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ABSTRACT

The brain’s heritable topological differences in resting state
functional connectivity (rsfc) measured via resting state fMRI
(rsfMRI) provide important insight into brain function and
dysfunction. Current techniques investigating heritability are
limited by arbitrary rsfc threshold selection and reduction of
otherwise detailed brain topological properties into summary
measures. Topological Data Analysis (TDA) is a novel tool
for addressing these limitations by analyzing how the topo-
logical properties of data vary without arbitrary threshold and
summary metric construction. TDA applies a filtration to the
data and constructs a persistence diagram (PD). Therefore, the
purpose of this study was to compute PDs to determine TDA-
based heritability of static brain network topological features.
To this end, we calculated a robust heritability index map
across smoothed PDs derived from twin rsfMRI data.

Index Terms— topological data analysis, heat kernel,
twin study, heritability, transpositions, resting state fMRI

1. INTRODUCTION

The role of genetic factors on brain disease and behavior has
great implications for networks worthy of targeted interven-
tion and prognostic outcomes. Studies have elucidated brain
resting state functional connectivity (rsfc), measured via rest-
ing state fMRI (rsfMRI), and related resting state networks
as potential endophenotypes of disease and disorder [1]. One
criterion essential for defining an endophenotype is heritabil-
ity, which is calculated by leveraging monozygotic (MZ) and
dizygotic (DZ) twin pairs [1]. Given MZ twins and same-
sex DZ twins share 100% and 50% of genes, respectively,
Falconer’s Model decomposes the variance due to genetic
influence in a population based on these twin correlations,
and computes a heritability index (HI) [2].

However, current techniques investigating heritability
are limited by either 1) a variety of thresholding values and
summary metrics in graph theory analysis, or 2) performing
analyses directly on collapsed spatial regions of the brain
[3, 4, 5]. The choice of varying thresholds is arbitrary in
nature, and may lead to differences in reproducibility, and
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summary measures may not elucidate the full detailed picture
of the brain’s topological properties [3].

Notably, Topological Data Analysis (TDA) addresses
these concerns by applying a filtration to the data and con-
structing a persistence diagram (PD) [6]. One such TDA
filtration, a graph filtration, overcomes the inherent limitation
of arbitrary threshold values by applying a multi-threshold
transformation from singular graph nodes to features based
on all possible threshold values [5, 6]. Furthermore, TDA
is robust to noise, and has been applied to determine how
topological properties vary in brain studies [5, 6]. Therefore,
TDA provides the robust framework needed for more accu-
rate estimates of heritability than otherwise possible.

Nevertheless, PDs have proven difficult to compare across
subjects due to the lack of correspondence between features.
Such quantification is made possible by heat kernel smooth-
ing the PDs [7]. Moreover, by utilizing a novel adaptation
of permutations via transpositions in calculating twin corre-
lations, more robust HI map estimates may be derived from
these smoothed PDs when leveraging Falconer’s Model [8].

Therefore, the purpose of this study was to compute
TDA-based heritability of static brain network topological
features by utilizing the Human Connectome Project’s (HCP)
data [9]. The corresponding major contributions are thus: 1)
robust PD-based HI map measures calculated by leveraging
TDA properties, 2) overcoming the subject-level feature cor-
respondence problem across PDs by employing heat kernel
smoothing, and 3) more robust HI estimates from transposi-
tions within twin pairs than typical permutation tests allow.

2. METHODS & APPLICATION

2.1. Overview & Pipeline

The pipeline in Fig.1 was followed to obtain an HI map of
TDA-derived features. Each of the following steps will be ex-
plained in detail: a) acquisition and preprocessing of rsfMRI
signal, b) rsfc correlation matrices derived from rsfMRI sig-
nal, c) PDs produced via graph filtration on the rsfc data, d)
heat kernel smoothing applied to each PD to reduce topologi-
cal noise and match PDs across subjects, e) twin pair zygosity
based correlation matrices from the resultant smoothed PDs,
and f) an HI map derived from the PD correlation matrices.
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Fig. 1. Step-by-step pipeline (a-f) of the proposed method to determine HI via heat kernel smoothing on PDs based on rsfMRI
data. Fig. 2. HI map identifying the most heritable clusters (red) with associated C);z and C'pz maps (fixed range=[0,1]).
The Csz and C'pz maps were computed after a total of 1.2 million transpositions and 200 permutations.

2.2. Data Collection & Preprocessing

The HCP is well known for its collection of rsfMRI scans
in young healthy adults, including MZ and DZ twins [9].
The HCP’s rsfMRI data were acquired using a multiband
(72 slice, 8 band) gradient-echo echo-planar imaging (EPI)
sequence (simultaneous multi-slice, TR=720ms, TE=33.1m:s,
FOV=208x180mm (ROXPE), resolution=2.0mm isotropic,
flip angle=52 degrees) [9]. From these data, 130 MZ twin
pairs’ (56M, 29.243.3yrs) and 74 DZ twin pairs’ (30M,
29.143.5yrs) rsfMRI scans were leveraged. Gender, educa-
tion and age were all matched across twin groups (p > 0.15).

Two scans (runs) for each twin, acquired with right-to-
left and left-to-right phase encoding directions across the
first session, were selected. Each scan underwent both the
HCP minimal preprocessing pipeline as well as Independent-
component-analysis-based X-noisifier (ICA-FIX) [10, 11].
The minimal preprocessing pipeline notably removed spatial
distortions, realigned subject volumes to account for motion,
and registered the fMRI volumes to the anatomical MRI,
while ICA-FIX removed spatially specific structured noise
inclusive of cardiac, motion and respiratory effects [10, 11].

Each scan was then demeaned and normalized by the
standard deviation of each run to account for bias across runs.
Subsequently, to average brain regions based on functionally
and anatomically suitable criteria, both HCP’s Glasser Parcel-
lation, consisting of 360 parcels (regions), and the subcortical
FreeSurfer parcellation scheme, consisting of 19 parcels, for
a total of 379 parcels, were employed (subsequently shown
in 2.3) [12, 13]. The resulting two parcellated scans were
concatenated for every twin to increase the reliability of cal-
culated rsfc estimates (Fig.1a) [14].

2.3. Connectivity Matrices & Graph Filtration

Resting state functional connectivity correlation matrices
were subsequently computed across each parcellated time
series, p;(t) = z; for each twin as p;; = corr(p;(t), p; (1)),
for the aforementioned 379 (parcels) nodes ¢ and j (Fig.1b).

Each correlation matrix was transformed into the distance
metric w;; = /1 — p;; to satisfy the triangle inequality,
w;ij < wi, + wyj, and form the metric space with weighted
network X = (V,w;;), node set V' = {1,2...,n = 379} and
edge weight w = (w;;) [6]. An upward graph filtration was
then applied to each twin’s transformed data, and PDs were
constructed (Fig.1c) with binary network, X, = (V,w,),
where the binary edge weight w,. was determined by

we = (wij,e) = {1

0 otherwise.

if wij < €

PDs demonstrate the births and deaths of connected com-
ponents composed of individual nodes. The first occurrence
(birth) of the connected component to when it ceases to exist
(death) for a given filtration determines features found in PDs
[6]. For construction of the PDs, any identical edge weights
were offset by incrementally small random perturbations to
enable discrete sorting. All resulting PD values were inter-
polated onto a matrix G = (g,s) of rectangular grid size
(300,300) per twin with pixel coordinates r and s. This in-
terpolation was performed to further process the data.

2.4. Heat Kernel Smoothing

In order to smooth out topological noise and match PDs
across twins, heat kernel smoothing was applied (Fig.1d).
The resulting PD G(p) was defined on the upper triangle
above the line y = z [7]. Based on the eigensystem con-
taining the Laplace-Beltrami operator A defined on the upper
triangle, the expression Avy; = —A;1; was then solved
for the Laplace-Beltrami operator such that the eigenvalues
0= Xy < A1 < Ao < ... and corresponding eigenfunctions
Yo, Y1, P2, ... were ordered from smallest to largest. Subse-
quently, the Laplace-Beltrami eigenvalues A; and eigenfunc-
tions denoted as v;(p) and 1;(q) were used to construct the
heat kernel

o0

Ko(p,q) = > e 79;(p)ib;(q),

Jj=0
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where o denotes the kernel bandwidth. Therefore it follows
that the heat kernel smoothing operation applied on the pre-
defined PD is given by

o0

Gu(p) = Kolp) * G(p) = 3 ™7 B0 (1),

=0

where 3; = (G, 1;) represents Fourier coefficients estimated
using the least squares method. In this study, bandwidth o =
10 and expansion degree 300 were used to smooth each PD.

2.5. PD Correlation Matrices & HI Map

A twin-specific rapid permutation procedure via transposi-
tions was applied to the resultant smoothed PDs to calcu-
late twin correlations within zygosity, and to ultimately com-
pute heritability by using Falconer’s Formula [2, 8]. Given
the arbitrary ordering of twins in pairing twins, twin correla-
tions should be computed over as many possible permutations
within twins. This transposition method has constant run time
which allows for more permutations than the traditional per-
mutation technique [8].

2.5.1. Transpositions Within Zygosity Per Twin Pair

Consider the original twin data at a given pixel of the
smoothed PD per zygosity as

- Tm1

- Tm1 ’

- < T11y .-

12,y .-

where 7; = (1, 7:2)7 represents the i-th twin pair’s data

across MZ twins. Let x;, be the k-th row vector of x. Specif-

ically, by denoting % = (211, 2k, ..., Tk ), the MZ cor-

relations after a transposition can be calculated as follows.

Let 7; be the transposition within the i-th MZ twin pair such

that the k-th row transposition, 7;(xy) which exchanges data

across the ¢-th twin pair, can be used to calculate a resulting
permuted correlation among MZ twins:

7'1'(301) = (xll---xi—l,hxi%Ii—&-l,h ---$m1)
Ti(x2) = (T12.-Ti—1,2, Ti1, Tit1,2, - Tm2)

Then for the resulting k-th row transposition 7;(xy), let the
respective unnormalized mean across the row be denoted as

m
vizy) = Z Tk
=1

and the respective unnormalized row covariance follows as

m

w(ag, @) =Y (x — v(@k) /m) (@0 — v(w)/m)

r=1

Fig. 3. Convergence of select pixels of MZ and DZ correla-
tions values from three distinct clusters of highest HI (HI>1).
For every 6000 transpositions that occurred, one permutation
was intermixed.

Subsequently, v and w are updated over the transposition as

v(ti(zr)) = v(zr) + i — ik
w(ri(ar), 7s(w1)) = W@k, @) + 27 — 3,

+W(@p)v(®) — v(mi(zx))v(ri(@1)))/m

The MZ twin correlation after the transposition is then

p(ri(xy), i(x2)) = \/ w(ri(x1), 7 (22))

w(Ti(®1), (1) )w (T3 (T2), T3 (T2))

The same concept can be extended to DZ twin correlations
via the transposition 7;(yy) across DZ twin pair vector y;.

2.5.2. Computation of PD Correlation Matrices & HI Map

Therefore, the MZ and DZ correlation maps were respectively
computed from MZ and DZ twin pairs’ smoothed PDs as

Cnz = (90r?) = pim (7i(21), 7i(22))
Cpz = (957) = pim(7i(y1), Ti(y2))

where [ and m denote the PD pixel location for . and yy, the
k-th row twin vectors to undergo transpositions. Based on the
proposed method, 1.2 million MZ and DZ twin correlations
were computed from 200 iterations of one permutation fol-
lowed by 6000 sequential transpositions and averaged (with
undefined and infinite correlations set to zero). The average
outputs resulted in the stable MZ twin and DZ twin correla-
tion maps, Crz, and Cpz, respectively (Fig.le, Fig.2). Fi-
nally, the HI map at the matrix level was computed as

HI =2(Cmz —Cpz)

based on Falconer’s formula (Fig.1f) [2]. The robust HI esti-
mate consisted of 1.2 million transpositions and 200 permuta-
tions from the PD correlation matrices, Cjp;z and Cpz. The
resulting thresholded HI map (with values less than zero set to
zero and values greater than one set to one) is seen in Fig.2.
Convergence of several high C'j;z and corresponding Cpz
pixel values related to high HI clusters is shown in Fig.3.
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3. DISCUSSION

This study presented a pipeline to investigate HI on smoothed
PDs derived from a graph filtration across rsfc. The analysis
found certain clusters of smoothed connected components
heritable from the heat kernel smoothed PDs. The average
HI map of TDA-based smoothed features serves as a robust
estimate of the overlying heritability from 1.2 million trans-
positions.

While further analysis is required to validate rsfc heri-
tability at the brain network level, this study takes advantage
of TDA-based multi-scale properties which may not be in-
herent in other techniques. Additionally, it serves as one of
the few studies to investigate PDs across subjects, accounting
for the difficulty in analysis of subject-level variability of PD
features. Finally, it implements the transposition method of
permutations across twin data, which may be used in lieu of
intra-class correlation used in twin studies.

These findings may serve as further points of interest in
1) backprojection of the data for interpretation of heritable
brain networks, and 2) extension as a novel and robust means
for investigating heritability across dynamic rsfc. The overall
HI map may be backprojected to robustly determine the most
heritable rsfc patterns. In doing so, it may be possible to
identify TDA as providing potential endophenotypic infor-
mation for rsfMRI, and to extend this information to specific
brain networks. Additional parameter investigation of the
heat kernel bandwidth should be performed to determine any
impact on the result. This question is left as a future study.
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