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Abstract. Recent studies have found that the modular structure of
functional brain network is disrupted during the progress of Alzheimer’s
disease. The modular structure of network is the most basic topological
invariant in determining the shape of network in the view of algebraic
topology. In this study, we propose a new method to find another higher
order topological invariant, hole, based on persistent homology. If a hole
exists in the network, the information can be inefficiently delivered be-
tween regions. If we can localize the hole in the network, we can infer the
reason of network inefficiency. We propose to detect the persistent hole
using the spectrum of k−Laplacian, which is the generalized version of
graph Laplacian. The method is applied to the metabolic network based
on FDG-PET data of Alzheimer disease (AD), mild cognitive impair-
ment (MCI) and normal control (NC) groups. The experiments show
that the persistence of hole can be used as a biological marker of disease
progression to AD. The localized hole may help understand the brain
network abnormality in AD, revealing that the limbic-temporo-parietal
association regions disturb direct connections between other regions.

1 Introduction

The hierarchical modular structure of brain network has revealed the functional
integration of local specialized modules of brain regions [1]. The modular struc-
ture of network is the first basic topological invariant in determining the shape
of network in the view of algebraic topology [2]. The second basic topological in-
variant is holes. While the connected network structures of brain has been often
studied, holes never played any role in modeling brain networks [3,1]. However,
hole detection has found its usefulness in mobile sensor networks in determining
the obstacle-regions, which weaken the strength of cellphone signals [4,5]. In this
study, we take a novel hole detection method in finding such aberrant regions of
brain network in Alzheimer’s disease (AD).

If the brain network has the hole, it implies that the information can be
inefficiently transferred between regions due to indirect connections around the
hole. When abnormal brain regions associated with Alzheimer’s disease interrupt
direct connections between other regions, the hole can occur in the network. The
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larger the hole is, the more inefficient the information transfer around the hole
is. Hence, the size of hole can be a new measure for quantifying the degree of
abnormality of the brain network in AD [6]. To find holes and estimate their
size, we introduce the concept of persistent homology which assumes that true
topological invariants of the underlying network are more persistent over the
change of network parameters rather than noise. The more persistent hole is
over the change of network parameters, the more connections are needed to
cover the hole. Thus, the persistence of hole can be considered as its size. The
hole is usually identified by manipulating a matrix associated with the boundary
operator in the persistent homology [7]. This method directly selects the edge set
that forms a hole. However, this approach has an ambiguity in choosing edges
that depends on the order of nodes and edges. A superior new method, which
this paper is proposing, is to estimate holes by computing the eigenvectors with
zero eigenvalues of higher order Laplacians [5], called k-Laplacian. The method
represents the hole as a linear combination of edges of which coefficients are
proportional to their contributions to the hole.

The methodological contributions of this paper are: (1) We propose a new
method in detecting the local abnormality of network by identifying a hole within
the persistent homology framework. This is the first study of using the hole as a
brain network feature. (2) We introduce the concept of k−Laplacian in estimat-
ing the hole. This approach is a natural generalization of finding modular struc-
ture of brain network using the spectrum of graph Laplacian, i.e., 0−Laplacian.
(3) We demonstrate that the persistence of holes in the network can be used
to quantify the disease progression for the first time. The proposed hole detec-
tion method is applied to the FDG-PET based metabolic network of AD, mild
cognitive impairment (MCI) and normal control (NC) groups. Our finding sug-
gests that the persistence of hole may be increased as the disease progressed.
The resulting holes support prior studies that reported alterations and discon-
nections in temporal, parietal, frontal association areas and abnormal change in
the limbic region by AD [8,9]. In addition, the result also show that the medial
temporal lobe is affected by MCI [9].

2 Methods

2.1 k−Dimensional Holes

We will first define a hole in a network rigorously using the language of algebraic
topology. The nodes and edges of a network are the building blocks of topolog-
ical space defined on the network. The algebraic topology extends this concept
further to a simplicial complex, which considers higher order elements with more
than three nodes such as triangles. Given a node set vi ∈ V, an element with
(k + 1) nodes is called k−simplex σk = [v1, . . . , vk+1]. Node, edge and filled-in
triangle are then denoted as σ0, σ1 and σ2. Note that we call σ2 as the filled-in
triangle in the simplicial complex to distinguish the unfilled-in triangle consist-
ing of three nodes (σ0) in a network. The collection of simplexes is a simplicial
complex. The example of simplicial complex is shown in Fig. 1 (a).
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Fig. 1. (a) An example of simplicial complex. (b) A chain complex with chain, cycle
and boundary groups which are mapped by boundary operator. (c) The boundary
operators ∂1 and ∂2 of (a) in the matrix form. (d) A hole is the cycle whose boundary
becomes zero, but not the boundary of any higher order simplex. Hence, the boundary
of the filled-in triangle t1 is not a hole but a cycle.

The boundary of an edge (σ1) is two end nodes (σ0) of the edge. The boundary
of a filled-in triangle (σ2) is three edges (σ1) surrounding the triangle. If we
denote Ck as a chain complex, a set of σks, the relationship between σk and σk−1

is defined using the boundary operator ∂k : Ck → Ck−1. Fig. 1 (b) shows a chain
map by boundary operation. Given

{
σ1
k, · · · , σq

k

} ⊂ Ck and
{
σ1
k−1, · · · , σp

k−1

} ⊂
Ck−1, the linear transformation ∂k ∈ R

p×q from Ck to Ck−1 can be represented
in the matrix form:

[∂k]ij =

{
1 if σi

k−1 is positively oriented w.r.t. σj
k,

−1 if σi
k−1 is negatively oriented w.r.t. σj

k,
0 otherwise.

When σi
k−1 belongs to the ordered boundaries of σj

k, it is positively/negatively
oriented if its order is odd/even. The matrix form of boundary operators is
shown in Fig. 1 (c). ∂1 is an incidence matrix of binary network. So the boundary
operator is the generalization of the incident matrix in graph theory.

The kernel of ∂k is a set defined by ker∂k = {σk ∈ Ck|∂kσk = 0} . The kernel is
then a cycle which consists of σks starting and ending at the same σk−1.The image
of ∂k+1 is a set defined by img∂k+1 = {σk ∈ Ck|∂k+1σk+1 = σk, σk+1 ∈ Ck+1} .
Hence, the image of ∂k+1 is a boundary of σk+1, which is always a cycle, i.e.
img∂k+1 ⊂ ker∂k. But the cycle may not be a boundary of σk+1 as shown in Fig. 1
(d), where the square hole is not the boundary of any higher order simplex. The set
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of cycles of∂k, which are not the boundary of∂k+1 is called the kth homology group.
Hk = ker∂k ∩ (img∂k+1)

C , where (·)C denotes the complementary set of · [7]. The
element ofHk is the k−dimensional hole which is an important topological invari-
ant used in distinguishing different topological spaces. The cardinality ofHk is the
kth Betti number βk.For the sake of simplicity, wewill only consider 1-dimensional
hole as a hole in this study and left higher dimensional holes as a future study.

2.2 k−Laplacian

In the persistent homology, the k−dimensional hole Hk is usually identified by
manipulating the kernel of ∂k and image of ∂k+1 based on Gaussian elimination
[7]. If we apply this approach to the example in Fig. 1 (a), one of two possible
holes, e12−e13+e24−e35+e45 or −e23+e24−e35+e45, are estimated depending
on how to order edges in the column of ∂1 and row of ∂2. To avoid this ambiguity,
we introduce a new method based on k−Laplacian for estimating hole [10].

The k-Laplacian Lk is defined as Lk = ∂k+1∂
�
k+1 + ∂�

k ∂k [11]. Since ∂0 :

C0 → 0, L0 = ∂�
1 ∂1 and it is the graph Laplacian, which is widely used in

spectral clustering [12]. The kth homology group Hk is a kernel of k−Laplacian
Lk [10]. Hence the kth Betti number βk is the dimension of kernel space of Lk.
The eigenvectors with zero eigenvalues of Lk are spanned in the kernel space
of Lk. So, the k−dimensional hole in Hk is obtained by the eigenvectors with
zero eigenvalues of Lk. βk is obtained by the number of zero eigenvalues of Lk.

Fig. 2. Example of hole estimation based on eigen-
vector U1 and eigenvalue D1 of L1. The absolute
value of eigenvector with zero eigenvalue becomes
the edge weight in the hole H1.

Fig. 2 shows the example
of hole estimation using the
spectrum of L1. The simpli-
cial complex in Fig. 1 (a)
is used as an example. Af-
ter estimating L1 using ∂1
and ∂2 in Fig. 1 (c), we ob-
tain its eigenvectors U1 and
their corresponding eigenval-
ues D1. The eigenvector with
zero eigenvalue of L1 is the
hole H1. The resulting hole

can be represented in the linear combination of edges −0.17e12 + 0.17e13 +
0.35e23 − 0.52e24 + 0.52e35 − 0.52e45 as shown in Fig. 2. The absolute value
of coefficient is proportional to its contribution to the hole.

2.3 Persistent Holes

The metabolic brain connectivity forms the connectivity matrix W = [wij ], with
each of the elements wij encoding the distance between two brain regions vi and
vj . We introduce the Rips complex to estimate holes in brain network with
the connectivity matrix W . The Rips complex R(W , ε) is a simplicial complex
whose k-simplexes correspond to unordered (k + 1)-tuples of nodes which are
pairwise within distance ε [3]. If we confine k ≤ 1, the Rips complex is identical
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Fig. 3. (a) Rips filtration and (b) the persistence diagram of hole. Since the hole starts
and ends at 47 and 63, respectively, the point is plotted at (47,63) on (b).

to the binary network where two nodes are connected if their distance is less
than ε. Given the connectivity matrix W and thresholds ε1 < · · · < εq, the
Rips filtration decomposes the connectivity matrix into the sequence of Rips
complexes: R(W , ε1) ⊆ R(W , ε2) ⊆ · · · ⊆ R(W , εq). During the filtration,
the holes of Rips complexes are appearing and disappearing as shown in Fig.
3 (a). The persistent homology observes such a change of k−dimensional holes
and counts their Betti numbers over the change of threshold. The birth and
death times of hole εBirth and εDeath are encoded in the persistence diagram by
mapping to the point (εBirth, εDeath). The persistence diagram P is a set of the
points in the plane where the horizontal and vertical axes represent the birth
and death times of hole as shown in Fig. 3 (b). The life span of hole from birth
to death time is same as the distance from the point to the line εBirth = εDeath

in the persistence diagram. The closer to the line εBirth = εDeath, the shorter
the life span of corresponding hole is. The persistent homology assumes that a
persistent hole with long life span may be the signal that reflects the shape of
true topological space, but a hole with short life span may be a noise. Now, we
introduce the bottleneck distance to estimate the confidence band [0, c] which
distinguishes between signal and noise in Fig. 3 (b) [13].

The bottleneck distance W∞ measures the distance between two persistence
diagrams P1 and P2. It is defined as

W∞(P1,P2) = min
P

max
(x,y)∈P

d∞(x, y) for all x ∈ P1, y ∈ P2,

where d∞ is the L∞ distance and P is a one-to-one correspondence of the points
in P1 and P2. Suppose that the persistence diagrams of the underlying Rips
and random Rips complexes P and Prand are given. If we find a confidence in-
terval c such that P (W∞(P ,Prand) > c) ≤ α,

√
2c is same as the distance to

the line εBirth = εDeath which distinguishes between the signal and noise [13].
The random Rips complexes are generated from 5000 random permutations of
AD, MCI and NC datasets. For each permutation, the group labels are ran-
domly reassigned and the persistence diagram Prand and the bottleneck distance
T = W∞(P ,Prand) are recalculated. After 5000 permutations, we obtain 5000
bottleneck distances and sort them in descending order as T1 > T2 > · · · > T5000.
c = T250 is chosen to satisfy α = 0.05. Then, the hole located outside of the con-
fidence band [0, c] is denoted as the persistent hole. Here we expect that finding
persistent holes may help understand aberrant functional connectivity in AD.
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Fig. 4. The persistence diagram of (a) NC, (b) MCI and (c) AD. (d) The life span of
hole with respect to the disease progression. There is no significantly persistent hole in
NC. (e) Three persistent holes of MCI are mainly located in 1) right temporal, 2) bilat-
eral temporo-parietal, and 3) widespread fronto-temporo-parietal-occipital lobule. (f)
Two persistent holes of AD may occur because the limbic-temporo-parietal association
regions disturb direct connections between two large clustered regions.
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3 Results

Data Sets. We used FDG-PET imaging data sets: 45 NC (age: 68.9± 5.2), 24
MCI (67.8±9.0) and 22 AD (66.9±7.1) subjects. All 18F-FDG PET images were
spatially normalized and smoothed with 16 mm FWHM using the SPM package.
Then, FDG uptake values of 103 regions of interest (ROIs) were extracted by
weighted averaging. Each FDG uptake value was scaled by individual’s total
gray matter mean count. The connectivity matrix W = [wij ] ∈ R

103×103 was
estimated based on the diffusion distance on positive correlation between FDG
uptake values in two ROIs.

Group Differences. The persistence diagrams of NC, MCI and AD are shown
in Fig. 4 (a-c). The total number of holes is 17 for AD, 25 for MCI and 21
for NC. We examined group differences using the bottleneck distance between
persistence diagrams and permutation test. The persistence diagrams are signifi-
cantly different between NC and AD (p < 0.05), but tend to be different between
NC and MCI and between MCI and AD (p < 0.1).

Life Span of Holes. In Fig. 4 (d), the life span of holes is plotted with respect
to NC, MCI and AD. Using the permutation test, we found that the longest life
span of holes connected by red line is proportional to the disease progression
(p < 0.05). The resulting confidence band for persistence diagram is shown in
the shaded region in Fig. 4 (a-d). All holes in NC are not persistent. 2 and 3
holes are determined as the persistent for AD and MCI respectively.

Persistent Hole. 5 persistent holes are shown in Fig. 4 (e,f). Three per-
sistent holes of MCI are mainly located in right temporal, bilateral temporo-
parietal, and widespread fronto-temporo-parietal-occipital lobule. The reduced
metabolism in a network has been found in parietal, temporal and frontal lobes in
AD [8]. Especially, the hypometabolism of medial temporal lobe observed in the
first hole is known as a biomarker for the identification of MCI [9]. In the persis-
tent holes of AD, we found that two large clustered brain regions on the left and
right sides in (f) are not directly connected because the limbic-temporo-parietal
association regions disturb the connection between them. These association re-
gions are also known to be affected by AD [8,9].

4 Conclusions

In this study, we propose a new method for localizing aberrant regions by detect-
ing hole in the metabolic network based on persistent homology and 1-Laplacian.
We also introduce a new biomarker, life span of hole, to measure the degree of
abnormality of brain network. The proposed hole detection method is natural
extension of finding modular structure of network based on the spectrum of
graph Laplacian, 0−Laplacian. The resulting aberrant holes are mainly located
in parietal, temporal and frontal regions which is known to be related to AD and
MCI. In addition, our finding suggests that the brain network inefficiency in AD
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may be because the limbic-temporo-parietal association regions interrupt direct
connections between other brain regions. The proposed method can be further
applicable to other high order topologically invariant features using k-Laplacian,
which is left as a future study.
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