
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with
Applications to Statistical Analysis of Diffusion Weighted Images

Hyunwoo J. Kim Nagesh Adluru Maxwell D. Collins Moo K. Chung
Barbara B. Bendlin Sterling C. Johnson Richard J. Davidson Vikas Singh

University of Wisconsin-Madison
http://pages.cs.wisc.edu/~hwkim/projects/riem-mglm

Abstract

Linear regression is a parametric model which is ubiqui-
tous in scientific analysis. The classical setup where the
observations and responses, i.e., (x

i

, y
i

) pairs, are Eu-
clidean is well studied. The setting where y

i

is manifold
valued is a topic of much interest, motivated by applica-
tions in shape analysis, topic modeling, and medical imag-
ing. Recent work gives strategies for max-margin classi-
fiers, principal components analysis, and dictionary learn-
ing on certain types of manifolds. For parametric regression
specifically, results within the last year provide mechanisms
to regress one real-valued parameter, x

i

2 R, against a
manifold-valued variable, y

i

2 M. We seek to substan-
tially extend the operating range of such methods by deriv-
ing schemes for multivariate multiple linear regression —
a manifold-valued dependent variable against multiple in-
dependent variables, i.e., f : Rn ! M. Our variational
algorithm efficiently solves for multiple geodesic bases on
the manifold concurrently via gradient updates. This allows
us to answer questions such as: what is the relationship of
the measurement at voxel y to disease when conditioned on
age and gender. We show applications to statistical analy-
sis of diffusion weighted images, which give rise to regres-
sion tasks on the manifold GL(n)/O(n) for diffusion ten-
sor images (DTI) and the Hilbert unit sphere for orientation
distribution functions (ODF) from high angular resolution
acquisition. The companion open-source code is available
on nitrc.org/projects/riem mglm.

1. Introduction
Regression is ubiquitous in scientific analysis to identify

how a dependent variable, y 2 Y relates to an independent
variable, x 2 X . Here, we are provided training data in
the form, (x

i

, y
i

)

N

i=1 ⇢ X ⇥ Y , and seek to find the best
model that explains these observations, given an appropri-
ate loss function. The classical setting typically makes an
assumption on the geometric structure of the data by captur-

ing the notion of distance between points a and b by the ex-

pression,
⇣P

j=1...n(a
j � bj)2

⌘ 1
2

, which holds whenever
the data are real vectors. In the Euclidean setting, a simple
parametric model, y

i

= ↵ + �x
i

+ ✏
i

, suffices to identify
the linear relationship between scalar-valued x

i

2 X and
the dependent (i.e., response) variable y

i

2 Y with error ✏
i

.
The least squares estimate is,

(↵̂, �̂) = arg min
(↵,�)

NX

i=1

ky
i

� ↵� x

i

�k2, (1)

and the closed form solution to (1) is obtained as,

�̂ =
Cov[x, y]

Var[x]
=

E [(x� x̄)(y � ȳ)]

E [(x� x̄)2]
, ↵̂ = ȳ � �̂x̄. (2)

If x and y are multivariates, one can easily replace the mul-
tiplication and division with an outer product of vectors and
matrix inversion respectively, and obtain an analytical solu-
tion.

Despite the simplicity of the above solution, it is not uni-
versally applicable. Occasionally, the variables that con-
stitute the data are not in Rn and imposing the Euclidean
topology forcibly can lead to poor estimation. For example,
parametric families such as Dirichlet or multinomial can-
not be treated as Euclidean spaces [18]. Similarly, in shape
analysis, arbitrary linear combinations of shapes do not con-
stitute a ‘valid’ shape — instead, feasible solutions are only
those that correspond to points on a shape manifold. Co-
variance matrices in machine learning and diffusion tensors
in neuroimaging are positive definite matrices. Operations
that are simple in the Euclidean space such as taking the
arithmetic mean cannot be applied directly to such data be-
cause of the absence of an additive structure. Manifold val-
ued variables arise frequently in data analysis. While the
relationship between statistics and Riemannian geometry is
well known, in the last two decades, one can see a con-
certed effort to move beyond rigorous asymptotic results,
and use these ideas to perform inference on real-world de-
rived datasets in a more principled way. This has led to a
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developing body of practical methods to operate on differ-
entiable manifolds which are smooth and locally Euclidean
and endowed with a metric given as a local inner product
between tangent vectors.
Related work. There is a mature body of work in statistics
dating back to the seminal work of Rao [21] and Efron [7]
showing how the asympotic properties of a statistical model
relate to the curvature of a corresponding manifold. But
since the 1990s, such concepts have been leveraged towards
characterizing problems in statistical learning and vision.
On the machine learning front, Amari [1] showed how to
use differential geometry and Fisher information principles
for neural networks, whereas Jaakkola [12] derived hybrid
schemes combining properties of generative and discrimi-
native methods based on geometric principles. There are
numerous learning theoretic results [17] examining geomet-
ric insights into the behavior of AdaBoost and large margin
classifiers [18]. Independently, research in vision/medical
imaging has studied manifold regression for shape analy-
sis. These results include regression on a group of diffeo-
morphisms for brain atrophy models [20], semi-parametric
regression [23], computing equivalence classes of curves
[16], comparing images [27], and models for spherical re-
gression [22]. Just within the last few years, this effort has
provided new solutions for various vision problems: online
covariance matrix updates for video tracking [2], spatial
clustering for high angular resolution diffusion data [11],
Principal Geodesic Analysis [9], dimensionality reduction
[10], Nadaraya-Watson kernel regression [4] and dictionary
learning for diffusion magnetic resonance images [24].

While these advances are notable, efficient methods that
extend standard linear regression to the Riemannian mani-
fold setting have appeared in the vision literature only re-
cently. Last year, Fletcher [8] proposed an elegant paramet-
ric formulation called geodesic regression that regresses a
manifold valued variable, y 2 Y against a real valued vari-
able, x 2 X . Soon thereafter, [6] adapted the ideas for re-
gressing a dependent variable y which lies on a unit Hilbert
sphere against reals, x 2 X . These solutions provide a rig-
orous framework for approaching important problems in-
cluding those studied in [4]. For instance, [4] calculated
anatomical shape change as a function of a random variable
x in a population, i.e., y lies on a shape manifold and x cor-
responds to age (or disease). With [8], one may derive linear
relationships for rotations, shapes, and other manifolds — a
substantial step forward. Unfortunately, the models in their
current form do not directly address various other interest-
ing questions that come up routinely in practice. Consider
the following motivating example: the shape of an anatom-
ical region may not only be affected by disease but also by
age and gender. These may be “nuisance” parameters [26].
In such cases, the desired statistical model must explicitly
control for such confounding variables, otherwise will lead

to false positives and false negatives (Type 1, Type 2 er-
rors). In other words, the relationship between shape (or
some manifold valued y) and disease, must be conditioned
on age. This necessitates extending general linear models
(GLM) to the manifold setting, which is precisely the goal
of this paper. Our contributions are: (i) a novel framework
for MGLM for manifold valued y (for certain manifolds)
and multiple independent random variables, x; (ii) a gradi-
ent descent scheme for multiple linear regression on mani-
folds such as P (n) and (iii) an approximate Log-Euclidean
scheme with accompanying analysis. Jointly, these ideas
expand the operating range of existing methods enabling
various hypotheses testing studies with multiple confound-
ing variables. We show applications to statistical analysis of
diffusion weighted magnetic resonance images, which give
rise to the manifold of positive definite matrices, P (n), and
the unit Hilbert sphere, S1, depending on the acquisition
type. Our experiments are accompanied by an open source
library, where few alternatives exist today.

2. Preliminaries
We briefly summarize certain basic concepts and nota-

tions [5] that the remainder of the presentation will utilize.
Riemannian manifolds. A differentiable manifold [5] of
dimension n is a set M and a maximal family of injective
mappings '

i

: U
i

⇢ Rn ! M of open sets U
i

of Rn into
M such that: (1) [

i

(U
i

) = M; (2) for any pair i, j with
'
i

(U
i

)\'
j

(U
j

) = W 6= �, the sets '�1
i

(W ) and '�1
j

(W )

are open sets in Rn and the mappings '�1
j

� '
i

are differ-
entiable, where � denotes function composition. In other
words, a differentiable manifold M is a topological space
that is locally similar to Euclidean space and has a globally
defined differential structure. The tangent space at a point
p on the manifold, T

p

M, is a vector space that consists of
the tangent vectors of all possible curves passing through p.
The Tangent bundle of M, i.e., TM, is the disjoint union
of tangent spaces at all points of M, TM =

`
p2M

T
p

M.
The tangent bundle is equipped with a natural projection
map ⇡ : TM ! M [19].

A Riemannian manifold is equipped with a smoothly
varying inner product. The family of inner products on all
tangent spaces is known as the Riemannian metric of the
manifold. We can define various geometric measures on the
manifold such as the angle between two curves or the length
of a curve. The geodesic distance between two points on
M is the length of the shortest geodesic curve connecting
the two points, analogous to straight lines in Rn [13]. The
geodesic curve from y

i

to y
j

can be parameterized by a tan-
gent vector in the tangent space at y

i

with an exponential
map Exp(y

i

, ·) : T
yiM ! M. The inverse of the exponen-

tial map is the logarithm map, Log(y
i

, ·) : M ! T
yiM.

For completeness, Table 1 shows corresponding operations
in the Euclidean space and Riemannian manifolds. Separate



from the above notation, matrix exponential (and logarithm)
are simply given as exp(·) (and log(·)).
Intrinsic mean. Let d(·, ·) define the distance between two
points. The intrinsic (or Karcher) mean is the minimizer to

ȳ = arg min
y2M

NX

i=1

w

i

d(y, y
i

)2, (3)

which may be an arithmetic, geometric or harmonic mean
depending on d(·, ·). On manifolds, the Karcher mean with
distance d(y

i

, y
j

) = kLog
yi
y
j

k satisfies
P

N

i=1 Log
ȳ

y
i

= 0.
This identity means that ȳ is a local minimum which has a
zero norm gradient [15], i.e., the sum of all tangent vectors
corresponding to geodesic curves from mean ȳ to all points
y
i

is zero in the tangent space T
ȳ

M. On manifolds, the
existence and uniqueness of the Karcher mean is not guar-
anteed unless we assume, for uniqueness, that the data is in
a small neighborhood (see pseudocode in the extended ver-
sion).
Parallel transport. Let M be a differentiable manifold
with an affine connection r and I be an open interval. Let
c : I ! M be a differentiable curve in M and let V0 be
a tangent vector in T

c(t0)M, where t0 2 I . Then, there
exists a unique parallel vector field V along c, such that
V (t0) = V0. Here, V (t) is called the parallel transport of
V (t0) along c.

2.1. Geodesic regression: The basic formulation
The basic geodesic regression model in [8] for extending

linear regression to the Riemannian manifold setting is,

y = Exp(Exp(p, xv), ✏) (4)

where ✏ is the error (a tangent vector), x 2 R and y 2 M
are the independent and dependent variables resp., p 2 M
is a ‘base’ point on the manifold, and v 2 T

p

M is a tangent
vector at p. For consistency with Euclidean space, we use m
for the dimensionality of T

p

M. Comparing (4) and Table
1, observe that p and v correspond to the intercept ↵ and the
slope � in (1). Given N pairs of the form (x

i

, y
i

), [8] solves
for (p, v) 2 TM to fit one geodesic curve to the data,

E(p, v) :=
1
2

NX

i=1

d(Exp(p, x
i

v), y
i

)2, (5)

Operation Euclidean Riemannian

Subtraction ��!
x

i

x

j

= x

j

� x

i

��!
x

i

x

j

= Log(x
i

, x

j

)

Addition x

i

+���!x

j

x

k

Exp(x
i

,

���!
x

j

x

k

)

Distance k��!x

i

x

j

k kLog(x
i

, x

j

)k
xi

Mean
P

n

i=1
�!
x̄x

i

= 0
P

n

i=1 Log(x̄, x
i

) = 0

Covariance E
⇥
(x

i

� x̄)(x
i

� x̄)T
⇤

E
⇥
Log(x̄, x)Log(x̄, x)T

⇤

Table 1: Basic operations in Euclidean space and Riemannian manifolds.

p

O

x1
1 x1

2 v1x2
1

x2
2

v2

ŷ1
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Figure 1: MGLM on manifolds. v

1
, v

2 are tangent vectors. Each
entry of independent variables (x1

, x

2) 2 R2, is multiplied by v1 and v2

respectively in T

p

M. Here, xj

i

denotes j-th entry of the i-th instance.

providing the estimate ŷ
i

= Exp(p, x
i

v). Here, d(a, b) =p
hLog(a, b),Log(a, b)i

a

is the geodesic distance between
two points on M. Rewriting (5) in the form of a minimiza-
tion problem using the definition of d(·, ·), we obtain

min
(p,v)2TM

1
2

X

i

hLog(ŷ
i

, y

i

),Log(ŷ
i

, y

i

)i
ŷi (6)

To minimize E, one first needs to specify r
p

E(p, v) and
r

v

E(p, v). This requires computing derivatives of the ex-
ponential map with respect to p and v. The gradients are
derived in terms of Jacobi fields (which are solutions to a
second order equation subject to certain initial conditions
[8]) or via introducing small perturbations [6]. To express
this in a computable form, we need to find the so-called
adjoint derivative. If d

p

Exp(p, v) is the derivative of the
exponential map with respect to p, its adjoint derivative is
hd

p

Exp(p, v)u,wi = hu, d
p

Exp(p, v)†wi, where w is a tan-
gent vector. Putting these pieces together, the gradient de-
scent scheme [8] can optimize (6) in a numerically stable
manner and obtain the estimates of p and v.
Can we extend this idea to multiple linear regression?
Given the precise form of the scheme above, it is natural
to ask if a similar idea will work for the MGLM model.
It turns out that there are certain conceptual and technical
difficulties in attempting such an extension. Observe that
geodesic regression in (5) works on a scalar independent
variable in R (and thereby, a single geodesic). For mul-
tiple linear regression, one must invariably make use of a
subspace instead. Shortly, we will see that this issue can be
resolved by identifying multiple geodesic curves which cor-
respond to ‘basis’ vectors in Euclidean space, see Fig. 1. It
is similar to the concept of geodesic submanifold in [9]. Let
us now look at some of the technical difficulties by writing
down the form of the gradients in geodesic regression.

�
NX

i=1

d

p

Exp(p, x
i

v)†$
yi

| {z }
rpE(p,v)

, and �
NX

i=1

x

i

d

v

Exp(p, x
i

v)†$
yi

| {z }
rvE(p,v)

where $
yi = Log(Exp(p, x

i

v), y
i

) and d
p

Exp(p, x
i

v)† is
the adjoint derivative [8]. The derivative of the exponen-



tial map, dExp(p, v), is obtained by Jacobi fields along a
geodesic curve parameterized by a tangent vector v. Here,
this idea works because the prediction is a single geodesic
curve. In multiple linear regression, predictions do not
correspond to one geodesic curve; so, expressing the cor-
responding tangent vector (essential for Jacobi fields), is
problematic. Next, a key property of the adjoint derivative
above is that the result of applying the operator, d(p, v)†,
on w should lie in a tangent space. But for manifolds like
GL(n)/O(n), the tangent space corresponds to symmetric
matrices [2]. This requires designing a special adjoint oper-
ator which guarantees this property, which is not trivial.

3. General linear model (GLM) on manifolds

Let x and y be vectors in Rn and Rm respectively. The
multivariate multilinear model in Euclidean space is.

y = ↵+ �

1
x

1 + �

2
x

2 + . . .+ �

n

x

n + ✏

(7)

where ↵, �i and the error ✏ are in Rm and x = [x1 . . . xn

]

T

are the independent variables. Just as (7) uses a vector of
independent variables, multivariate multilinear geodesic re-
gression uses a geodesic basis which corresponds to multi-
ple tangent vectors, one for each independent random vari-
able. Let V x

i

:

=

P
n

j=1 v
jxj

i

. Our formulation with multi-
ple geodesic bases is

min
p2M,8j,v

j
2TpM

1
2

NX

i=1

d(Exp(p, V x

i

), y
i

)2, (8)

3.1. Variational method for gradient descent

High level summary and idea. To address the technical
issues pertaining to the adjoint derivatives, we will attempt
to obtain a similar effect to that operator, but via different
means. First, observe that in [8], to enable summing up
the individual dExp(p, x

i

v)†Log(Exp(p, x
i

v), y
i

)’s which
gives the gradient, rE, a necessary condition is that these
terms should lie in T

p

M. Here, Exp(p, x
i

v) gives the pre-
dicted ŷ

i

for y
i

, and so Log(Exp(p, x
i

v), y
i

) is the error and
must lie in TExp(p,xiv)M, i.e., T

ŷiM. By this argument,
dExp(p, x

i

v)† actually plays a role of parallel transport to
bring each error Log(Exp(p, x

i

v), y
i

) from T
ŷiM to T

p

M.
Since we hope to avoid constructing a special adjoint opera-
tor, we will instead perform parallel transport explicitly and
derive the appropriate gradient terms, as outlined below.

Let us consider a slight variation of the objective func-
tion in (8). Let �

p!q

(w) be a parallel transport of w
from T

p

M to T
q

M. Recall that parallel transport does not
change the norm of tangent vectors, so the measurement of
an error vector remains accurate. This ensures that the fol-

lowing modification preserves equivalence

E(p, v) =
1
2

X

i

hLog(ŷ
i

, y

i

),Log(ŷ
i

, y

i

)i
ŷi (9)

=
1
2

X

i

h�
ŷi!p

Log(ŷ
i

, y

i

),�
ŷi!p

Log(ŷ
i

, y

i

)i
p

, (10)

where ŷ
i

= Exp(p,
P

j

xj

i

vj). Comparing (9) and (10),
we see that in (9), the inner product occurs at each tangent
space T

ŷiM, whereas (10) expresses all inner products in a
tangent space T

p

M, after applying a parallel transport. Of
course, when we have a single independent variable — we
can either use the adjoint derivative operator as in [8] or the
parallel transport strategy; we have verified that empirically,
the results match. But the latter option is convenient for
handling tangent spaces for multiple independent variables.

For an object u on a manifold, let uo denote the corre-
sponding object in tangent space of u at T

p

M. To derive our
gradient expression, we will use the model in the tangent
space as a temporary placeholder, to keep notations simple.
Let us first define a few useful terms. Below, E is the er-
ror from (5) and Eo gives the Log-Euclidean error in T

p

M.
Let po := Log(p, p) and yo

i

:

= Log(p, y
i

). We are search-
ing for not only tangent vectors but also the tangent space
itself. To do so, by introducing a zero-norm tangent vector
po which corresponds to the origin of tangent space T

p

M,
the direction to move the origin is obtained. So, the esti-
mate, ŷ

i

o is Log(p, ŷ
i

) = Log(p,Exp(p, V x
i

)) = V x
i

+ po,
where V = [v1 . . . vn] is a m-by-n matrix, vj is the m-
dimensional tangent vector. The model in tangent space
T
p

M is given as

min
p

o

,v

E

o(po, v) := min
p

o

,v

1
2

X

i

k(
X

j

v

j

x

j

i

+ p

o)� y

i

ok2 (11)

Its gradient is expressed as
r

p

o

E

o =
X

i

(ŷ
i

o � y

o

i

), r
v

jE
o =

X

i

x

j

i

(ŷ
i

o � y

o

i

), (12)

where ŷ
i

o

=

P
j

vjxj

i

+ po. Note that this gradient is the
‘approximate’ gradient in the linearized (tangent) space. Of
course, we are actually interested in minimizing the parallel
transported error on the manifold. So, we will substitute
the parallel transported form for the linearized expression,
(ŷ

i

o � yo
i

) in (12) above and obtain,

r
p

E ⇡ �
X

i

�
ŷi!p

Log(ŷ
i

, y

i

), r
v

jE ⇡ �
X

i

x

j

i

�
ŷi!p

Log(ŷ
i

, y

i

)

where ŷ
i

= Exp(p, V x
i

). Separate from the intuitive rea-
soning above, one may take derivatives of (10) directly and
verify that if a constant (and a constant times xj

i

) suffices for
a first order approximation of @

@p

�

ŷi!p

Log(Exp(p, V x
i

), y
i

)

and @

@v

j �ŷi!p

Log(Exp(p, V x
i

), y
i

) respectively, the form
above approximates the gradient well. Otherwise, in a
pathological case, we still make progress in a descent di-
rection but the convergence rate will be worse (assuming
the approximant is chosen to be small enough).



Remarks. Consider the Euclidean setting where x
i

and
x
j

are large. The optimal intercept, p⇤, will be far from
y
i

and y
j

which is not a problem since we can explicitly
solve for any value for the intercept. But parametric mod-
els for Riemannian manifolds are based on the assumption
that data are distributed in a sufficiently small neighborhood
where exponential and logarithm maps are well-defined. In
addition, x should not have “large” entries (relative to the
variance of x) otherwise p⇤ might be too far from the data
and there is no well-defined exponential map to represent
y = Exp(p⇤, V x). Thus, we may explicitly solve for a pa-
rameter to translate the x variables, y = Exp(p, V (x � b))
where b 2 Rn. However, it may lead to many local min-
ima. A simple fix to this problem is to first “center” the x
variables which makes the optimization scheme stable (see
pseudocode in Algo. 1).

4. Log-Euclidean geodesic regression

In this section, we outline an approximate algorithm that
is simpler and offers more flexibility in analysis at the cost
of a few empirically derived assumptions. To motivate the
formulation, let us take a manifold perspective of (2): we
see that analytical solutions can be obtained using the dif-
ference of each point from its mean both in X and Y space
— that is, the quantities �!

x̄x
i

and �!̄
yy

i

calculated in the tan-
gent space, T

p

⇤M. Note that in (2), � corresponds to tan-
gent vectors and ↵ corresponds to p⇤. Our scheme in (8)
explicitly searches for p⇤, but in experiments, we found that
frequently, p⇤ turns out to be quite close to ȳ. This obser-
vation yields a heuristic where rather than solve for p, we
operate entirely in T

ȳ

M. With this assumption, using the
Karcher mean as ȳ in (2) and the Log-Euclidean distance as
a substitute for �!x̄x

i

and �!̄
yy

i

, we can derive a faster approxi-
mate procedure. This scheme has the additional benefit that
it allows analyzing multiple manifold-valued independent
variables in a GLM setting too, if desired.

The Log-Euclidean MGLM estimates a linear relation-
ship between centered variables {xo

i

}N
i=1 and {yo

i

}N
i=1 where

Algorithm 1 MGLM on manifolds
Input: x1, . . . , x

N

2 Rn, y1, . . . , y
N

2M
Output: p 2M, v1, . . . , vn 2 T

p

M,

Initialize p, v,↵,↵
max

and center x
while termination condition do

p

new

= Exp(p,�↵r
p

E)
V

new

= �
p!pnew (V � ↵r

V

E)
if E(p

new

, V

new

) < E(p, V ) then
V  V

new

and P  P

new

↵ = min(2↵,↵
max

)
else

↵ = ↵/2
end if

end while

xo

i

= x
i

� x̄ and yo
i

= Log(ȳ, y
i

), where the number of
tangent vectors we estimate is exactly equal to the num-
ber of independent variables, x. We do not use an affine
model here because that makes drawing an analogy with
our full MGLM formulation problematic. For example, an
affine model in the Log-Euclidean setting will entail learn-
ing (n+1) tangent vectors — for the n different x-variables
plus one for the intercept. But even for n = 1, the estimates
derived will no longer be valid geodesic curves since they
do not pass through po 2 T

p

M (because of the intercept).
By taking ȳ as p preserves these geodesic properties.

Our basic procedure estimates the set of vectors V =

[v1 . . . vn] in tangent space T
ȳ

M and p a point on M
using the relation Y o

= V X o. Y o ⌘ [yo1 . . . y
o

N

] and
X o ⌘ [xo

1 . . . x
o

N

] are respectively the mean centered data.
p⇤ is given by the Karcher mean ȳ. V ⇤ is given by the least
squares estimation with respect to the Log-Euclidean met-
ric and can be computed using the closed form solution,
Y oX oT

�
X oX oT

�
�1.

The following analysis shows that under some condi-
tions, heuristically substituting ȳ for p⇤ is justifiable be-
yond empirical arguments alone. In particular, if the y ob-
servations come from some geodesic curve, then all of the
data can be parameterized by one tangent vector in the tan-
gent space at ȳ. More specifically, we show that a Karcher
mean exists on a geodesic curve. So, if the Karcher mean
is unique, then the Karcher mean must lie on the geodesic
curve. By the definition of exponential map and since the
data are in sufficiently small neighborhood, it becomes pos-
sible to parameterize the observations by Exp(ȳ, vx).

Prop. 1 shows the existence of the Karcher mean on a
geodesic curve when the data lies on the unique geodesic
curve, ⌦, between two points.

Proposition 1. Let Y = {y1, . . . , yN} be a subset of a
manifold M. Suppose that Y is in a sufficiently small open
cover B such that the exponential and logarithm maps are
bijections. Suppose that all y 2 Y are on a curve ⌦ that
is the unique geodesic curve between some y

i

and y
j

in Y .
Then there exists ȳ in ⌦ such that

P
y2Y

Log
ȳ

y = 0 (the
first order condition for Karcher mean).

Proof. Let v 2 T
yiM be the tangent vector v = Log

yi
y
j

.
Since all points of Y are a subset of a geodesic curve ⌦

between y
i

, and y
j

, for each y
k

2 Y , there exists an x
k

2
[0, 1] such that y

k

= Exp(y
i

, vx
k

). So, let x̄ =

1
N

P
N

k=1 xk

and ȳ = Exp(y
i

, vx̄). Then, ȳ satisfies
P

k

Log
ȳ

y
k

= 0

and it is in ⌦ since the arithmetic mean x̄ is in [0, 1].

With this result in hand, we next show that the data is
parameterizable in terms of V .

Proposition 2. If ȳ is the unique Karcher mean of Y ⇢ ⌦,
and it is obtained in B, then ȳ 2 ⌦. Further, for some



v 2 T
ȳ

M and each y, there exists x 2 R such that y =

Exp(ȳ, vx).

Proof. If ȳ is a unique Karcher mean of Y on M and it
is obtained in a sufficiently small neighborhood B ⇢ M
of data, then

P
N

k=1 Log
ȳ

y
k

= 0 holds by the first order
optimality condition of (3). Uniqueness of ȳ and Prop. 1
implies that ȳ is in ⌦. In a small neighborhood, by definition
of exponential map, there must exist an appropriate x.

5. Experiments

Here, we show the application of our models for statisti-
cal analysis of diffusion weighted imaging (DWI) data. On
synthetic simulations and real data from two distinct neu-
roimaging studies, the experiments evaluate whether (and
to what extent) general linear model (GLM) analysis on dif-
fusion weighted images in neuroimaging can benefit from
(a) the ability to deal with manifold valued data (b) allow-
ing multiple explanatory (including nuisance) variables.

5.1. Diffusion weighted imaging

DWI is a magnetic resonance (MR) imaging modality
that non-invasively maps and characterizes the microstruc-
tural properties and macroscopic organization of the white
matter regions in the brain [14]. This is achieved by sensi-
tizing the MR signal to the diffusion of the water molecules
(protons). Specifically, the diffusion of the protons causes
signal attenuation proportional to the apparent diffusion co-
efficient (D0) and the MR acquisition parameter known as
the b-value. The b-value represents properties like the mag-
nitude, duration and shape of the magnetic field gradients.
Diffusion tensor imaging (DTI). By measuring the atten-
uated signal in at least six different directions, one can es-
timate the diffusion pattern of the protons in the three or-
thogonal Cartesian directions using a symmetric positive
definite covariance matrix, the diffusion tensor. From the
diffusion tensor, we can obtain maps of the most commonly
used scalar measure of diffusion anisotropy at each voxel
called fractional anisotropy (FA) which is the normalized
standard deviation of the eigen values of the tensor in [0, 1].
Higher angular resolution diffusion imaging (HARDI).
When DWI data is acquired in significantly more (� 30)
number of diffusion directions and with large enough b-
values, the data can be modeled by a spherical Fourier
transform which yields the so-called orientation distribution
functions (ODFs) [25]. ODFs provide much higher resolu-
tion of diffusion directions compared to DTI. We can extract
scalar measures at each voxel such as generalized fractional
anisotropy (GFA) [25] from the ODFs which can then be
used in analysis.

5.2. Statistical analysis on DWI

Most neuroimaging studies acquire DWI data to perform
follow-up statistical analysis. Assume that the images are
are already registered to a common template. The scientific
question may be to identify which regions of the brain vary
across two groups of subjects: diseased and healthy. This
can be answered by performing a hypothesis test at each
voxel over the entire brain, and reporting the statistically
significant ones as different across groups. Separately, one
may want to identify regions which have a strong relation-
ship with disease status. Independent of the specific setting,
the classical analysis makes use a scalar-valued summary
measure at each voxel: FA for DTI or GFA for HARDI.
But this simplification, which makes the differential sig-
nal harder to detect, can be avoided. In DTI, the diffu-
sion tensors lie on a P (3) manifold (i.e., the quotient space
GL(3)/O(3)). In HARDI, the square root parameterization
of the ODF lies on a unit Hilbert sphere (S1) [3], which
in practice, is expressed as a l-th order spherical harmonics
(we use l = 4 implying the S14 setting). With the appropri-
ate statistical models in hand, we may regress the manifold
data directly against one or more independent variables.

5.3. Synthetic setting

We first artificially generate ODF and DTI data via a
generative multiple linear model. We then estimate using
our MGLM framework and the model in [6] (certain adjust-
ments to [6] were needed for the P (3) manifold). The re-
sults in Fig. 2 give strong evidence that when the character-
istics of the data depends on multiple independent variables
(e.g., disease and age), MGLM significantly outperforms
linear geodesic regression (SLGR) which regresses y 2 Y
against x 2 R. In Fig. 2, GR1 and GR2 refer to the esti-
mates from SLGR using variables x1 and x2 individually.
MGLM is able to estimate the true signal far more accu-
rately compared to either GR1 and GR2. Fig. 3 shows the
quantitative results (error) of regression using four indepen-
dent variables as a function of sample sizes. As expected,
we see that the fit improves significantly with MGLM.

5.4. Neuroimaging data evaluations

We now present experiments using DWI data from two
real neuroimaging studies. The first study investigates the
neuroplasticity effects of meditation practice (e.g., for emo-
tional well-being) on white matter. Meditators were trained
in Buddhist meditation techniques, which lead to emotion
regulation and attention control. An example scientific
question here may be: what is the relationship between
the number of years of meditation training on white mat-
ter when conditioned on age? Here, diffusion images in 48

non-collinear diffusion encoding directions were acquired,
which after a sequence of pre-processing steps, provide the
ODF representations for 23 long-term meditators (LTM)



Figure 2: MGLM and SLGR results using synthesized ODF and DTI. First two rows give the values for x1 and x

2 of the generative model.

Figure 3: Plots showing the effect of sample size on mean squared error (MSE) and R

2 for the MGLM as well as SLGR using the individual variables.
GR{1, · · · , 4} refer to the estimates from SLGR using the individual variables x{1,··· ,4} individually.

and 26 wait-list control (WLC) subjects. In the second
study, we investigate the effect of a genotype risk factor
(i.e., APOE4 positive or negative) in Alzheimer’s disease
(AD) on white matter integrity in the brain. A scientific
question here may be: what is the effect of age on white
matter when we control for genotype and gender? Here,
40 encoding directions were acquired and images were ob-
tained after pre-processing. The dataset covers 343 subjects
(123 with APOE4+ and 220 with APOE4-).

GLM results. We estimate the following model at each
voxel for both studies,

y = Exp(p, v1Group + v

2Gender + v

3Age), (13)

where y 2 P (3), Group 2 {APOE4+, APOE4-} for AD-
risk study and y 2 S14, Group 2 {LTM, WLC} for medita-
tion study. Due to limited space, we only summarize results
of ODF regression on the meditation data here (see results
from AD-risk study in the extended version of the paper).

As a baseline, we present regression results using FA as
the measure of interest. We note that regressing y against
one independent variable as in Fig. 3 is some possible base-
line but because it is restricted, it cannot fit the full model
in (13). Therefore, FA is a better baseline for comparisons.
The null hypothesis, H0, here is that the linear combina-
tion of ‘group’, ‘gender’ and ‘age’ has no effect on the y
measurement. Therefore, (13) serves as the “full” model
and the intercept alone serves as the nested model. Then,
an F -statistic can yield voxel-wise p-value maps when we
regress on FA. However, F -statistics are not applicable to
ODF regression. So, to obtain p-values, we use 20, 000 per-

mutations to characterize the Null distribution of the R2-
fit. Then, the unpermuted R2 is used to calculate the p-
values. Comparing the two p-value maps (FA vs. ODF)
shows which procedure is successfully picking up more dif-
ferential signal in a statistically sound manner.

Fig. 4 shows the p-value maps, for FA and ODF based
regression. We can observe the improved statistical sensi-
tivity using the MGLM framework. Although neuroscien-
tific interpretation of such results is outside the scope of this
paper, the results from MGLM are more plausible since the
statistically significant voxels follow white matter curvature
more closely. This is expected because ODFs provide much
higher resolution orientation information compared to DTI.
We must point out that for this dataset, due to small sam-
ple size, MGLM or GLM do not pass the false discovery
rate (FDR) threshold at q = 0.05. Nonetheless, the his-
tograms of p values in Fig. 5 show that our MGLM is su-
perior to univariate analysis on FA, even when the FA im-
ages are smoothed prior to testing (to increase normality).
In summary, the experiments provide clear evidence that a
full MGLM procedure on the actual manifold data (P (3)

or S14), offers significant and consistent improvements in
sensitivity for statistical analysis in neuroimaging.

6. Conclusions
This paper extends multivariate general linear model

(MGLM) to the manifold setting. Such an extension al-
lows regressing a manifold valued dependent variable y 2
M against multiple independent variables, x 2 X , a
property which extends the applicability of existing meth-



Figure 4: (Left) p-value maps obtained using GLM (top) and MGLM (bottom) frameworks. GLM was performed using smoothed FA images while
MGLM used ODF images. Voxels that satisfy p  0.05 are spatially more contiguous when performing MGLM. (Right) The thresholded p-value maps
showing that the spatial extents in the brain stem (axial-left, sagittal-middle) and cerebellar (coronal-right) white matter are reduced when using MGLM.

Figure 5: Distribution of p-values obtained using MGLM using ODFs
and GLM using both smoothed and unsmoothed FA images.

ods, and will allow practitioners to easily regress voxel
measurements in diffusion weighted imaging against clin-
ical variables, while controlling for nuisance parameters,
thereby obtaining results which better reflect hypotheses
under study. The experiments give strong evidence of the
improvements we may expect over traditional alternatives.
The paper is accompanied by an open source codebase,
which will enable easy deployment in practice.
Acknowledgments: This work was supported in part by NIH R01
AG040396; R01 AG037639; R01 AG027161; R01 AG021155; NSF CA-
REER award 1252725; NSF RI 1116584; Wisconsin Partnership Fund;
UW ADRC P50 AG033514; UW ICTR 1UL1RR025011; a VA Merit Re-
view Grant I01CX000165; NCCAM P01 AT004952-04 and the Waisman
Core grant P30 HD003352-45. Collins was supported by a CIBM fellow-
ship (NLM 5T15LM007359). The contents do not represent views of the
Dept. of Veterans Affairs or the United States Government.

References
[1] S.-I. Amari. Information geometry of the EM and EM algorithms for

neural networks. Neural networks, 8(9):1379–1408, 1995.
[2] G. Cheng and B. C. Vemuri. A novel dynamic system in the space of

SPD matrices with applications to appearance tracking. SIAM J. on
Imag. Sci., 6(1):592–615, 2013.

[3] J. Cheng, A. Ghosh, T. Jiang, et al. A Riemannian framework for
orientation distribution function computing. In MICCAI. 2009.

[4] B. C. Davis, P. T. Fletcher, E. Bullitt, and S. Joshi. Population shape
regression from random design data. IJCV, 90(2):255–266, 2010.

[5] M. P. Do Carmo. Riemannian geometry. Springer, 1992.

[6] J. Du, A. Goh, S. Kushnarev, and A. Qiu. Geodesic regression on
ODFs with its application to an aging study. NeuroImage, 13:1053–
8119, 2013.

[7] B. Efron. Defining the curvature of a statistical problem (with appli-
cations to second order efficiency). Ann. of Stat., 1975.

[8] P. T. Fletcher. Geodesic regression and the theory of least squares on
Riemannian manifolds. IJCV, pages 1–15, 2012.

[9] P. T. Fletcher, C. Lu, et al. Principal geodesic analysis for the study
of nonlinear statistics of shape. IEEE TMI, 23(8):995–1005, 2004.

[10] A. Goh. Estimation & processing of ODFs for HARDI. PhD thesis,
2010.

[11] A. Goh and R. Vidal. Unsupervised Riemannian clustering of PDFs.
In MLKDD, pages 377–392. 2008.

[12] T. Jaakkola, D. Haussler, et al. Exploiting generative models in dis-
criminative classifiers. NIPS, pages 487–493, 1999.

[13] S. Jayasumana et al. Kernel methods on the Riemannian manifold of
SPD matrices. In CVPR, pages 1–8, 2013.

[14] D. Jones, A. Simmons, et al. Non -invasive assessment of axonal
fiber connectivity in the human brain via DT-MRI. MRM, 42:37–41,
1999.

[15] H. Karcher. Riemannian center of mass and mollifier smoothing.
Comm. pure and applied math., 30(5):509–541, 1977.

[16] S. Kurtek, E. Klassen, Z. Ding, et al. A novel Riemannian framework
for shape analysis of 3D objects. In CVPR, 2010.

[17] J. D. Lafferty. The density manifold and configuration space quanti-
zation. Trans. American Math. Soc., 305(2):699–741, 1988.

[18] G. Lebanon. Riemannian geometry and statistical machine learning.
PhD thesis, 2005.

[19] J. M. Lee. Introduction to smooth manifolds. Springer, 2012.
[20] M. I. Miller. Computational anatomy: shape, growth, and atrophy

comparison via diffeomorphisms. NeuroImage, 23:S19–S33, 2004.
[21] C. Rao. Information and accuracy attainable in the estimation of

statistical parameters. Bull. Calcutta Math. Soc., 37(3):81–91, 1945.
[22] M. Rosenthal, W. Wu, E. Klassen, and A. Srivastava. Spherical re-

gression models using projective linear transformations. Journal of
American Statistical Association, 2013.

[23] X. Shi, M. Styner, et al. Intrinsic regression models for manifold-
valued data. pages 192–199, 2009.

[24] J. Sun, Y. Xie, et al. Dictionary learning on the manifold of square
root densities and application to reconstruction of diffusion propaga-
tor fields. In IPMI, pages 619–631, 2013.

[25] D. Tuch. Q-ball imaging. MRM, 52(6):1358–1372, 2004.
[26] L. Wasserman. All of statistics: a concise course in statistical infer-

ence. Springer, 2004.
[27] Z. Zhang, E. Klassen, A. Srivastava, et al. Blurring-invariant Rie-

mannian metrics for comparing signals and images. In ICCV, 2011.


