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Introduction

We present a novel computational framework for
investigating the white matter connectivity using
tensor-based morphometry (TBM) which use only
only T1-weighted magnetic resonance imaging
(MRI) but no diffusion tensor imaging (DTI). To
construct brain network graphs, we have devel-
oped a new data-driven approach called the ε-
neighbor method that does not need any prede-
termined parcellation.

The proposed pipeline is applied in detecting the
topological alteration of the white matter connec-
tivity in maltreated children who have been post-
institutionalized (PI; n=32) in orphanages in East
Europe and China with age and gender matching
normal control subjects (NC; n=33).

Figure 1: Framework of the proposed analysis applied to
post-institutionalized (PI) children and normal control (NC).
(a) Jacobian determinant maps of individuals projected on

the template. (b) partial correlation maps seeded at the
genu (marked with green squares) (c) FDR-thresholding on

partial correlation is used to establish edges of the
connectivity network. Only edges connecting the nodes
near the genu are visualized. The different pairings are

marked with different colors. (d) The proposed ε-neighbor
graphs of connectivity. Only positive correlations are shown
here. The gray shading of nodes indicates the node degree.
The size of nodes represents the number of nodes that are
merged in the ε-neighbor construction. For 3D orientation,

arrows in the middle of (c) and (d) indicate Right (red),
Anterior (green) and Superior (cyan) directions.

Partial correlation on Jacobian field

Fig.1 illustrates the proposed pipeline. Between
the subsampled 2692 voxels over the whole white
matter, we link two nodes if the partial correlation
of the Jacobian determinants is statistically signifi-
cant at a certain threshold.

The Jacobian determinant is defined as J =
det(I+∂U/∂x) where U is the displacement ma-
trix and x is the coordinate vector [1].

To remove the possible confounding effect of
age, gender and brain size, we used the Pearson
correlation of the residuals obtained from fitting
general linear models (GLM) with the nuisance co-
variates. It is equivalent to take partial correlations.

In order to obtain the deterministic network
graph, we have thresholded the partial correlations
using the false discovery rate (FDR) thresholding
with q=0.01 under a weak assumption of depen-
dency. The distribution of statistics for correlations
zij can be trivially approximated using the Fisher
transform.

As the FDR-threshold is given by s (4.86 for PIs;
4.81 for NCs), the adjacency matrix A = (aij) is
given by aij = 1 if zij ≥ s and aij = 0 otherwise,
with the diagonal terms aii = 0.

ε-neighbor graph simplification

Since isolated single connections are more likely
false positives, we have adapted the ε-neighbor
scheme [3]. The algorithm condenses a given
complex graph to a much simpler graph by it-
eratively merging ε-neighbors. If the distance
d(p,Gk) = minq∈Vk ‖p−q‖ ≤ ε for some radius ε,
the node p is called the ε-neighbor of Gk. The idea
is best illustrated with a toy example given in Fig.2.

To improve the stability of the original algorithm
[3], we decided to update the coordinates of the
pre-existing node when a merging occurs.

For this study, ε was set to be 21 mm to investi-
gate the connectivity at macro-scale level.
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Schematic illustration of the ε-neighbor updating scheme.
(a) Initially the graph G1 consists of one edge e11e12 (black).
The new edge e21e22 (red) is to be considered at the next

stage. The node e21 is within the ε radius (blue) of the node
e12 thus it has to be merged. (b) The coordinates of the
merged node e12 is updated to e12

′ (green) and the new
edge e12

′e22 is included in G2.

Results

We have used the degree of nodes as a discrimi-
nating feature between the two groups (Fig.3). The
significance of the degree differences is tested us-
ing permutation tests. There are significantly more
nodes with the low degrees (1, 3 and 4) in the PIs
than the NCs. On the other hand, there are more
nodes with the high degrees (7 and 12) in the NCs

than the PIs. It implicates weakened connectivity
in the PIs.

Permutation tests on degree distributions. (a) Degree
distributions. The significant differences between the PIs
and the NCs marked with green asterisks with p-values

(Bonferroni corrected at 0.05). (b) Null distribution obtained
by 2000 permutations. X-axis is for the degree differences.
Y-axis is for the counts of permutations. Red vertical lines

note the actual differences.

Discussions

We have presented a novel structural connectiv-
ity mapping technique that uses only T1-weighted
MRI. The constructed partial correlation maps
(Fig.1) look very similar to the probabilistic con-
nectivity maps obtained from DTI. The simplified
graphs showed significantly different degree distri-
butions in PIs implying abnormal connectivity. In
addition, the anatomical pattern of the white mat-
ter connectivity seems to be locally different across
groups (Fig.4). However, it should be more thor-
oughly validated in a further study.

Local connectivity patterns of the ε-neighbor graphs. Only
positive correlations are shown. Edges are color-coded by
the number of merged connections implying the strength of

connections. The gray shading of nodes indicates the
degree and the size of nodes represents the number of

nodes that are merged.
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