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There is significant interest, both from basic and applied research perspectives, in understanding how structural/
functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative
diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity in-
formation as a graph; then, one may perform statistical inference on various ‘global’ graph theoretic summary
measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in
particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls)
have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly
characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we
propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs
derived from neuroimaging data. At the high level, the method occupies the middle ground between the two
contrasts— that is, to analyze global graph summarymeasures (global) or connectivity strengths or correlations
for individual edges similar to voxel based analysis (local). Instead, our strategy derives aWavelet representation
at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide
extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct
AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a
tractography routine. We first present results showing significant connectivity differences between AD patients
and controls that were not evident using standard approaches. Later, we show results on populations that are not
diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying poten-
tially subtle differences between patient groups. We also give an easy to deploy open source implementation of
the algorithm for use within studies of connectivity in AD and other neurodegenerative disorders.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative condi-
tion characterized by severe loss of cognitive function and ability to
carry out activities of daily living (McKhann et al., 2011). Post-mortem
diagnosis of the disease is determined by regional density of beta-
amyloid plaques, and neurofibrillary tangles (Montine et al., 2012).
The disease has a long course and significant pathology can accumulate
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prior to development of clinically relevant cognitive impairment
(Perez-Nievas et al., 2013; Chételat et al., 2013).

While analyses of regional brain differences have come a long way
toward informing upon the preclinical stages of AD, it has become in-
creasingly clear that a better understanding of AD may not be possible
based on characterizing regional pathology alone. AD poses a challenge
given that the cognitive changes that define the disease do not manifest
until significant brain pathology has accumulated, and because cogni-
tive changes are poorly correlated with certain pathological features of
the disease such as amyloid accumulation (Jack et al., 2013). A promis-
ing initiative then, is to derive a better understanding of the disease by
characterizing changes in connectivity, taking into account the neural
networks that comprise several affected regions. Functional connectivi-
ty changes are well-documented in the disease (Wang et al., 2007;
Damoiseaux et al., 2012; Supekar et al., 2008), and promising studies
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suggest that connectivity changes can explain behavioral symptoms in
AD and may predict conversion to AD (Filippi and Agosta, 2011; Li
et al., 2002; Shao et al., 2012). Despite clear differences in connectivity
at the dementia stage of the disease, AD-related connectivity changes
in preclinical disease are not well-characterized.

In this study, we use a novel approach to probe connectivity differ-
ences in a cohort of late-middle-aged adults enriched for risk factors
for AD, including parental family history and APOE ϵ4 genotype. Our
approach builds upon prior studies using graph-based network analysis
to assess connectivity. Assumewe are given a population of connectivity
graphs, G= {Gi} where i ∈ {1,…,n} indexes the study participants. Each
graph Gi ¼ V i; Eif g corresponds to a single subject, the vertex set V i is
an anatomical starting point, and each edge in the set Ei provides
information about the relationship between these vertices. In this
study, connectivity was based on the strength of white matter tract
connections between template-defined anatomical locations, derived
from diffusion tensor imaging (DTI).

In order to improve sensitivity, our study employedmulti-resolution
analysis using wavelets. Multi-resolution analysis exploits the “local
context” of information to identify significant effects. That is, multi-
resolution analysis takes into account the fact that information can be
viewed at different resolutions (similar to zooming in and out of an
image), which provides a mechanism to capture the ‘context’ of
information when performing the downstream statistical analysis. To
see why such an approach may be useful, observe that roughly speak-
ing, the connectivity analysis literature may be broadly clustered in
two categories. The first set of approaches takes into account graph the-
oretic summaries of the entire graph (i.e., girth, diameter, modularity,
small-worldness, degree distribution, etc.). Alternatively, we may go
with more local approaches, i.e., a voxel based analysis (VBA) type
analysis applied to graph edges. To obtain disease specific behavior of
specific edge connections, we see a need for a framework that lies in
the continuum between the global and local methods. These require-
ments make wavelets a promising way to approach this problem. This
approach is based on the concept that a signal can be represented by a
set of localizedwavelet coefficients, while noise in the signal is uniform-
ly spread throughout thewavelet space (Ruttimann et al., 1998). Recent
advances in multi-resolution wavelet analysis have facilitated the
development of sensitive methods for image analysis, including the
recent work on wavelet based morphometry (Canales-Rodrguez et al.,
2013) in neuroimaging. The technique offers certain advantages in
that it improves sensitivity and specificity relative to voxel based analy-
sis, arguably due to the multi-resolution perspective of the data
(Canales-Rodrguez et al., 2013). Tract based spatial statistics (TBSS)
may also be considered a hybrid global/local approach (Smith et al.,
2006). While not specifically based on wavelets, the general intuition
of using a (structure dependent) parameterization of a set of related
measurements for improving statistical power has been used in other
disciplines such as statistical genomics. We provide a more detailed
discussion of this issue later in the Discussion Section and relate it to
the ideas developed here.

While multi-resolution wavelet analysis has been applied more
extensively in classical image processing where images are signals
sampled on a uniform lattice, connectivity graphs are not. The standard
constructions are no longer applicable for non-Euclidean spaces. Based
on recent work in harmonic analysis on spectral graph wavelets
(Hammond et al., 2011) and using methods developed by our group
to apply non-Euclidean wavelet based transformations to conduct
shape analysis (Kim et al., 2012, 2014), we show how to perform
multi-resolution wavelet analysis to connectivity graphs derived from
DTI data. Multi-resolution wavelet analysis is ideal for improving
sensitivity in both cases where sample sizes are low (often the case in
patient-based studies), and where differences (effect sizes) may be
small, often the case in studies of preclinical participants.

We evaluated preclinical alterations to structural connectivity in a
late-middle-aged group of adults from the Wisconsin Registry for
Alzheimer's Prevention (WRAP) study. In order to limit our analysis to
white matter tracts that change in known disease, we first applied our
approach to AD patients compared to age-matched controls from the
Wisconsin Alzheimers Disease Research Center (ADRC). The starting
point for tract connectivity was information derived from fractional
anisotropy (FA), a summary measure of directional water diffusion
that is highly sensitive tomicrostructural features including axonal den-
sity, diameter, myelination, and cytoskeletal features. We hypothesized
that non-demented adults with increased risk for AD due to parental
family history, would show differences in connectivity compared to
controls. Further, given that our proposed approach is new, we com-
pared it against standard methods of analysis, and hypothesized that
we would find improved sensitivity using multi-resolution analysis.

The main contributions of this work are:

a) We present an algorithm for performing multi-resolution statistical
analysis of a population of brain connectivity graphs to identify
group differences (at the level of edge weights).

b) We present exhaustive experimental results showing how the ma-
chinery is able to characterize connectivity loss in preclinical AD by
comparing asymptomatic individuals with and without risk factors
for AD. The alternative (analysis for each edge) either fails to detect
significant differences or yields p-values that areworse in comparison.

Of course, given the lack of ground truth data, one may suspect that
the differences are merely an artifact of the framework and not a real
disease (or risk) effect. We provide comparisons with prior findings
(Racine et al., 2014; Adluru et al., 2014) showing that ourfinal statistical
results are consistent with and interpretable relative to current results.

Method

The algorithmic heart of the framework relies on going from an indi-
vidual graph representing connectivity (i.e., weighted edges) to deriv-
ing a “descriptor” (a d-dimensional attribute) at each edge or node in
the graph. The downstream statistical analysis will then be performed
on a population of graphs with such multi-variate attributed edges, in
a manner identical to current approaches. The method is transparent
to the type of imaging modality used to derive connectivity; nonethe-
less, to make our presentation concrete, we will use connectivity
derived from diffusion tensor imaging (DTI) as a running example
throughout. Here, anatomical ROIs will denote the nodes of the graph
and the strength of tracts provide the edge weights (more details
shortly). Before we can apply a Wavelet transform on the graph, we
will move to its so-called line-graph representation. Later, the wavelet
coefficients will be derived which will enable hypothesis testing
directly. This section describes these steps in the logical sequence.

Line graphs of connectivity networks

In traditional graph theory, a graph G is defined by a vertex set V, an
edge setE and corresponding edgeweightsω. A dual representation of a
given graph G is called the line graph L(G), also known as an edge graph
or dual graph.We simply change the notion of nodes and edges; a node/
vertex vi with two incident edges eij and eik is now thought of as
connecting the two edges. After this transformation, these two edges
become two distinct vertices in L(G), and they are connected by a binary
edge (which corresponds to the common vertex vi in G).

Formally, a line graphL Gð Þ ¼ VL; EL;ωLf g is defined by a vertex setVL,
an edge set EL , and a corresponding edge weights ωL, which is derived
from the initial graph G. The vertex set VL and the edge set EL come
from the edge set E and the vertex set V in G respectively, where as
the edge weights ωL for the edges in EL are binary — the weight is 1 if
there exists a common vertex between two edges, and 0 otherwise
(Harary, 1969). It is easy to see that L(G) has NL vertices, same as the
number of edges in G. One benefit of this transformation is that the
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original edgeweightsω fromG can nowbe treated as a function defined
over the verticesVL in L(G). Consider the adjacencymatrix AL of L(G), of
size NL × NL, comprised of entries gij defined as,

gi j ¼ 1
0

if v ∈ V; v � ei; ej
otherwise

�
ð1Þ

where v is a vertex fromV and ei and ej are two different edges in E. This
means that when the ith edge ei and the jth edge ej are connected by a
common vertex v, we assign 1 to gij, otherwise zero. Since AL gives the
connectivity between edges through vertices, it is also known as the
edge-adjacency matrix.

For obvious reasons, after this transformation, vertices in G with a
single connected edge are neglected in L(G). When G is a connected
graph, there is a path from any one vertex to another, the line graph
transformationmapsG to a unique L(G) with a single exception: a trian-
gle shaped and ‘Y’ shaped graphs have similar line graphs. Moreover, if
there is no isolated vertices in G, then G and L(G) have equal number of
components. With this module, we transform a brain connectivity
network to its corresponding line graph which will be utilized shortly.

The advantage of using line graph transform is that we can adopt
edge weights in the original graph as a function defined on vertices in
the line graph. Conventional expansions (wavelets or otherwise) are
designed to analyze signals defined on the sampled vertices. Based on
our connectivity analysis application, we havemeasurements at objects
that relate such vertices, i.e., the edges. This makes the analysis/
formulation inconvenient. However, we can observe that the notion of
vertices or edges is artificial from the conceptual viewpoint, treating
the edges as vertices and vertices as edges makes the machinery easily
applicable yet does not affect the mathematical justification. Once the
line graph is obtained from a graph, the edge weights in the original
graph become a function that is defined on the vertices of the trans-
formed line graph. We can then apply multi-resolution analysis using
wavelets on the function defined on this line graph.

An illustrative example. Four toy examples of this transformation are
shown in Fig. 1. The top row shows the original graph G with four
vertices and the bottom row shows the corresponding transformed
line graphs L(G), which form a completely new non-Euclidean domain
for analysis.

Deriving a wavelet based descriptor at each node in L(G)

Wavelet are among the best knownmethods for processing a signal
at multiple resolutions, and are heavily used for analyzing texture,
Fig. 1. Examples of simple graphs and the corresponding line graphs. Top: the original graph
represents the edge weights. Bottom: Corresponding line graphs with yellow vertices and red
weight of the original graph).
shape, and other properties of the signal (Shen and Ip, 1999; Kim
et al., 2013b). The traditional formulation of wavelets is defined for reg-
ular Euclidean spaces (Lowe, 1999; Witkin, 1984; Lindeberg, 1993,
1994); what is less widely known is that recent developments show
how Wavelet theory is also applicable for non-Euclidean spaces such
as graphs, if an appropriate basis can be defined (Hammond et al.,
2011; Coifman and Maggioni, 2006). This enables one to perform band
pass filtering in the frequency domain of the graph which is the key in-
gredient in deriving a local “contextual” descriptor at each graph node.

Recall that the wavelet transform starts by defining a mother
wavelet ψs,a, which is a basis function with scale (s) and translation
(a) properties. The wavelet transform is an analogue of the Fourier
transformsuch that it decomposes a given functionwith bases functions
and corresponding coefficients, but using ψ instead of sin() function.
Wavelet bases ψ differ from Fourier bases in that they are compact
and localized fluctuating functions. These properties essentially
removes the ringing artifact (i.e., Gibbs phenomenon) common in
Fourier analysis (because of the use of Fourier bases of infinite support).
Formally, a wavelet transform is defined as the inner product of an
original signal f and the wavelets ψ as,

W f s; að Þ ¼ f ;ψs;a

D E
ð2Þ

yielding wavelet coefficients Wf(s,a).
Recent work in harmonics analysis enables defining the wavelet

transform even in the non-Euclidean setting (Hammond et al., 2011;
Coifman and Maggioni, 2006), which have been shown recently to be
useful for statistical shape analysis (Kim et al., 2012, 2013a, 2014). If
an implementation for non-Euclidean wavelet transformwas available,
we can collect thewavelet coefficientsWf(s,n) derived from thewavelet
transform of a given signal f, defined at each vertex n of a given graph at
multiple scales S = {s0, s1, …, s|S| − 1}. When Wf(s,n) defined at each
node of a line graph (without any soft/hard thresholding) is trans-
formed to the original graph domain, it forms theWavelet Connectivity
Signature (WaCS), a descriptor on each edge of the original graph as

WaCS f eð Þ ¼ W f s; eð Þjs ∈ S
� � ð3Þ

where e is a edge index from the original graph which corresponds to n,
the node index in the line graph domain. Note that e and n are equiva-
lent here. Since the line graph transformation maps the original
connectivity graph to the dual representation where each vertex has
an associated signal measurement, the wavelet coefficients (using a
s are shown with the vertices in red and the edges in yellow, and the thickness of edges
edges. The vertex size is proportional to the signal defined on each vertex (i.e. the edge
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wavelet transform with a specifically constructed basis) will provide a
multi-resolution view of the connectivity signal, as described next.

Multi-resolutional view of a network

If one considers that the actual measurement is a combination of the
true signal and a noise term, it is reasonable to assume that the true sig-
nal tends to change smoothly whereas noise varies rapidly (i.e., higher
frequency terms). In signal processing, we decompose the signal in
terms of its frequency components, and a low-pass filter helps identify
and discard the high frequency parts. Using Wavelets, which are really
a form of band-pass filters at multiple bandwidths, such smoothing
can be efficiently performed by removing the finer scale components,
where the finer scales corresponds to the high frequency components.
Furthermore, each wavelet provides a view of the signal at multiple
scales or resolutions. In particular, it is the inverse Wavelet transform,
which provides the multi-resolution view once the noisier frequencies
are taken care of. The inverse wavelet transform is defined as

f nð Þ ¼ 1
Cψ

Z ∞

0

Z ∞

−∞
W f s; að Þψs;a nð Þdads

s
ð4Þ

which reconstructs the original signal f using wavelet coefficients
and bases by summing over the entire scale s. The coarse scales will
reconstruct the original signal at low resolution, which is a smooth ap-
proximation. Incrementally adding finer scales, the whole frequency
spectrum contributes in the inverse transform, and finally recovers a
perfect reconstruction. Using this approach, we can precisely assess
what the signal looks like in a certain frequency band by selecting an
optimal scale that is focused on that band. What this discussion has
ignored so far is the precise specification of the actual Wavelet bases
that will enable calculating the transform and its inverse.

Since a graph is an irregularly structured domain where each vertex
has various number of neighbors with different connections, it is diffi-
cult to define the shape of the mother wavelet. The key idea in spectral
Fig. 2. A toy example of graph structure filtering. The top row shows the graph filtering steps
vertices, (3) reconstructing the filtered graph. The bottom row shows the corresponding adjac
graph wavelets (Hammond et al., 2011) to avoid this problem of defin-
ing wavelet transformation on graphs is to step into a dual domain
(i.e., frequency domain) and then define band-pass filters there. Such
a process still requires a set of orthonormal bases (e.g., Fourier bases)
on graphswhich enables us to transform a function to the dual domain.
From spectral graph theory, a graph Laplacian is a simple positive semi-
definite operator, and upon decomposition, gives the orthonormal
bases we need. We use bases derived from the Laplacian of the line
graph, L(G) and use the spectral graph wavelet transform described in
(Hammond et al., 2011) in the forward direction to perform filtering
on the graph, just as we would in traditional wavelet analysis. Then
the inverse line graph transformation to the original graph domain
yields the coefficients of interest.

This process allows deriving a multi-resolution view of the brain
connectivity graph. A simple example of the framework for the net-
work filtering (smoothing) is given in Fig. 2 on a graph with three
edges over four vertices. The top row of the figure shows the overall
information flow. The original graph G consists of four vertices and
three edges with corresponding edge weights (edge thickness) and
is transformed into a line graph L(G); the edge weights become the
measurements defined on each vertex of L(G). This signal is ‘filtered’
and then transformed back to the original space. In the final step, the
signal becomes the filtered edge weights while respecting the origi-
nal topology of G. In the bottom row, the corresponding adjacency
matrices are shown. The first matrix shows the connectivity of each
vertex in G and its edge weights. The second matrix shows the rela-
tion of each edge as L(G), and finally the third matrix shows the fil-
tered edge weights maintaining the original connections in the first
matrix.

Experiment setup and analysis pipeline

There are a few additional parameters that need to be defined to
fully specify our proposal. These parameters are mostly used for
defining wavelet based descriptor via the functionality offered in
: (1) construction of the line graph, (2) smoothing (filtering) the signal on the line graph
ency matrices for each step.



Table 1
Demographics of W-ADRC dataset.

Category AD(mean) AD(s.d.) CN(mean) CN(s.d.)

Number of subjects 44 – 58 –
Age 77.05 9.35 74.05 6.82
Sex (M/F) 31/13 – 33/25 –
Global CDR 0.74 0.37 0.06 0.16
MMSE 22.72 4.44 29.15 0.8543
RAVLT total raw score 20.52 8.07 43.76 8.49
RAVLT long delay raw score 0.66 1.46 8.41 3.12

CDR: Clinical Dementia Rating, MMSE: Mini Mental State Examination, RAVLT: Rey Audi-
tory Verbal Learning Test.

Table 2
Demographics of WRAP dataset.

Category FH+(mean) FH+(s.d.) FH−(mean) FH−(s.d.)

Number of subjects 93 – 250 –
Age 62.96 5.84 60.29 6.89
Sex (M/F) 64/29 – 166/84 –
MMSE 29 3.26 29.25 2.16
RAVLT total raw score 50.58 10.20 51.08 8.70
RAVLT long delay raw score 10.63 2.96 10.77 2.69

CDR: Clinical Dementia Rating, MMSE: Mini Mental State Examination, RAVLT: Rey Audi-
tory Verbal Learning Test.
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SGWT toolbox (Hammond et al., 2011). First, the mother wavelet
function is realized using a piecewise spline function defined as

g x;α;β; x1; x2ð Þ ¼
x−α
1 xα2
s xð Þ
xβ
2 x

−β
2

for x b x1
for x1 ≤ x ≤ x2
for x N x2

8<
: ð5Þ

where s(x) =−5+ 11x− 6x2 + x3, α= β=1, x1= 1 and x2 = 2. The
kernel function g() here is the default kernel function provided by the
SGWT toolbox. It is designed to be monic power of x near the origin,
and has power law decay far from the origin, therefore the mother
wavelet achieves localization in the limit of fine scales. Here, we define
6 scales (5 scales from the mother wavelet and 1 scale using the scaling
function) in the frequency domain,which are equally spaced in log scale
in the range of 0 and the largest eigenvalue (150 in our case) of the
graph Laplacian of the line graph of the original connectivity matrix.

For the experiment, a population of brain connectivity networkswas
given in the form of a 162 × 162 adjacency matrix and each element in
the adjacencymatrix was derived from the FA values between the ROIs,
resulting in a total of 13,041 brain connections for the analysis. First, line
graph transform was applied to each adjacency matrix to obtain a dual
representation for wavelet operations, and WaCS were obtained at
each vertex in the line graph domain. Then, WaCS were transformed
back to the original graph domain, resulting inmulti-resolution descrip-
tor at each graph edge. SinceWaCS is amultivariate descriptor, we used
a multivariate general linear model (MGLM) approach on WaCS to de-
rive p-values controlling for covariates (i.e., age and sex), then corrected
for false positives due to multiple comparisons. Those edges surviving
the multiple comparisons correction procedures are considered as
showing statistically significant group differences. As a baseline, we
used a typical statistical approach by applying a general linear model
(GLM) at each edge and correcting for multiple comparisons.

Throughout the analysis, we used scales of S={0, 1, 2, 3, 4, 5} for the
Wavelet transformation and used the set {0, 2, 4} for our multivariate
analysis. To derive a WaCS with only a few degrees of freedom, we
first used all scales together for the analysis, then checked by removing
scales one by one if it made the results worse (i.e., the number of
connections surviving multiple comparison correction). This helped
determine the three scales for our analysis. There is a potential multiple
testing issue here but it is fairlyminor compared to the number of nodes
and edges.

Dataset

For our analysis, we used two independent datasets obtained from
1) the Wisconsin Alzheimer's Disease Research Center (W-ADRC) and
2) the Wisconsin Registry for Alzheimer's Prevention (WRAP) study.
The W-ADRC dataset is comprised of subjects diagnosed with AD as
well as healthy controls (CN), while the WRAP dataset consists of
healthy individuals only, but categorized by the presence or absence
of certain AD risk factors. The demographics of the W-ADRC and the
WRAP dataset are given in Tables 1 and 2, and the group-wise and
sex-wise distributions of age from W-ADRC and WRAP dataset are
given in Fig. 3. More details of each dataset are given in the W-ADRC
dataset to WRAP dataset Sections. The University of Wisconsin Institu-
tional Review Board approved all study procedures and each participant
provided signed informed consent before participation.

W-ADRC dataset

The W-ADRC dataset included 102 subjects, labeled as AD (N= 44)
and CN (N = 58). Participants were diagnostically characterized in the
WADRC's multidisciplinary consensus conferences using standard
procedures for the diagnosis of AD (McKhann et al., 1984, 2011). The
demographics with respect to age are shown in Fig. 3(a).
WRAP dataset

In the WRAP dataset, 358 participants underwent brain imaging as
part of studies on memory, aging, and risk for AD. WRAP is a registry
of cognitively normal adults (at study entry) who are followed longitu-
dinally and comprise a cohort whose members either have a biological
parent who was diagnosed with AD (family history positive or FH+)
of late onset AD or no first degree family history of diagnosed with AD
(FH-) (Sager et al., 2005). A positive family history was defined as
having one or both parents. Absence of family history of ADwas verified
through detailed medical history surveys and phone interviewwith the
participants. Further, absence of family history of AD required that the
father survive to at least age 70 and the mother to age 75 without
incurring a formal diagnosis of dementia or exhibiting cognitive deteri-
oration. Dividing the dataset into two groups, 250 participants were
FH+ while 93 were FH−, and the demographics with respect to age
are shown in Fig. 3(b).

Image processing

DTI acquisition
Participants were imaged on two identical General Electric 3.0 Tesla

Discovery MR750 (Waukesha, WI) MRI systems fitted with an 8-
channel head coil and using parallel imaging (ASSET). All participants
in the W-ADRC dataset were imaged on one scanner, while all WRAP
participants were imaged on a second, identical scanner. For both co-
horts, DTI was acquired using a diffusion-weighted, spin-echo, single-
shot, echo planar imaging (EPI) pulse sequence in 40 encoding direc-
tions at b = 1300 s/mm2, with eight non-diffusion weighted (b = 0)
reference images. The cerebrum was covered using contiguous
2.5 mm thick axial slices, FOV = 24 cm, TR = 8000 ms, TE = 67.8 ms,
matrix = 96 × 96, resulting in isotropic 2.5 mm3 voxels. High order
shimming was performed prior to the DTI acquisition to optimize the
homogeneity of the magnetic field across the brain and to minimize
EPI distortions.

Image analysis
We employed a robust processing pipeline, based on methods in

(Zhang et al., 2007a) and reported in (Adluru et al., 2014). The process-
ing stream is depicted in Fig. 4. For both datasets, head motion and



Fig. 3.Group and sex-wise age distributions of subjects in the a) ADRC study andb)WRAP study. Since the distributionshavedifferentmeans and variances affecting the group analysis, we
include age and sex as covariates.
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image distortions (stretches and shears) due to eddy currents were
corrected with affine transformation in the FSL (FMRIB Software
Library) package (http://www.fmrib.ox.ac.uk/fsl/). Geometric distor-
tion from the inhomogeneous magnetic field applied was corrected
with the b = 0 field map, PRELUDE (phase region expanding labeler
for unwrapping discrete estimates) and FUGUE (FMRIB's utility for
geometrically unwrapping EPIs) from FSL, where field maps were
available. All images were visually inspected at this stage to ensure
that data with substantial artifact (loss of frontal or temporal lobe
signal) or geometric distortions are not included in the final sample.
Brain tissue was extracted using FSL's BET (Brain Extraction Tool).
Tensor fitting was performed using a nonlinear least squares method
in Camino (http://cmic.cs.ucl.ac.uk/camino/).

Spatial normalization
For each of the dataset, we first created population specific

templates using Diffusion Tensor Imaging ToolKit (DTI-TK, http://
www.nitrc.org/projects/dtitk/) which is an optimized DTI spatial
normalization and atlas construction tool (Zhang et al., 2006, 2007b)
Fig. 4. The pipeline for generating the template: After the data are acquired, the DWI images
extracted from the images so further processing is done only on the relevant regions of the im
then computed using the log-Euclidean mean approach. Finally, the bootstrap template is iter
by diffeomorphic registration.
that has been shown to perform superior registration compared to sca-
lar based registration methods (Adluru et al., 2012). The template is
constructed in an unbiasedway that captures both the average diffusion
features (e.g., diffusivities and anisotropy) and the anatomical shape
features (tract size) in the population (Zhang et al., 2007b). Individual
maps were then registered to the study-specific templates using rigid,
affine, and diffeomorphic alignments and finally interpolated to
2 × 2 × 2 mm2, voxel resolution before generating the network data.
Note that we do not use an overall template representing both datasets
since the node regions of interest provide us the correspondence across
subjects and datasets.

Tractography based network estimation
Tractography was performed on the template using the following

parameters for the track command implemented in Camino (Cook
et al., 2006): curvature threshold of 45°, curve interval (i.e., the length
of tract over which the curvature threshold is tested) of 10 mm. An
Euler tracking algorithm with nearest neighbor interpolation based on
probabilistic tensor deflection (TEND (Lazar et al., 2003)) was used to
are corrected for eddy current distortions and field inhomogeneity. Then, brain tissue is
ages. Tensors are estimated by non-linear optimization. An initial bootstrap template is
atively improved using three layers: rigid registration, then affine registration and lastly

http://www.fmrib.ox.ac.uk/fsl/
http://cmic.cs.ucl.ac.uk/camino/
http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/dtitk/


Fig. 5. Orthogonal views and 3D surface rendering of the IIT3 gray matter atlas overlayed on the template FA map.
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generate the tracks, and the step size for the Euler tracking was set to
0.1 mm. Bootstrapping (20 times) was performed (i.e., 20 tracts were
generated per seed voxel where the seeds were defined as the entire
brain mask.) The seed mask was obtained by binarizing the trace map
of the population template where the lower and upper thresholds
were 0.01 and 100 respectively. These thresholds are commonly used
in DTI-TK (Zhang et al., 2006). The stopping criteria did not involve
any thresholding for FA since the tracts were filtered to pass through
the ROIs from the IIT atlas. Note that the bootstrap tractography proce-
dure was used only to define the white matter region of interest which
connects two separate nodes. Once the regions were defined from the
tractography procedure, we took the mean FA values along the tracts,
which is stable and is not affected by the number of bootstrap replica-
tions. The number of replications (20) was chosen based on our initial
experiments to make sure we obtained reasonable white matter path-
ways between pairs of nodes and verified that changing the number
of replications has no effect on the white matter region extracted.
Fig. 6. Comparison of sorted p-values using FA (green) and WaCS (blue) and multiple compar
α ≤ 0.01 fromADRC study (AD vs. CN), b) p-values and FDR threshold at 0.05 fromWRAP study
as showing significant group differences.We can observe that themulti-resolution approach allo
approach.
Then, a DTI white matter atlas (Varentsova et al., 2014) was registered
to the population average FA map using Advanced Normalization
Tools (ANTS) (Klein et al., 2009). In total, 164 regions were initially
defined on a diffusion tensor template which has been made publicly
available (Varentsova et al., 2014). Once we warped the FA of that
template to the FA of the population template, we applied the warp to
the 164 regions to align them onto the population template using
nearest neighbor interpolation. In the end, two regions labeled
unknown were excluded. Full brain tractography was then used with
the conmat tool in Camino to obtain edge weights using the spatially
normalized FA and MD measures giving us two 162 × 162 symmetric
matrices per subject. A full index of the ROIs can be found in IIT3 atlas
documentation at http://www.nitrc.org/projects/iit2 (Fig. 5).

Statistical analysis
The core comparisons for the statistical analysis are between

(a) approach where statistical tests are performed on each edge weight
isons correction thresholds (red) in−log10 scale. a) p-Values and Bonferroni threshold at
(FH+ vs FH-). The connections with−log10(p)-value above the threshold are considered
ws for detection ofmore connections affected bydisease and risk compared to the baseline

http://www.nitrc.org/projects/iit2
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individually (using a univariate general linear model) and (b) approach
where statistical tests are performed on each edge using multi-scale
wavelet-based connectivity descriptor (using a multivariate general
linear model since the descriptors are vector valued). For both cases,
age and sex are used as covariates.

Results

Brain connectivity differences between AD and controls (W-ADRC study)

The baseline analysis using the FA weighted edges initially yielded 6
connectionswhereaswhenwe performed the test onWaCS, we detect-
ed 81 out of 13,041 brain connections spanning over 67 brain regions.
To keep comparisons fair, both these analyses were performed at the
Fig. 7. Significant group differences (controlled for age and sex) from AD vs. control connectio
correction are exhibited. The thickness of each connection represents the p-values in−log10 s
represents the direction of the difference (red: stronger in controls group, blue: stronger in A
upper-left view, Right column: upper-right view. Top row: result fromGLMon raw FA values an
thresholding at 0.01, Bottom row: result fromMGLMonWaCS andBonferroni thresholding at 0.
to significant connection.
Bonferroni correction threshold of α ≤ 0.01 controlling for age and gen-
der. When using the baseline approach, the p-values were computed
using a general linear model and a multivariate general linear model
was used to obtain the p-values when using Wavelets (because the
descriptor is multivariate). In both cases, age and gender were used as
nuisance covariates. We show in Fig. 6a) the p-value levels and
Bonferroni thresholds in − log10 scale, comparing our result using
Wavelets to the baseline outcome using raw FA values. We can observe
that there are more edges that survive the Bonferroni threshold when
using the proposed algorithm. Among the 81 connections identified
with our framework, 19 of them showed higher FA in the AD group
compared to control, while 62 connections showed a reverse phenom-
enon, i.e., higher FA values in the control group. The connections surviv-
ing the Bonferroni threshold are visualized in Fig. 7, the connections
n analysis using FA. Those connections with p-values that survive multiple comparisons
cale (thicker connection corresponds to lower p-value), and the color of each connection
D group). The region indices are given in Table 3. Left column: top view, Middle column:
d Bonferroni thresholding at 0.01, Middle row: result fromMGLMonWaCS and Bonferroni
001.We can observe from the top two rows that theWaCS approach yieldsmore sensitivity
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from baseline approach are shown in the top row and those from our
framework are presented in the middle row. The bottom row presents
more concise results with 22 significant connections with an even
more conservative Bonferroni correction at α ≤ 0.001 to highlight
some of the most significantly affected connections in the brain due to
AD. The labels of the regions involved in these connections are given
in Table 3 which are difficult to identify with the traditional analysis.

Of particular interest are ROIs withmore than 5 connections, among
the 81 significant connections, which can be considered as hub ROIs
(the choice of the value 5 to define “hubs” is arbitrary). These regions
included the left superior and transverse occipital sulcus, right hippo-
campus, left superior parietal lobule, right transverse occipital sulcus,
right precuneus, and right lingual component of the medial occipito-
temporal gyrus. These hub ROIs and corresponding connections are
shown in Fig. 8, and the number of connected ROIs are listed in Table 4.

Effects of family history risk on brain connectivity (WRAP study)

The differences in healthy controls caused by a disease risk factor are
expected to be subtle, making the task of finding group differences a
more challenging task than comparing subjects with symptomatic
disease to controls. We therefore selected connections of interest
(COIs) based on the AD versus control analysis described above (Brain
connectivity differences between AD and controls (W-ADRC study)
Section), and focus our analysis only on these pre-selected COIs. To
obtain a large set of initial COIs (to reduce false negatives), we selected
the connections in an AD vs. control comparison using our algorithm by
applying false discovery rate (FDR) threshold of 0.001. This resulted in a
total of 615 COIs out of 13,041 connectionswhichwere then used to test
for effects of family history (FH+ vs. FH-).

In Fig. 6b), the resulting p-values from the baseline and our method
are sorted and plotted in− log10 scale along with the FDR threshold at
0.05 in Fig. 6b), indicating that those p-values (blue) that are above the
FDR threshold (red) survive the multiple comparison correction,
whereas none from the baseline n) survives. Seven connections were
identified to show significant group differences between FH+ and
FH− groups, and those connections include 5 ROIs from the left hemi-
sphere (orbital gray matter, calcarine sulcus, lateral orbital sulcus,
postro ventral cingular gyrus and pericallosal sulcus) and 4 ROIs from
the right hemisphere (precuneus, superior parietal lobule, posterior
Sylvian fissure, calcarine sulcus, pericallosal sulcus).
Table 3
Connections (between ROIs at each row) showing group difference (Bonferroni corrected at
stronger FA value in AD/CN group respectively.

Index Region label (region index)

1 Left-Putamen (6)
2 ctx_lh_G_pariet_inf-Supramar (66)
3 Left-Hippocampus (8)
4 ctx_lh_G_oc-temp_lat-fusifor (56)
5 ctx_lh_G_temporal_inf (88)
6 ctx_lh_G_oc-temp_lat-fusifor (56)
7 Left-Hippocampus (8)
8 ctx_lh_G_occipital_sup (54)
9 ctx_lh_G_cuneus (36)
10 ctx_rh_G_insular_short (51)
11 ctx_rh_G_pariet_inf-Angular (65)
12 ctx_lh_G_cingul-Post-dorsal (32)
13 ctx_rh_G_and_S_subcentral (23)
14 ctx_rh_G_and_S_subcentral (23)
15 ctx_rh_G_temporal_middle (91)
16 ctx_rh_G_temporal_inf (89)
17 ctx_rh_S_oc_middle_and_Lunatus (129)
18 ctx_rh_S_oc_sup_and_transverse (131)
19 Right-Thalamus-Proper (3)
20 Right-Hippocampus (9)
21 Left-Hippocampus (8)
22 ctx_lh_S_pericallosal (146)

ctx: cortex, rh: right hemisphere, lh: left hemisphere, G: gyrus, S: sulcal, inf: inferior, sup: supe
These connections are shown in Fig. 9, and each ROI and the
connecting white matter pathways are visualized in Figs. 10 and 11,
and the regions involved in these connections are listed in Table 5. Of
note are two connections that were observed in both AD vs. control
analysis and the FH+ vs. FH− comparison, which are shown in the
second row of Fig. 10, the connection between left pericallosal (146)
and right pericallosal region (147) and the third row of Fig. 11, the
connection between right superior parietal lobule (69) and right
precuneus (75). The baseline approach, applying statistical test on the
raw FA data, did not reveal any significant connection differences
between FH+ and FH−.
Discussion

We presented an algorithm for assessing brain connectivity changes
in populations having Alzheimer's disease and in populations that are
not diagnosed with AD but have a family history positive risk of AD.
The technique, based on performing a Wavelet transform on non-
Euclidean spaces such as graphs provides a method for identifying po-
tentially subtle differences between patient groups, and is especially
suited to detecting difference due to early, preclinical neurodegenera-
tion. Our study demonstrated extensive connectivity differences
between AD patients and controls that were not evident using standard
approaches. In addition, we identified connectivity differences due to
increased risk for AD, differences that were not observed using a
standard approach.

It is widely accepted that AD has a long preclinical phase during
which the brain shows continued degeneration prior to the manifesta-
tion of cognitive symptoms. Substantial evidence suggests that the
earliest pathology in AD involves abnormal processing of β-amyloid
peptide, with the earliest evidence of the disease likely to manifest as
alterations to amyloid-related bio-markers (Jack et al., 2010). In
addition to amyloid pathology, AD neuropathology is characterized by
hyperphosphorylation of tau protein (the protein which stabilizes mi-
crotubules in neural cells), and extensive loss of synaptic connections.
Increasing evidence suggests that the cognitive dysfunction found in
AD may be due to disconnection between highly-interrelated brain re-
gions (Delbeuck et al., 2003; M. Brier et al., 2014). Of the characteristics
which define AD, neuronal loss and synaptic pathology show the
strongest relationship to dementia severity and cognitive deficits in
α ≤ 0.001) between AD and CN (controlled for age and sex). Direction −1/1 denotes to

Region label (region index) Direction

Left-Hippocampus (8) 1
ctx_lh_G_temporal_middle (90) 1
ctx_lh_S_oc_sup_and_transverse (90) 1
ctx_lh_S_oc-temp_lat (134) 1
ctx_lh_S_oc-temp_lat (134) 1
ctx_lh_S_oc-temp_med_and_Lingual (136) −1
ctx_lh_S_pericallosal (146) −1
ctx_rh_G_cuneus (37) 1
ctx_rh_G_occipital_sup (55) 1
ctx_rh_G_oc-temp_med-Parahip (61) 1
ctx_rh_G_parietal_sup (69) −1
ctx_rh_G_precuneus (75) 1
ctx_rh_G_temp_sup-Lateral (83) −1
ctx_rh_S_central (105) 1
ctx_rh_S_oc_sup_and_transverse (131) 1
ctx_rh_S_oc-temp_lat (135) 1
ctx_rh_S_oc-temp_lat (135) 1
ctx_rh_S_oc-temp_lat (135) 1
ctx_rh_S_oc-temp_med_and_Lingual (137) 1
ctx_rh_S_oc-temp_med_and_Lingual (137) 1
ctx_rh_S_pericallosal (147) −1
ctx_rh_S_pericallosal (147) 1

rior, oc: occipital, temp: temporal, lat: lateral, med: medial.



(a) (b)

(c)

Fig. 8.Visualization of hub ROIs and the brain connections connected to the hub ROIs. a) upper-left view, b) upper-right view, c) top view. The hub ROIs are depicted in color,which are left
occipital superior and transverse sulci (yellow), right hippocampus (green), left superior parietal lobule (light green), right occipital superior and transverse sulci (cyan), right precuneus
(cyan), right medial occipital temporal lingual sulci (magenta), and the connections listed in the legend are presented by straight lines in red and blue denoted as in Fig. 7.
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AD (Gómez-Isla et al., 1997; Lassmann et al., 1993; DeKosky and Scheff,
1990; Perez-Nievas et al., 2013).

Among healthy individuals, neural connections underlie normal in-
formation processing, and constrain neural activity. Using statistical
analysis to identify brain regions which show temporal coherence
during fMRI, researchers have identified brain regions that show high-
interconnectedness, for example, regions identified using resting-state
or task-free fMRI that form the so-called Default Mode Network. Brain
regions in this network include the medial prefrontal cortex, medial
temporal lobe, and posterior cingulate cortex/retropslenial cortex.
These brain regions are part of the episodic memory network
(Xu et al., 2009; Johnson et al., 2006), in addition to being active during
states of self-awareness (Craik et al., 1999; Gusnard et al., 2001;
Fingelkurts et al., 2012; Johnson et al., 2007) and self-monitoring
(Schmitz and Johnson, 2007). Interestingly, these brain regions are
also those which show some of the highest levels of amyloid burden
(Buckner et al., 2005) in AD. Perhaps not surprisingly then, several
studies have found that AD patients show altered defaultmode network



Table 4
Hub ROIs with more than 5 connections and the degree (total number of connections) of
each hub ROI.

Region index Region label Degree

130 ctx_lh_S_oc_sup_and_transverse 9
9 Right-Hippocampus 7
68 ctx_lh_G_parietal_sup 7
131 ctx_rh_S_oc_sup_and_transverse 7
75 ctx_rh_G_precuneus 5
137 ctx_rh_S_oc-temp_med_and_Lingual 5
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(DMN) activity which suggests a loss of connectivity. The finding of
altered networks is robust in patients with AD ormild cognitive impair-
ment (MCI) (Sorg et al., 2007; Greicius et al., 2004; Koch et al., 2014).
More recently, fMRI based connectivity differences have also been
observed in preclinical individuals at risk for the disease (Sperling
et al., 2009; M.R. Brier et al., 2014; Sheline et al., 2010).

In order to understand the structural basis for the connectivity loss
observed in AD, recent studies have incorporated DTI-based informa-
tion to determine the extent of loss of myelinated neuronal axons in
the disease. In healthy adults, Grecius et al have shown that DMN re-
gions are connected via major white matter tracts (Greicius et al.,
2009). While this in itself is not highly surprising, it may suggest that
even subtle damage to white matter tracts could potentially affect
network efficacy. In support of this, Hahn et al have shown that
disruptedwhitematter connectivity is associatedwith altered function-
al connectivity in MCI and AD (Hahn et al., 2013).

In the present study, we observed that AD affected no less than 81
white matter connections. The majority of the connectivity differences
were centered on key brain regions, some of which are in the DMN,
and that included portions of the lateral parietal lobe, precuneus,
occipito-temporal brain regions, and hippocampus. Our analysis also
revealed connectivity differences in tracts connecting to the occipital
cortex, which while not a region of high amyloid burden, does show
lower cerebral perfusion in MCI (Ding et al., 2014) and altered white
matter in MCI patients who convert to AD. In individuals at risk for
developing AD, we observed altered connectivity between similar
brain regions to those observed in the AD comparison, including
precuneus, lateral parietal lobe, and the gray matter of the pericallosal
sulcus (which separates the cingulate from the corpus callosum). As
with the AD comparison, individuals with family history of AD also
showed altered occipital connections. No connectivity differences
were detected using standard approaches.

Parental family history of AD is associated with altered connectivity
even in asymptomatic adults. Parental family history of AD has in recent
years been associated with several brain differences, including altered
glucose metabolism (Mosconi et al., 2009), differences in BOLD signal
Fig. 9. Significant group differences (controlled for age and sex) from FH+ vs. FH− connection
threshold at 0.05 are exhibited. Left: top view, Middle: upper-left view, Right: upper-right view
each connection represents the direction of the difference (red: higher in FH− group, blue: hi
during episodic memory (Xu et al., 2009), lower cerebral perfusion
(Okonkwo et al., 2014), increased amyloid deposition, and lower gray
matter volume (Mosconi et al., 2014), all in advance of any clinical
symptoms of AD dementia. Resting-state connectivity differences have
also been observed in individuals who harbor a combination of parental
family history risk and APOE∈4 carriage. Fleisher et al found differences
in connectivity between posterior cingulate/retrosplenial cortex and
several cortical regions in the DMN, including higher connectivity
with prefrontal and temporal regions in high risk adults, and lower
connectivitywith precuneus (Fleisher et al., 2009). In addition to altered
connectivity between several DMN regions observed in the AD versus
control comparison, precuneus emerged as a hub region in the current
study, and showed altered connectivity in the FH+ group. The findings
also align with prior work from our group, suggesting that whitematter
changes aremanifested in individualswith parental family history of AD
(Adluru et al., 2014; Bendlin et al., 2010), including altered cingulum
white matter, which carries fibers interconnecting precuneus (van den
Heuvel et al., 2008) with other DMN regions. While the mechanism
underlying increased vulnerability to AD based on family history is not
known, both genetic and shared environmental factors may play a
role (Huang et al., 2004).

It is worth noting that the direction of the connectivity differences
between groupswas not uniform.While themajority of the connections
in the AD vs. control comparison revealed higher FA in healthy individ-
uals, both the AD comparison, and the comparison by family history, re-
vealed some connections where FA was higher in the AD, or the at risk
group.While higher FA in a disease group is typically unexpected, accu-
mulating studies suggest that selective axonal loss may result in higher
FA in the disease group. A study comparing presymptomatic and symp-
tomatic carriers of the presenilin 1 mutation that results in familial AD,
has also found that patients in the asymptomatic disease stage exhibit
higher regional FA compared to healthy controls (Ryan et al., 2013).

Limitations

A key limitation in this particular application is the physiologic inter-
pretation of higher tract connectivity in AD and FH+. Whether this is
due to actual increased connection strength of the tract or is an
outgrowth of disease-related simplification / pruning / loss of crossing
fibers allowing the tract to be visualized better in the disease group.
Separate from thismotivating application,we believe that the algorithm
can be broadly applied to other types of brain connectivity analyses
where the core advantages of higher sensitivity, due to a multi-
resolutional perspective, should carry over with very fewmodifications
in an analysis pipeline. Despite the various benefits of the algorithm,
there are a few additional limitations that we must point out. First,
note that the multi-resolution strategy and our framework involve a
analysis using WaCS derived from FA. Those connections with p-values that survive FDR
. The thickness of each connection represents the p-values in−log10 scale, and the color of
gher in FH+ group). The region labels and indices are given in Table 5.



Fig. 10.Visualization of thewhitematter tracks of connections (in red)with larger FA values in FH− group. Left column: top view,middle column: left view, right column: right view. First
row: connection between left ventral posterior cingulate (yellow) and right pericallosal sulcus (green), Second row: connection between left pericallosal sulcus (yellow) and right
pericallosal sulcus (green), Third row: connection between right calcarine sulcus (yellow) and right pericallosal sulcus (green). The connection between left pericallosal sulcus (146)
and right pericallosal sulcus (147) in the second row is detected in both W-ADRC and WRAP studies.
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quadratic dependence of the number of connections on the number of
regions. For example, the number of edges generated in a line graph
from a node of degree d will be O(d2). Even for a fully connected
graph, with N number of nodes in the original graph, the number of
nodes in the line graph is upper bounded by the number of edges,
O(N2). In our experiments, each network yields a sparse graph (due to
a sparse adjacency matrix), so we did not encounter any scalability is-
sues. Independent of computational issues, when the number of edges
is large, the multiple comparisons correction will be fairly strict al-
though our framework does providemeans of detecting stronger differ-
ences that have a better chance of surviving the correction. A heuristic
solution here is to use the multi-resolutional view to come up with a
tessellation of the graph into smaller sub-graphs and perform the anal-
ysis on sub-graph summaries instead. The specifics will clearly depend
on the needs of the application and are not investigated here. Second,
as the number of regions p grows, so does the size of the matrix
whose decomposition we must obtain. For the sizes used in this work,
a Chebyshev polynomial approximation used in the spectral graph
wavelet toolbox (Hammond et al., 2011) to approximate the wavelet
transformation on graphs is sufficient. The paper will be accompanied
by an open source library that will offer this functionality out of the
box (http://pages.cs.wisc.edu/wonhwa/project/mbca_toolbox.html).
Finally, while the method can characterize signals that are scale
dependent, when toomany scales are defined over the eigenvalue spec-
trum, the true signalmay leak between different scales due to sampling.
Choosing special types of wavelet such as “Meyer”wavelet with a tight
frame (instead of an overcomplete basis) may help in such cases, but
was not needed in our experiments.

Is there a fundamental statistical reason why a multi-resolution view
should improve power? Notice that the goal of reducing Type 2 errors
is also common in other areas of science (outside neuroimaging) such
as statistical genomics. In particular, for analyzing differential gene
expression Dahl and Newton proposed a very interesting idea (and
accompanying statistical analysis) for improving power in microarray
data analysis (Dahl and Newton, 2007). The rationale in that work is
elegant yet simple. Consider a setting where the hypothesis tests are
being performed on individual genes. Now, if one could define ‘true’
clusters of genes in terms of shared parameter values, one could improve
the sensitivity of individual gene-level tests, because more data bearing on
the same parameter values are available. In other words, if two genes
were part of the same cluster, any degree of information sharing
between them directly improves the power for hypothesis tests
performed for each of them because in the most optimistic setting, we
have twice as many measurements. The analysis in their work makes
these arguments rigorous and develops ways of obtaining such a
clustering based on non-parametric Bayesian methods. In the current

http://pages.cs.wisc.edu/wonhwa/project/mbca_toolbox.html


Fig. 11. Visualization of the white matter tracks of connections (in blue) that have larger FA values in FH+ group. Left column: top view, Middle column: left view, Right column: right
view. First row: connection between left orbital gyrus (yellow) and left calcarine sulcus (green), Second row: connection between left calcarine sulcus (yellow) and left lateral orbital
sulcus (green), Third row: connection between right superior parietal lobule (yellow) and right precuneus (green), Fourth row: connection between right superior parietal lobule (yellow)
and right posterior lateral fissure (green). The connection between right superior parietal lobule (69) and right precuneus (75) in the third row is detected in both W-ADRC andWRAP
studies.

115W.H. Kim et al. / NeuroImage 118 (2015) 103–117
work, we do not explicitly ‘cluster’ the edges of the graph. Nonetheless,
interestingly, it is easy to think of a diffusion process on the graph
(achieved by wavelets) as, in fact, serving a similar goal as clustering.
By aggregating information at different/multiple resolutions (governed
by the scaling and dilation parameters of the wavelet expansion),
the framework described here offers improved sensitivity based
on the same principles. That is, part of the reason why our proposed
framework achieves better sensitivity is by considering multiple
hypothesis testing and diffusion/wavelets jointly.
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Table 5
Identified connections (between left and right column) and correspondingROIs showing groupdifferences between FH+and FH− (controlled for age and sex). Direction−1/1denotes to
higher FA value in FH+/FH− group respectively.

Index Region label (region index) Region label (region index) Direction p-Value

1 ctx_lh_G_orbital (62) ctx_lh_S_calcarine (102) −1 2.997e-5
2 ctx_lh_S_calcarine (102) ctx_lh_S_orbital_lateral (138) −1 1.218e-4
3 ctx_rh_G_parietal_sup (69) ctx_rh_G_precuneus (75) −1 1.889e-4
4 ctx_rh_G_parietal_sup (69) ctx_rh_Lat_Fis-post (97) −1 2.86e-4
5 ctx_lh_G_cingul-Post-ventral (34) ctx_rh_S_pericallosal (147) 1 4.024e-4
6 ctx_lh_S_pericallosal (146) ctx_rh_S_pericallosal (147) 1 4.396e-4
7 ctx_rh_S_calcarine (103) ctx_rh_S_pericallosal (147) 1 5.598e-4
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Appendix A. Group analysis on individual WaCS scales

Observe that occasionally, theremay exist a singlewavelet scale that
returns the best result. If one could find such a scale, it is possible that it
yields a better result than our multivariate analysis. To evaluate if this
was true in the datasetswe analyzed in thiswork,we performed further
an additional group analysis on each individualWaCS scales used in our
ADRC cohort (AD vs. CN), and compared them to the result using a
combination of scales from the procedure described in the Experiment
setup and analysis pipeline Section.

Fig. A.12 shows sorted p-values in − log10 scale from group analysis
using GLM at each individual scale of WaCS. We also plot sorted p-
values in−log10 scale from MGLM using multiple scales that were used
in our experiments. All tests controlled for age and sex.We see that mul-
tivariate analysis with the selected scales (scales 0, 2 and 4) made the
method much more sensitive than using any of the single scale alone.
Among those individual scales, scale 1 showed the best result, and scale
0, which is essentially smoothing with the scaling function, was the sec-
ond best. All of themwere sensitive enough to detect a few connections,
but as seen in Fig. A.12, the number of identified edges were fewer than
10, while their combination yields 81 connections.

Note that the number of total scales in the transform as well as the
number of selected scales for the analysis can be chosen by the user.
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Fig. A.12. Comparison of sorted p-values (in−log10 scale) from individual scales of WaCS
and combination of multiple scales of WaCS (bold pink). Red dashed line denotes to the
Bonferroni threshold at 0.01. It shows that our individual scales we can observe that
combining the multi-resolution approach allows for detection of more connections
affected by disease and risk compared to the baseline approach.
But having a great deal of flexibility in the scales has a few disadvantages.
First, each specific dataset may have an ideal number (and set of) scales
which yields the best results. But sensitivity to group-wise differences is
not monotonic as a function of the number of scales. Occasionally it
may improve but also negatively affect the results, depending on which
dataset we analyze. Trying out many different options, in the worst
case, may give statistically spurious results. On a broad set of
experiments on various datasets,we found that three scaleswere enough
to obtainmeaningful and robust results in general. Separately, choosing a
large number/set of scales clearly increases the degrees of freedom of the
descriptor. By itself, this is not a major issue. However, these descriptors
now live in a much higher dimensional space (though the number of
samples is fixed) where we are asking if the distributions across groups
are different. Because of the high dimensionality, the distribution is
sparse making it difficult to answer themain statistical question of inter-
est, i.e., of group-level differences. It is possible that by suitably increasing
the sample size, one can address this problem. Instead, our experiments
suggest that working with a small number of scales is simpler and has
fewer parameters to tune.
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