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Abstract

In traditional brain network modeling, an weighted brain network is often thresh-
olded at a prespecified level to produce a binary graph for visualization and quan-
tification. However, if we threshold the brain network and obtain only the strongly
connected edges, we may lose additional information. Motivated by the persistent
homology and Rips filtration, we propose a new multiscale brain network mod-
eling framework called the network filtration, which represents the weighted net-
work into the finite number of nested binary networks over every possible thresh-
old. In the network filtration framework, we look at the changes of topological
invariants over different thresholds. Particularly, we are interested in the changes
of connected structures in the brain network, which can be represented in four
different but equivalent ways: barcode, single linkage dendrogram (SLD), single
linkage matrix (SLM) and minimum spanning tree (MST). Numerical experiments
show that the proposed method can discriminate the local and global differences
of the brain networks of 24 attention deficit hyperactivity disorder (ADHD), 26
autism spectrum disorder (ASD) and 11 pediatric control (PedCon) children ob-
tained through the FDG-PET data.

1 Introduction

In traditional brain network modeling, nodes are anatomically or functionally predefined regions of
interest (ROIs) and the edges are determined by various techniques such as correlation methods,
structural equation modeling or dynamic causal modeling [1, 2, 3, 4]. Correlation-based methods
are probably the most widely used approaches in the field. However, the problem of the correlation-
based approach is the arbitrariness of where to threshold correlations. For thresholding correlations,
few proposed methods such as the multiple comparisons correction and the sparsity control are avail-
able [5]. These thresholding methods assume that the strongly connected edges are only important;
however, it is recently suggested that the weakly connected edges may also have discriminative in-
formation between networks [6]. Moreover, graph theoretical measures such as small-worldness and
degree distribution drastically change depending on where correlations are thresholded [3].

Motivated by these results [6, 3], we propose a novel scalable weighted network modeling tech-
nique that does not threshold correlations at any fixed level. The proposed approach represents the
weighted network into the finite number of binary networks at every possible threshold via the fil-
tration on networks. Then we quantify the topological invariants like Betti numbers on the network
filtration. In this study, we particularly look at the changes of the connected components in the
brain network, which is related to single linkage dendrogram (SLD), single linkage matrix (SLM)
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Figure 1: Schematic diagram of proposed functional brain network filtration framework using PET.
(a) Using the predefined anatomical atlas, the brain is parcellated into ROIs. (b) Each center of
ROI serves as a node and (c) its FDG-PET measurement is used in assigning the edge weight. (d)
The edge weight matrix is decomposed into the finite number of binary matrices at every possible
filtration value. (e) Subsequently, we can find the connected networks (CNs) at each filtration value
as a topological invariant. If we put all connected network matrices together, (f) SLM is obtained.
The other representations of SLM are (g) barcode and (h) SLD. If we rearrange bars in the barcode
according to the node index, SLD is obtained.

and minimum spanning tree (MST) [7, 8, 9]. The proposed method is applied in discriminating
three different functional brain networks of attention-deficit hyperactivity disorder (ADHD), autism
spectrum disorder (ASD) and pediatric control (PedCon) subjects obtained through FDG-PET.

2 Methods

Brain network construction: The brain is parcellated into p ROIs by using the predefined anatom-
ical atlas (Fig. 1 (a)) [10, 8]. Each center of ROI serves as a node of the brain network in (b). At
node i, we have vector f i ∈ Rn corresponding to FDG-PET measurements of multiple subjects.
The weight matrix is denoted as W = [wij ]i,j=1,...,p, where

wij = 1− f!
i f j

is the edge weight between nodes in (c). When f i is normally distributed with mean 0 and the
variance 1/n, wij is one minus Pearson correlation. We can always translate and normalize f i to
satisfy these conditions. Then the weighted functional brain network forms a metric space X =
(V,W ), where V is the node set [8].

Network filtration: The concept of network filtration is motivated by the Rips filtration in persistent
homology [8]. Given the weighted network X = (V,W ), we perform the filtration on the edge
weights to obtain a sequence of binary networks. At the filtration value ε, the obtained binary
network is denoted as B(X, ε). Then, the binary network B(X, ε) is a subset of the Rips complex
R(X, ε) defined by a simplicial complex whose (p− 1)-simplices correspond to unordered p-tuples
of nodes that satisfy w ≤ ε in a pairwise fashion [11, 9]. If we choose the filtration values from the
ordered set of edge weights, {wmin = w1 < · · · < wq = wmax} , we have the nested sequence of
networks (Fig. 1 (d) and Fig. 2 (a)):

B(X,w1) ⊆ B(X,w2) ⊆ · · · ⊆ B(X,wq).

The sequence of such nested network will be called as the network filtration. The weighted graph
X = (V,W ) can be uniquely decomposed.
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Figure 2: Network discrimination using the network filtration on ADHD, ASD and PedCon datasets.
If we count the number of connected networks (CNs) during the filtration, the barcode β0 is obtained
(a). The barcode shows the difference of global connection between ADHD and other networks.
The local difference between networks can be compared using (b) MSTs and (c) SLMs. Although
MSTs have the identical number of edges, PedCon seems to have more edges due to the long-range
connections. From SLMs, we observe that ASD has looser connections in the left (L) frontal (F)
region and ADHD has looser connections in the fronto-parietal regions (F-P) compared to PedCon.

Representation of β0: We consider the network consisting of 0− and 1−complexes (nodes and
edges). Our main concern is the changes of the zeroth Betti number β0, which measures the number
of connected networks (CNs). The changes of β0 are visualized using the barcode in Fig. 1 (g).
The vertical and horizontal axes in the barcode represent the indices of CN and filtration values
respectively. The barcode of β0 is basically a decreasing function showing when CNs are merging
to form a bigger network component.

The number of CNs at the certain filtration value is same to the number of bars. If we rearrange the
bars according to the node index instead of CN index in the vertical axis, we obtain SLD as shown
in Fig. 1 (g,h). While the barcode of β0 shows the global changes of the connected structure of
network when the bars are ended, the SLD shows the local changes when the bars are merged. SLD
can be also represented in the algebraic form D called SLM (Fig. 1 (f)):

D = [dij ] = [min
Pij

max
l

wpl,pl+1 ],

where Pij = {i = p0, · · · , pk = j} is a path between two nodes i and j. The minimum is taken
over every possible path between i and j. dij is the single linkage distance between vi and vj . If
we collect the edges which make a change in β0 during the network filtration, the obtained edge set
generates MST in Fig. 2 (a,b). MST is a network with the minimum number of edges among all
possible networks which have the same SLD.

3 Results

Our FDG-PET data consists of 3 groups: 24 ADHD, 26 ASD and 11 PedCon subjects. PET images
were spatially normalized to the standard template space after converting to Analyze format and
smoothed with a Gaussian filter of 16 mm FWHM using Statistical Parametric Mapping (SPM 2,UK)
package [10]. The mean FDG uptake within 103 ROIs were extracted.

After filtration on the weighted network, its SLM, MST, SLD and barcodes β0 are obtained (Fig.
2). We calculated the difference between two connected structures of networks using the Gromov-
Hausdorff distance, which is defined as the maximum distance between two different SLMs [7, 8].
Using the permutation test, we found that the overall connected structures between ADHD and
PedCon and between ASD and PedCon are statistically different at the significance level .05. We
also found the local differences between groups at the level .05 as follows:
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• ASD showed looser connections between left inferior prefrontal regions in BA44 and BA45
and other brain regions. It might reflect the behavioral symptom in ASD [12].

• ADHD showed looser connections between sensorimotor region and various frontoparietal
regions including anterior cingulate compared to PedCon. It might reflect the deficits of
cognitive attentional control and sensori-motor integration [13].

• ASD and ADHD have commonly abnormal connected structure in cerebellum. Cerebellum
is one of the pathophysiological regions in ADHD and ASD.

4 Conclusions

In this paper, we proposed a new brain network modeling framework by introducing the concept
of network filtration, which is motivated by the Rips filtration in the persistent homology. From
the network filtration, we extracted the persistent topological features that tabulates the changes
in the number of CNs over the filtration. The topological features are related to MST. Hence, we
were able to combine two distinct concepts (Rips filtration and MST) into our network filtration
framework [7, 8]. As an application, we showed that SLD-based features can discriminate the
network differences and can be used as an topological biomaker for characterizing abnormal brain
networks.
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