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ABSTRACT

It is known that the brain network has small-world and scale-
free topology, but the network structures drastically change
depending on how to threshold a connectivity matrix. The ex-
act threshold criterion is difficult to determine. In this paper,
instead of trying to determine one fixed optimal threshold, we
propose to look at the topological changes of brain network
while increasing the threshold continuously . This process of
continuously changing threshold level and looking at the re-
sulting topological feature is related to the Rips filtration in
persistent homology. The sequence of topological features
obtained during the Rips filtration can be visualized and in-
terpreted using barcode.

As an illustration, we apply the Rips filtration to con-
struct the FDG-PET based functional brain networks out of
24 attention deficit hyperactivity disorder (ADHD) children,
26 autism spectrum disorder (ASD) children and 11 pediatric
control subjects. We visually show the topological evolution
of the brain networks using the barcode and perform statis-
tical inference on the group differences. This is the first pa-
per that deals with the persistence homology of the brain net-
works.

Index Terms— Brain Network, Thresholding, Persistent
Homology, Rips Complex, Barcode

1. INTRODUCTION

The functional and anatomical connectivity studies of human
brain have given us new understanding of the characteristics
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of brain, from microscale connectivity between single neu-
rons to macroscale connectivity between regions of interest
(ROI) in whole brain images. The connectivity matrix is an
algebraic representation of the weighted brain network, which
shows the relationship between all paired nodes. Since the
interpretation of weighted graphs is somewhat complicated,
we usually binarize the connectivity matrix into an adjacency
matrix by thresholding the connectivity matrix.

So far the global topological characteristics of brain net-
work, such as small-world network, has been mainly stud-
ied but recently, the local structure of the brain network, i.e.,
modularity, has started to draw attention [1]. However, most
graph theoretic measures such as small-worldness and mod-
ularity can quantify only one aspect of the brain network at
a fixed threshold. In this paper, we propose to look at the
topological changes of the brain network for every possible
thresholds, rather than trying to determine one fixed thresh-
old that may not be optimal. We mathematically demonstrate
that the changes of network structure when varying thresh-
old of connectivity matrix can be exactly observed by finding
the evolutionary history of the topological changes of Rips
complex. Thus, we can borrow various algebraic topology
tools such as barcodes and persistent diagrams for represent-
ing the change of topological features [2, 3]. Although the
idea of persistent homology has already been applied to med-
ical image analysis [4, 2], this is the first study modeling brain
networks using the persistent homology.

The proposedmethod is applied to constructing functional
brain networks with 97 regions of interest (ROIs) extracted
from FDG-PET data for 24 attention-deficit hyperactivity dis-
order (ADHD), 26 autism spectrum disorder (ASD) and 11
pediatric control (PedCon). Numerical experiments show that
their topological changes through varying threshold can be
quantified and visualized through persistent homology and
barcodes.
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Fig. 1. How brain network changes for different thresholding. The blue, red and green lines in lower panel represent the number
of edges, the number of connected components and small-worldness. The dot-solid, solid, dot-dashed and dashed lines in lower
panel are for random graph, ADHD, ASD and PedCon networks, respectively. By varying the threshold, the brain network is
changed to like random-like, small-world and clustered network. The colors in the clustered network indicates the clusters. The
darker color in the adjacency matrices represents highly connected nodes.

2. THRESHOLDING CONNECTIVITY

In the usual connectivity analysis framework, the adjacency
matrix is subsequently obtained by thresholding the correla-
tion matrix of measurements selected brain regions. Find-
ing the proper threshold is one of the most important issues
in brain network modeling. Determining the threshold can
be based on the statistical significance by the false discovery
rate (FDR) or by fixing the graph metrics such as number of
edges and nodes. However, these methods are fairly ad-hoc
and everyone seem to use different thresholding techniques.
This arbitrariness is demonstrated in Fig. 1, where the small-
worldness (green lines), the number of edges (blue lines) and
the number of connected components (red lines) substantially
change depending on the threshold. According to the thresh-
old, the resulting network graph has very different topological
structures: random, small-world and clustered networks [5].

3. PERSISTENT HOMOLOGY

Instead of trying to determine one proper threshold that may
not really proper, we decided to look at the over all change

of topological structure over whole range of thresholds using
persistent homology.

Consider a setF of point cloud data consisting of p points.
We connect two points i and j by an edge if the distance
d(i, j) is smaller than ε. The generated graph is a Rips com-
plex and denoted by Rips(F , ε). The topological informations
of Rips complex are encoded into an algebraic form, known
as a Betti number, where the 0-th Betti number β0 counts the
number of connected components in the graph. Fig. 2 (a)-(j)
show a toy example of constructed Rips complex with differ-
ent ε. The radius of circle around each dot is ε. If two dots are
in the same circle, they are connected (red lines).

Since it can be easily seen that Rips(F , t) ⊂ Rips(F , s)
whenever t ≤ s. Observing the topological transition by in-
creasing the filtration value ε is called as a Rips filtration and
is the main theme in persistent homology. During the filtra-
tion, the topological features such as the connected compo-
nents is created and disappeared. These can be visualized by
either using the persistent diagram or barcode. In the barcode,
the vertical axis represents the Betti number and the horizon-
tal axis corresponds to the filtration value. At ε = 0, there
is no connection and the number of connected components is
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Fig. 2. Example of Rips filtration varying the filtration value ε (upper panels) and its barcode (the lower panel). The black dot
represents the point cloud data which are connected (red line) when two nodes are in the same circle with radius ε. The lower
panel is a barcode where the horizontal and vertical axes represent the filtration value and the connected components.

simply the number of nodes. Since there are 10 dots in Fig. 2
(k), the barcode starts at the height 10. At ε = 21, two con-
nected components are merged into a single connected com-
ponent and one component disappears so the barcode stops at
ε = 21. In this way, all nodes are connected for sufficiently
large filtration value ε and, finally, only one single connected
component remains.

In the case of the brain network, we have p measurements
F =

{
f
1
, . . . ,fp

}
obtained from p regions, which serve as

point cloud to be connected. We assume that the measure-
ments are centered and normalized. Thus, the correlation co-
efficient between f i and f j satisfies corr(f i,f i) = f�

i f i =
1 for all i = 1, . . . , p, and the correlation matrix is simply
estimated by Σ = [ρij ] = [f�

i f j ].
The distance between two nodes i and j are defined not

in the space where the nodes are residing but in the space
where the measurements are defined. We denote this distance
as d(f i,f j) and link them if d(f i,f j) < ε. One possible
distance measure we can use is

d(f i,f j) = 1− corr(f i,f j).

To simplify the problem, we consider only positive correla-
tions and the Euclidean distances. The distance between f i

and f j gets smaller as the correlation increases between them.
We construct Rips(F , ε) by connecting all nodes with the cor-
relation larger than specific threshold ε. The constructed Rips

complex is then exactly identical to the network connected by
thresholding the correlation matrix. Therefore, the Rips filtra-
tion, a sequence of Rips complexes, is a more general frame-
work than the usual connectivity matrix threshold method.
The underlying topological change in the Rips filtration of
the brain network is then encoded in the barcode.

4. RESULTS

The data consists of 24 ADHD, 26 ASD and 11 PedCon.
PET images were preprocessed using Statistical Parametric
Mapping (SPM) package. After spatial normalization to the
standard template space, mean FDG uptake within 97 ROIs
were extracted ROIs using Statistical Probabilistic Anatomi-
cal Map-Korean version (SPAM-K) as shown in Fig. 3. The
values of FDG uptake were globally normalized to the indi-
vidual’s total gray matter mean count.

The barcodes of ADHD (red bars), ASD (green bars) and
PedCon (blue bars) networks with the 0-th Betti number are
shown in Fig. 4. Each bar is started and ended while each con-
nected component is appeared and disappeared during the fil-
tration. The bars of PedCon are merged faster into the last bar
left while bars of ADHD and ASD are survived for a longer
time. It might be due to common underconnectivity and local
overconnectivity in ASD [6] and ADHD [7].
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Fig. 3. Location of ROIs

The filtration values at which all connected components
are created are identical so we only checked whether the death
time of connected components are different between ADHD,
ASD and PedCon networks using 1000 permutation test. The
topological changes of connected components during filtra-
tion (threshold) are significantly different between ADHD-
ASD (p = 0.032), ADHD-PedCon (p = 0.030) and ASD-
PedCon (p = 0.037).

5. CONCLUSIONS

So far researchers are mainly concerned with the global
characteristics of brain network such as small-worldness
and scale-freeness. Such characteristics are one property of
complex brain network at a certain threshold and do not com-
pletely characterize the network. By tabulating the topologi-
cal changes for all possible threshold, we can obtain a more
complete characterization of the network. We have shown
that these characterization can be represented by barcodes in
persistent homology. We have applied the proposed method
in global characterization of ADHD, ASD and PedCon. The
differences between ADHD and ASD groups are found in
the local connectivity structures. However, since the alge-
braic topology approach is coordinate-free, we can’t compare
which parts of connected components are disappeared earlier
or not. Finding the topological information combined with
the location information of node is left as a future work.
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