) value indi-
cates decreased connectivity and a higher functional distance. The
altered connectivity pathways of the CORT group can be visualized
readily using geometrical maps. The decreased connectivity at each fil-
tration value indicates hypoactivation of the final network in the CORT
group.

Fig. 5(a–b) shows a single-linkage matrix for the delta-frequency
band of the VEH and CORT groups, illustrating the functional distance
between the brain regions. This single-linkage matrix could produce
efficient separation of the brain subnetworks within each group, com-
pared with the correlation-based distance matrices shown in Fig. 3.
Each ijth entry in the single-linkage matrix is a model-based predicted
functional distance between the two nodes, mi and mj. The Mann–
Whitney test for exact probabilities was used to assess the difference
in subnetworks between the groups. The model-predicted distances
from single-linkage matrices were tested with the Mann Whitney test
at the 0.05 level of significance assuming heterogeneity of variances of
the two groups. For pair-wise comparisons of single-linkage distances,
the Wilcoxon rank-sum test was used with Bonferroni's correction. It
was found that the CORT group showed increased distances among
the somatosensory, parietal, and frontal regions versus the VEH group,
indicating looser coupling or decreased connectivity in those regions
in the CORT group (corrected p b 0.01). Loosely connected visual corti-
ces in the CORT groupwere also indicated in the single-linkage distance
matrices (corrected p b 0.01). Additionally, it was observed that the left
frontal and left/right somatosensory and parietal cortices were further
apart functionally in the CORT group than in the VEH group, indicating
reduced connectivity in the CORT group (corrected p b 0.01). We visu-
alized the geometrical information about the altered brain network by
computing a dendrogram (Fig. 5c–d). The dendrogramprovides a visual
representation of how andwhere the brain network changes. The colors
of the lines in the dendrogram represent the distance to the ‘giant’

Fig. 5. Increased functional distance and decreased functional connectivity visualized using single-linkage matrices and a dendrogram in the CORT group. (a, b) Single-linkage matrices
(SLMs) dM for the delta-frequency band of the VEH and CORT groups, with a better illustration of group separation than the original distance matrices obtained from the Pearson
correlation-based distance cM in Fig. 3. Intergroup comparison showing loose coupling between somatosensory and parietal cortices (among the cortical circuitries of the CORT group
other than the right frontal cortex and other regions) at the 0.01 level of significance (two-tailed Mann–Whitney test for exact probabilities). The single-linkage dendrograms for the
VEH and CORT groups are presented in (c, d). The vertical and horizontal axes represent the node index and filtration value, respectively. The line colors indicate the distance to the
giant component. The distance to the giant component is 1. Differing subnetwork formation over the changingfiltration values can be seen in both groups. Hyperconnectivity in the frontal
cortices and hypoconnectivity in the visual cortex in the CORT group can be seen from the dendrograms of both groups. Also, the somatosensory cortices in the CORT group make con-
nections with other cortical circuitry at later filtration values, resulting in decreased connectivity.
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component (one final component in which all nodes are connected to
each other) for each connected component. The dendrogram at the
delta frequency revealed decreased coupling (at earlier filtration values,
ε= 0.6–0.8) among the brain regions of the CORT group versus theVEH
group. In the CORT group, a subnetwork consisting of somatosensory
and parietal regions was formed at a higher filtration value (Fig. 5d),
while the same subnetwork was established at an earlier filtration
value in the VEH group (Fig. 5c). This result indicates that in the CORT

group, more local clusters are present at earlier filtration values, while
not forming a big network.

With the persistent homology analysis at the theta- (Fig. 6), alpha-
(Fig. 7), beta- (Fig. 8), and gamma-frequency bands (Fig. 9), we also
found similar functional connectivity trends to the results for the delta-
frequency band analysis in the CORT group (i.e., significantly decreased
global connectivity and more localized connectivity, as shown in the
barcodes; Figs. 6–9). Furthermore, decreased functional connectivity of

Fig. 6. Trace of network evolution over changing filtration values in the theta-frequency band. (a) Single-linkagematrices (SLMs) dM for theta frequency in the VEH and CORT groups. The
loose coupling among the various brain regions in the CORT group is seen and was verified using the Mann–Whitney test for exact probabilities. Single-linkage dendrograms for the VEH
and CORT groups are presented in (b). The vertical and horizontal axes represent thenode index andfiltration values, respectively. The line colors indicate distance to the giant component.
The distance to the giant component is 1. (c) Connectivity maps of the VEH group and CORT groups at filtration values of ε= 0.5, 0.6, and 0.8, where color strength in the color bar rep-
resents the functional distancebetweennodes. Altered anddecreased functional connectivity in theCORT group is seen in the brainnetwork connectivitymap. The overlaid barcodes of the
VEH and CORT groups trace brain network evolution over the different filtration values in (d) where the final filtration value of the CORT group (=0.7357) N the VEH group (=0.6770) at
the 95% level of confidence (Wilcoxon rank-sum test of resampled data sets). Thus, the CORT group shows decreased global connectivity at the 95% level of confidence.
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the CORT group was revealed and visualized at the theta-, alpha-, beta-,
and gamma-frequency bands by single linkage distance matrices
(Figs. 6a, 7a, 8a, 9a) and dendrograms (Figs. 6b, 7b, 8b, 9b).

In Fig. 6(a) model-predicted distance matrices (i.e., single-linkage
matrices) for the theta-frequency EEG bands are shown. Decreased func-
tional connectivity in the CORT group was seen among the various brain
regions. Statistically significant pair-wise differences between the groups

were shown using theWilcoxon rank-sum test. In Fig. 6(b) dendrograms
for the theta-frequency EEG band are shown. In Fig. 6(c), brain connec-
tivity maps for the theta frequency are presented. From the geometrical
information on connected nodes, the CORT group showed similar results
to those of the delta-frequency band (i.e., more local clusters until higher
filtration values). It can be seen that the connectivity map of the CORT
group shows compromised coupling among brain regions at earlier

Fig. 7. Trace of network evolution over changing filtration values in the alpha-frequency band. (a) Single-linkagematrices (SLMs) dM of the VEH and CORT groups are presented in (a, b).
An intergroup comparisonwas performed statistically at the 0.05 level of significance (Mann–Whitney two-tailed test for exact probabilities). Single-linkage dendrograms for theVEH and
CORT groups are presented in (b). The vertical and horizontal axes represent the node index and filtration values, respectively. The line colors show the distance to the giant component.
The distance to the giant component is 1. Altered connections in theCORTgroupversus theVEHgroup are seen clearly in the dendrogram representation. (c) Connectivitymaps of theVEH
and CORT groups at filtration values of ε= 0.5, 0.6, and 0.8, where color strength in the color bar indicates the functional distance between the nodes. Altered and decreased functional
connectivity in the CORT group is seen in the brain connectivity map. Also, in the alpha-frequency band, altered trends in somatosensory circuits with the parietal and frontal cortices are
evident from the connectivity map at a filtration value of 0.5 in both groups. The overlaid barcodes of the VEH and CORT group show brain network evolution over the different filtration
values in (d) where the final filtration value of the CORT group (=0.7224) N the VEH group (=0.6362) at the 95% level of confidence (Wilcoxon rank-sum test of resampled data sets).
Thus, the CORT group exhibited decreased global connectivity with a 95% level of confidence.
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threshold values (0.5, 0.6) and decreased connectivity strength at
0.8 compared with the VEH group. Cortical regions in the CORT group
were making fewer connections in the evolution of the final network,
as they became one large component at higher filtration values than
in the VEH group. In the theta-frequency band, overlaying the barcodes
along with the final filtration values (CORT group, 0.735; VEH group,
0.677) revealed significantly decreased global connectivity (0.05 level
of significance, using the Wilcoxon rank-sum test on resampled
data sets) in the CORT group (Fig. 6d). Furthermore, slope (CORT =
21.57) N slope (VEH = 18.16), which suggests that the CORT group
had a more rapidly decreasing slope than the VEH group. Thus, the

slope of the barcodes may not be useful when making inferences on
the shape of barcodes.

The barcodes for the alpha-, beta-, and gamma-frequency bands and
their slopes (CORT, 23.04 and VEH group, 25.49, CORT, 21.228 and VEH
group, 33.29, and CORT, 21.47 and VEH group, 34.84, respectively) all
showed that the VEH group had a steeper slope than the CORT group,
yielding a faster decrease of the zeroth Betti number, or increased global
connectivity in the VEH group. Furthermore, the final filtration values
(alpha: CORT, 0.72 and VEH group, 0.63, beta: CORT, 0.6037 and VEH
group, 0.7329, and gamma: CORT, 0.6847 and VEH group, 0.7489)
revealed that the CORT group had a longer, heavy tail, indicating

Fig. 8. Network findings in the beta-frequency band. (a) Single-linkage matrices for both groups are presented, VEH (left) and CORT (right). (b) The single-linkage dendrogram showed
altered connections among the nodes of the CORT group (below) when compared with the VEH group (upper). (c) Brain connectivity maps show increased local connectivity and
decreased global connectivity in the CORT group. (d) Overlaying the barcodes in both groups shows significantly decreased global connectivity in the CORT group with a long tail after
the final filtration value: CORT (0.7329) N VEH (0.6037) at the 95% level of confidence (Wilcoxon rank-sum test).
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decreased global connectivity and more localized connectivity in
the alpha, beta, and gamma frequency ranges (Figs. 7d, 8d, 9d). In
Figs. 7(a), 8(a), and 9(a), the model-predicted distance matrices
(single-linkage matrices) for alpha-, beta-, and gamma-frequency EEG
bands are shown, respectively.

Decreased functional connectivity in the CORT group was shown
among almost all the distinct brain regions. The statistical significance
of differences between groups was assessed using the Mann–Whitney
test for exact probabilities with a Bonferroni correction. In Figs. 7(b),

8(b), and 9(b), dendrograms for the alpha-, beta-, and gamma-
frequency EEG bands are shown, respectively. Alpha-, beta-, and
gamma-frequency-specific brain connectivity maps and other findings
are also shown in Figs. 7(c), 8(c), and 9(c), respectively. Similar connec-
tivity profiles (decreased global and increased localized connectivity in
the CORT group) but with different pathways among the cortical re-
gions were seen in all five EEG frequency bands. Interestingly, the bilat-
eral frontal cortices in the CORT group showed increased connectivity in
the CORT group versus the VEH group at all five bands, which might

Fig. 9. Network findings at the gamma band. A similar connectivity profile to the other four frequency bands was seen: decreased global connectivity among the cortical circuitry in the
CORT group. (a) Single-linkage matrices are presented for both groups: VEH (left) and CORT (right). (b) Single-linkage dendrogram shows altered connections among the nodes in the
CORT group (below) versus the VEH group (upper). (c) Brain connectivity maps show increased local connectivity and decreased global connectivity for the CORT group. Also,
hyperconnectivity in the frontal cortices is evident at earlier filtration values (=0.5). (d) Overlaying the barcode in both groups showed significantly decreased global connectivity in
the CORT group with a long tail since the final filtration value for CORT (0.7489) N VEH (0.6847) at the 95% level of confidence (Wilcoxon rank-sum test).
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indicate the spread of depression severity because depression is charac-
terized by increased functional connectivity within the frontal brain
(Olbrich et al., 2014).

Comparison with other graph theoretic measures

To validate the approach of persistent brain network homologywith
other available graph theoretic approaches, we constructed 10 and 9
networks for the VEH and CORT groups, respectively. For all (10 + 9)
networks, we obtained seven distance matrices between the networks,
including the Gromov–Hausdorff distance (Supplementary material),
between all pair wise single-linkage matrices along with pair wise dif-
ferences between six other graph theoretic measures: the slope of
barcode β0, the characteristic path length, the average assortativity,
the average clustering coefficient, themodularity, and average node be-
tweenness centrality (Supplementary Fig. S4). All distance matrices
were normalized to have a maximum value = 1. After constructing
the distance matrices, we divided the networks into two clusters and
evaluated the clustering accuracy by comparing the assigned labels
with the true labels. The clustering accuracies of the GH distance and
the characteristic path length were both 100%, superior to the other
widely used graph theoretic measures, indicating effective performance
of the GH metric (Supplementary Fig. S4).

Discussion

To assess brain functional connectivity, persistent brain network ho-
mology, a new multi-scale network-modeling framework (Lee et al.,
2012), was used effectively with EEG signals from the CORT-induced
depression mouse model. Persistent brain network homology uses
networks generated at every possible threshold, and thus eliminates
the need for an optimal threshold, which is a key factor in constructing
binary networks. Furthermore, the persistent homology approach can
allow geometric information in the barcode to be incorporated into a
single-linkage dendrogram that represents the brain network changes
visually. Thus, ‘hidden’ or abnormal neural networks in the pathological
brain can be revealed by the persistent brain network homology
approach.

In this study, application of persistent homology in eight cortical re-
gions revealed more localized and decreased global connectivity in the
CORT group versus the VEH group. Additionally, connectivity maps
with single-linkage distances showed reduced and highly discriminated
functional connectivity in the subregions in the CORT group. Our study
demonstrated less integrated processing of effective information in cor-
tical brain regions of the CORT group, and our results may facilitate in-
vestigation of the mechanisms underlying aberrant neural networks in
the depressed brain.

Functional connectivity in the brain can be measured by statistical
dependencies among the physiological signals from the coupled neural
systems. In the healthy brain, individual variability in cognitive func-
tions, learning a new task, and even the predisposition to learn have
been correlatedwith specific patterns of connectivitywithin/across net-
works. In the diseased brain, specific abnormalities in neural networks
even in structurally normal regions, may correlate with functional
deficits, and functional connectivity has been used to assess impairment
in neural communications (Fox et al., 2005; He et al., 2007a,b; Shafi
et al., 2012). Depression may be associated with disturbed properties
across large-scale cortical networks and/or subcortical systems with a
number of functionally connected cortical regions (Davidson, 2004;
Davidson et al., 2002b). Measurement of electrical activity, such as by
EEG, has been used for research into brain functional connectivity, and
many studies have suggested that alterations in EEG functional connec-
tivity of patients with brain disorders, including depression, may be as-
sociatedwith cognitive dysfunction and psychiatric behaviors (Dawson,
2004; Haig et al., 2000). However, tracing global networks through the

evolution of local subnetworks, where selection of the optimal thresh-
old can be a problem, is difficult.

The persistent homology analysis, with the help of barcodes at all
five EEG frequency bands, showed a more localized and decreased
global connectivity in the CORT mouse model. Additionally, the geo-
metrical information-based dendrogram showed altered and com-
promised functional pathways in the somatosensory, frontal, and
parietal cortices during formation of a large network. In fact, there
is a report that patients with depression have limited affective pro-
cessing and fewer redundant, or simply a reduced number of, con-
nections among those cortical regions (Leistritz et al., 2013). At
each frequency band, a single-linkage distance matrix showed de-
creased connectivity among the left frontal and parietal cortices of
the CORT group. Because the parietal lobes are themselves closely in-
terconnected with the prefrontal areas, and, together, these two re-
gions represent the highest level of integration in the motor
control hierarchy, decreased connectivity in these regions may lead
to impairment in cognitive function, including decision-making.
Moreover, bilaterally looser connection at the visual cortex and in-
creased connections in the frontal cortex in the CORT group were
also seen with single-linkage distance matrices. Although the CORT
group showed a similar trend in local and global connectivity
(i.e., more localized and less global connectivity) in all frequency
bands versus the VEH group, there were some differences in the con-
nectivity pathways between the groups.

The dynamics of coupled oscillatory systems from each frequency
band are useful for maintaining different functional sub-networks in a
state of heightened competition, which can be stabilized and changed
by even slight modulation of sensory or internal signals (Razavi et al.,
2013; Smith, 2005). The underlying temporally correlated patterns of
frequency-specific brain oscillations or activities are still not understood
fully, and thus their purposes remain unclear at this time. As future
investigations delve deeper into the origins and possible functions of
frequency-related brain EEG activities,wewill be able to comprehensive-
ly investigate brain function within frequency-specific brain networks.

Previous neuroimaging studies of depression in human suggested
bilaterally loose connection at visual cortex and decreased connectivity
among somatosensory, parietal, and frontal cortices, which are consis-
tent with our results (Desseilles et al., 2011; Marchand et al., 2013).
However, those studies could neither reveal subnetworks forming be-
fore the final network nor trace multi-scale functional networks. Appli-
cation of persistent brain network homology to human neuroimaging
data will help dig out persistent topological features in the evolution
of networks, which can improve our knowledge about the pathogenesis
of depression.

To date, various animal models (e.g., CORT treatment, chronic re-
straint stress, inescapable foot-shock stress, chronic social defeat stress,
chronic unpredictable mild stress) have been established to facilitate
understanding of the pathophysiology of depression (O'Neil and
Moore, 2003). Although not without limitations, certain depression-
associated phenotypes can be reproduced independently and evaluated
in a mouse model. The CORT-induced depression mouse model used in
this study is known to reproduce human behaviors, such as despair, an-
hedonia, or helplessness, which are regarded as face validity and which
can be reversed by antidepressant treatment (Ardayfio and Kim, 2006;
David et al., 2009; Gourley et al., 2008). However, depression is a het-
erogeneous disorder of which the diagnostic criteria are partially sub-
jective. Thus, we cannot generalize our findings to specific clinical
impacts in depression patients. To enable translation of the results, fur-
ther research on the persistent brain network homology of clinical de-
pression is essential.

Conclusion

In this study, we investigated cortical functional networks frommul-
tiple cortical EEG signals of the CORT-induced depressionmousemodel,
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and demonstrated substantially altered functional connectivity in the
CORT model. Use of the persistent brain network homology approach
that considered all networks over every possible threshold enabled
identification and quantification of increased local and decreased global
connectivity of complex brain networks in the CORT model. Further-
more, loose coupling of somatosensory and other cortical regions
and compromised functional connectivity between visual and
other cortical regions were also revealed, which might contribute
to deficient filtering or processing of information within brain
regions in depression. Our study suggests the utility of the persis-
tent brain network homology approach for tracing the evolution
of EEG functional connectivity in neuropathological brain mapping,
as well as the compromised functional connectivity in the CORT-
induced depression model.
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