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ABSTRACT 

Structural brain networks can be constructed from the white matter fiber tractography of diffusion tensor imaging 
(DTI), and the structural characteristics of the brain can be analyzed from its networks. When brain networks are 
constructed by the parcellation method, their network structures change according to the parcellation scale selection and 
arbitrary thresholding. To overcome these issues, we modified the ε-neighbor construction method proposed by Chung et 
al. (2011). The purpose of this study was to construct brain networks for 14 control subjects and 16 subjects with autism 
using both the parcellation and the ε-neighbor construction method and to compare their topological properties between 
two methods. As the number of nodes increased, connectedness decreased in the parcellation method. However in the ε-
neighbor construction method, connectedness remained at a high level even with the rising number of nodes. In addition, 
statistical analysis for the parcellation method showed significant difference only in the path length. However, statistical 
analysis for the ε-neighbor construction method showed significant difference with the path length, the degree and the 
density. 

Keywords: Diffusion tensor imaging (DTI), Tractography, Topological Properties, Brain Network, Autism, ε-neighbor 
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1. INTRODUCTION 
Diffusion tensor imaging (DTI) which measures the diffusion of water molecules is sensitive to microstructure of brain 

tissue. Structural brain networks can be constructed from the white matter fiber tractography based on DTI, and the 
structural characteristics of the brain can be analyzed from its networks. Recently, attempts to model the human brain as 
a network of brain regions connected by anatomical tracts or functional associations have attracted considerable interest, 
since characterizing this structural and functional connectivity could impact studies of brain pathology and 
developmental disorders1. Comparisons of structural or functional network topological properties between subjects could 
reveal putative connectivity abnormalities in neurological and psychiatric disorders2.  

Many researchers have constructed brain networks using the parcellation method in white matter fiber tractography. 
This method is somewhat problematic in that network structure is influenced by changes in both the parcellation scale 
and the thresholding connectivity matrix. To overcome these problems, Chung et al. proposed a network graph modeling 
technique that does not involve a parcellation, called the ε-neighbor construction technique3. This method considers only 
two endpoints of each tract, designated as nodes on the graph, while tracts are designated as edges. In this study, we 
propose a modified version of the ε-neighbor construction method. We constructed brain networks for 14 control subjects 
and 16 subjects with autism using both the parcellation and the ε-neighbor construction method and then compared their 
topological properties including path length, degree, density between control and autism subjects. 

2. METHODS 

2.1 Data acquisition and pre-processing 
We analyzed DTI data from a total of 30 subjects, matched for age, handedness, IQ, and head size. Diffusion-weighted 

images were obtained not only for a single (b = 0) reference image, but also for 12 non-collinear diffusion-encoding 
directions, with a diffusion weighting factor of b = 1000 s/mm2. Distortion associated with eddy currents and head 
motion for each dataset was adjusted using automated image registration (AIR)4. Distortions from field inhomogeneities 
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The resultant 3D graph can be parameterized by transforming the existing graph to an adjacency matrix. The 
adjacency matrix A = (adjij) of a graph is constructed by adding new edges to the existing edge set. If nodes i and j are 
connected, adjij = 1. Otherwise, adjij = 0. The ε-neighbor construction results are shown in Fig. 3 (a), (b). 

 
Figure 3. The results of the network construction. (a) The network with each vertex colored according to its degrees using 
the ε-neighbor construction method. (b) An adjacency matrix for the network (a). (c) The network with each vertex colored 
according to its degrees using the parcellation method. (d) An adjacency matrix for the network (c). 

 

2.3 Parcellation method 

To construct a network graph using the parcellation method, we used the automated anatomical labeling (AAL) 
template. Let G(n) = {x1, x2, …, xn}, n = 1, 2, …, 116, denote the volume encapsulated by the n-th node composing an 
116-node parcellation. Let S and E be the endpoints of each tract. An adjacency matrix A = (adjij) was defined by the 
following equation: 

.+= )}({)}({)}({)}({∑
≠

∈∈∈∈
ji

iGEjGSjGEiGSij IIIIadj
                              

(2) 

where if the endpoint S lies at the region G(i), 1=)}({ iGSI ∈
 
otherwise 0=)}({ iGSI ∈ 9. As a result, we can construct 

adjacency matrix that defines the undirected weighted graph. In this study, however, we considered only undirected 
binary graph. Therefore, we binarized the weighted graph simply by assigning one to all non-zero entries for each 
adjacency matrix. The results of the network construction using the parcellation method are shown in Fig. 3 (c), (d). 

2.4 Topological properties 

Complex networks recently have received attention from a range of disciplines, including social science, information 
science, biology, and physics10. Complex network analysis is an approach that characterizes datasets and describes the 
properties of complex systems by quantifying the topologies of their associated networks. Complex network analysis is 
based on graph theory, a mathematical approach for studying networks2. In this study, we used topological properties 
such as path length, degree, and density to analyze the whole brain networks. 

In the brain, functional integration is the ability to combine information from multiple brain regions. Measure of this 
integration is often based on the concept of a path. Paths represent potential routes of information flow and functional 
proximity between pairs of brain regions in the structural brain networks. The absence of paths between any pair of brain 
regions can cause no functional interactions2, 10. Undirected binary path length is equal to the number of edges in the path. 
The shortest path length between vi and vj, with vi, vj∈V and graph G = (V, E) with vertex set V, edge set E is d(vi, vj); 
the average path length or characteristic path length is defined by the following equation:  

                                       .),(
)1-(

1
=

,
∑
ji

jiG vvd
nn

l                                    (3) 

In this definition, n refers to the number of vertices in graph G. Short paths enable effective interactions or rapid transfer 
of information between regions which are essential for functional integration of aspects of information flow11. 
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the node degree is easily calculated as the sum of the corresponding rows or columns in the adjacency matrix. The value 
of degree reflects importance of node in the network. The node with high degree is interacting, structurally or 
functionally, with many other nodes in the network2.  

The network density is a measure of the number of connections compared to the maximum possible number of 
connections between vertices and indicates how well the network is connected12. The network density is calculated as 
follows:  

                                         .
)1-|(|||

||2
=

VV
E

D                                        (4) 

where E = edge set and V = vertex set. The maximum possible number of edges is 0.5|V|(|V| - 1). In this case, the 
maximum density is 1 and the minimum density is 0. The maximum density means that all possible connections exist. In 
biological networks, however, the small number of connections compared to the all possible connections occurs12. Low 
densities describe sparse graphs, whereas high densities describe dense graphs. However, the appropriate criteria to use 
for discriminating between sparse and dense graphs are ambiguous13. 
2.5 Comparison between the parcellation and the ε-neighbor construction method 

To compare topological properties between the parcellation and the ε-neighbor construction method, we constructed 
two network graphs for each subject. To construct two network graphs for each subject, some image processings are 
needed such as template normalization, culling tracts and matching the number of nodes. First, we performed non-linear 
image registration between FA and AAL templates using Ezys14. In the second, a tract was considered usable if it 
intersected one of the parcellation in AAL template. Culling is a necessary step to eliminate spurious tracts that do not 
interconnect the parcellation method9. After culling tracts, we used same usable tracts in both methods. Finally, to 
observe how topological properties of the network change according to the number of nodes in the both methods, we 
parcellated additional subregions within AAL parcellations using the algorithm proposed by Zalesky9 in the parcellation 
method and adjusted ε-radius in the ε-neighbor construction method. Figure 4 shows the results of additional parcellation 
within AAL parcellations. Then, we compared the topological properties of the network with 116, 221, 330, 456 and 561 
nodes, respectively. We performed two sample t-tests, assuming equal variance for the statistical analysis. Null 
hypothesis for the topological properties is that there is no difference between autism and controls. 

 
Figure 4. The results of additional parcellation. (a) 116 nodes (b) 221 nodes (c) 330 nodes (d) 456 nodes (e) 561 
nodes. 

 
3. RESULTS 

A major problem of the parcellation method is that their network structures change according to the parcellation scale. 
On the other hand, our method does not change the network structures much. We analyzed the network structures in 
terms of connectedness, which is measured as a function of the parcellation scale and the ε-radius. The results of the 
connectedness are summarized in Table 1. 

The degrees in the graph are defined as the numbers of connections with other nodes or the numbers of edges. Thus, 
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Table 1. Connectedness comparison between the parcellation and the ε-neighbor construction method 

 
Parcellation method ε-neighbor construction method 

Mean SD Mean SD 

116 nodes 0.9049 0.0281 1 0 

221 nodes 0.9348 0.0233 1 0 

330 nodes 0.8888 0.0309 0.9967 0.0036 

456 nodes 0.8176 0.0336 0.9943 0.0043 

561 nodes 0.7884 0.0299 0.9938 0.0040 

 

As the number of nodes is increased, connectedness is decreased in the parcellation method. However, connectedness 
is almost one in the ε-neighbor construction method. Therefore, we chose the parcellation scales which have less than  
10% of the disconnectedness (i.e., 116 nodes and 221 nodes). Then, we compared the topological properties for the 
chosen two scales. The results of the comparisons of topological properties are summarized in Table 2. Statistical 
analysis for the parcellation method showed significant difference with the only path length. However, statistical analysis 
for the ε-neighbor construction method showed significant difference with the path length, the degree and the density. 

 Table 2. Comparison of topological properties between control and autism subjects for the parcellation and the ε-neighbor 
construction method. 

 

Parcellation method ε-neighbor construction method 

Control Autism Group 
comparison Control Autism Group 

comparison 

Mean SD Mean SD Significance Mean SD Mean SD Significance 

116 
nodes 

Path 
length 2.119 0.041 2.079 0.035 0.005* 2.402 0.060 2.356 0.058 0.020* 

Degree 14.202 0.948 14.252 1.002 0.445 12.193 0.594 12.845 0.857 0.014* 

Density 0.124 0.008 0.124 0.008 0.445 0.106 0.008 0.112 0.008 0.026* 

221 
nodes 

Path 
length 2.651 0.050 2.609 0.065 0.004* 2.856 0.042 2.806 0.041 0.003* 

Degree 11.775 0.543 12.031 0.529 0.117 10.431 0.252 10.768 0.652 0.053 

Density 0.054 0.003 0.055 0.002 0.117 0.046 0.002 0.049 0.004 0.019* 

*Significant at the 0.05 level 

4. CONCLUSIONS 
The parcellation method is used in many brain network studies9. However, this method is somewhat problematic in 

that network structures are influenced by changes in both the parcellation scale and the thresholding connectivity matrix. 
To overcome these problems, we proposed the novel brain network construction method. We first compared 
connectedness between the parcellation and our proposed method. 

In the parcellation method, when the parcellation scale becomes finer, the volume of parcellation is reduced. Thus, the 
probability of tracts intersecting each parcellation is decreased and a parcellation that is not intersected by any tracts is 
increased9. Because some nodes remain disconnected from largest connected component, connectedness is decreased in 
the parcellation method when the parcellation scale becomes finer. The clustering coefficient and path length of 
disconnected nodes from largest connected component generally were set as zero and infinity respectively, and these 
nodes were excluded while computing average clustering coefficient and path length to avoid computational interference. 
Due to the increase of the disconnected nodes, topological properties such as clustering coefficient, average path length, 
and small-worldness do not meaningfully characterize network structures15.  
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However, in our proposed method connectedness is not changed by the change of scale (ε-radius). Thus, for any ε-
radius, we can meaningfully characterize network structures. To compare the parcellation method with our proposed 
method, we used the topological properties for the chosen two scales. As shown in Table 2, our results demonstrated that 
the statistical significance of our proposed method is better than those of the conventional parcellation method. 
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