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Abstract. Persistent homology has been applied to brain network anal-
ysis for finding the shape of brain networks across multiple thresholds. In
the persistent homology, the shape of networks is often quantified by the
sequence of k-dimensional holes and Betti numbers. The Betti numbers
are more widely used than holes themselves in topological brain network
analysis. However, the holes show the local connectivity of networks,
and they can be very informative features in analysis. In this study, we
propose a new method of measuring network differences based on the dis-
similarity measure of harmonic holes (HHs). The HHs, which represent
the substructure of brain networks, are extracted by the Hodge Laplacian
of brain networks. We also find the most contributed HHs to the net-
work difference based on the HH dissimilarity. We applied our proposed
method to clustering the networks of 4 groups, normal control (NC), sta-
ble and progressive mild cognitive impairment (sMCI and pMCI), and
Alzheimer’s disease (AD). The results showed that the clustering perfor-
mance of the proposed method was better than that of network distances
based on only the global change of topology.

Keywords: Topological data analysis · Brain network · Alzheimer’s dis-
ease · Harmonic holes · Hodge Laplacian

1 Introduction

Persistent homology has been widely applied to brain network analysis for finding
the topology of networks in multiscale [5,16,23,25] Since a ‘simplicial complex’ is
not a familiar term in brain network analysis, we refer to it as a ‘network’ that is
generally used. It quantifies the shape of brain networks by using k-dimensional
holes and their cardinality, the kth Betti number [2,10]. A persistence diagram
(PD) summarizes the change of Betti numbers during the filtration of networks
by recording when and how holes appear and disappear during the filtration. The
persistent homology also provides distances for distinguishing networks such as
the bottleneck distance and kernel-based distances [10,20]. Such distances mostly
find network differences in their PDs. The Betti numbers and PDs are more often
used than holes themselves in network applications.
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Holes represent the submodule of brain networks. 0-dimensional holes, i.e.,
connected components, modules or clusters have been widely studied for finding
functional or structural submodules in a brain [6,16,27]. On the other hand, 1-
dimensional holes have been rarely used for brain network analysis [7,17,15,19,24,26].
Most studies in brain network analysis do not use 2- and higher order simplexes
in networks since networks. Therefore, all cycles in a network are considered as
1-dimensional holes. There are few network measures based on cycles in brain
network analysis such as cycle probability and the change of the number of cy-
cles during graph filtration [7,26]. These measures helped to compare the global
property of networks but could not find the discriminative substructures of net-
works.

If higher order simplexes are introduced in a network, the number of 1-
dimensional holes is significantly reduced due to the removal of filled-in triangles.
The previous brain network studies that studied higher order simplexes mostly
found holes based on Zomorodian and Carlsson’s (ZC) algorithm [19,24,28]. The
ZC algorithm is very fast in linear-time, however, it finds the sparse representa-
tion of a hole that identifies only one path around the hole and ignores the other
paths. This introduces an ambiguity in hole identification in practice. A better
approach would be to localize the holes by the eigen-decomposition of Hodge
Laplacian of a network. Such holes are called as the harmonic holes (HHs). The
HH shows all possible paths around the hole with their weights [12,13,18]. The
HHs have been applied to brain network analysis for localizing persistent holes
[15,17]. The 1-dimensional holes in a network with higher order simplexes have
at least one indirect path between every two nodes. Thus, the holes are related
to the abnormality or inefficiency of the network. The previous studies found the
persistent holes with long duration in a network as abnormal holes, and localized
them by harmonic holes. Therefore, the duration of holes was used instead of
HHs in network discrimination.

In this paper, we propose a new measure for estimating network dissimilar-
ity based on persistent HHs (HH dissimilarity). The proposed HH dissimilarity
is motivated from the bottleneck distance. The bottleneck distance first esti-
mates the correspondence between holes between networks that are represented
by points in PDs, and then chooses the maximum among all the distances be-
tween the estimated pairs of holes [8]. The HH dissimilarity also estimates the
correspondence between HHs of two different networks that are represented by
real-valued eigenvectors, and takes the averaged dissimilarities of the estimated
pairs of HHs. The advantage of HH dissimilarity is not only to measure the
network differences but also to quantify a HH’s contributions to the network
differences. We will call the amount of HH’s of contribution the citation of HH.
This allows us to identify the discriminative subnetworks of networks.

The proposed method is applied to metabolic brain networks obtained from
the FDG PET dataset in Alzheimer’s disease neuroimaging initiative (ADNI).
The dataset consists of 4 groups: normal controls (NC), stable and progressive
mild cognitive impairment (sMCI and pMCI), and Alzheimer’s disease (AD).
We generated 2400 networks by bootstrap, and compared the clustering perfor-
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mance with the existing network distances such as L2-norm (L2) of the differ-
ence between distance matrices, Gromov-Hausdorff (GH) distance, Kolmogorov-
Smirnov (KS) distance of connected components and cycles (KS0 and KS1), and
bottleneck distance of holes [3,6,7,8,16]. The results showed that the HH dissimi-
larity had the superior clustering performance than the other distance measures,
and comparing local connectivities could be more helpful to discriminating the
progression of Alzheimer’s disease.

2 Materials and methods

2.1 Data sets, preprocessing, and the construction of metabolic
connectivity

We used FDG PET images in ADNI data set (http://adni.loni.usc.edu). The
ADNI FDG-PET dataset consists of 4 groups: 181 NC, 91 sMCI, 77 pMCI, and
135 AD (Age: 73.7± 5.9, range 56.1 ∼ 90.1). FDG PET images were measured
30 to 60 minutes and they were averaged over all frames. The voxel size in the
images were standardized in 1.5 × 1.5 × 1.5 mm resolution. The images were
spatiallly normalizd to Montreal Neurological Institute (MNI) space using sta-
tistical parametric mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). The details of
data sets and preprocessing are given in [4]. The whole brain image was parcel-
lated into 94 regions of interest (ROIs) based on automated anatomical labeling
(AAL2) excluding cerebellum [21]. The 94 ROIs served as network nodes and
their measurements were obtained by averaging FDG uptakes in the ROI. The
averaged FDG uptake was globally normalized by the sum of 94 averaged FDG
uptakes. The distance between 2 nodes was estimated by the diffusion distance
on positive correlation between the measurements. The diffusion distance con-
siders an average distance of all direct and indirect paths between 2 nodes via
random walks [9]. The diffusion distance is known to be more robust to noise
and outliers.

2.2 Harmonic holes

Simplicial complex The algebraic topology extends the concept of a graph
further to a simplicial complex. Suppose that a non-empty node set V is given.
If the set of all subsets of V is denoted by 2V , an abstract simplicial complex K
is a subset of 2V such that (1) ∅ ∈ K, and (2) if σ ∈ K and τ ∈ σ, τ ∈ K [10,11].
Each σ ∈ K is called a simplex. A i-dimensional simplex is an element with
i+ 1 nodes, v1, ..., vi+1 ∈ V , denoted by σi = [v1, ..., vi+1]. The dimension of K,
denoted as dimK, is the maximum dimension of a simplex σ ∈ K. The collection
of σi’s in K is denoted by Ki (−1 ≤ i ≤ dimK). The number of simplices in
Ki is denoted as |Ki|. The i-skeleton of K is defined as K(i) = K0 ∪ · · · ∪ Ki

(0 ≤ i ≤ dimK). Thus, a graph with nodes and edges is 1-skeleton K(1). In
this paper, we will only consider 2-skeleton K(2) of a simplicial complex that
includes nodes, edges, and triangles. For convenience, we call it a (simplicial)
network [14].



4 H. Lee et al.

Incidence matrix We denote a |Ki|-dimensional integer space as Z|Ki|. Given
a finite simplicial complex K, a chain complex Ci is defined in Z|Ki| [10,28]. The
boundary operator ∂i and coboundary operator ∂>i for i = 1, . . . , N (N > 0) are
functions such that ∂i : Ci → Ci−1 and ∂>i : Ci−1 → Ci, respectively. We define
∂i = 0 for i < 1 or i > N .

Given σi = [v1, ..., vi+1] ∈ Ci, the boundary of σi is algebraically defined as

∂iσi =

i+1∑
j=1

(−1)j−1[v1, . . . , vj−1, vj+1, . . . , vi+1].

If the sign of σi−1 in ∂iσi is positive/negative, it is called positively/negatively
oriented with respect to σi. We denote the positive/negative orientation by
σi−1 ∈+/− σi. The boundary of the boundary is always zero, i.e., ∂i−1∂i = 0.

If the simplicial complex K has

Ki =
{
σ1
i , · · · , σ

|Ki|
i

}
, Ki−1 =

{
σ1
i−1, · · · , σ

|Ki−1|
i−1

}
,

the boundary operator ∂i is represented by the ith incidence matrix M i ∈
Z|Ki−1|×|Ki| such that [12,13,18]

[M i]mn =


1 if σmi−1 ∈+ σnj ,
−1 if σmi−1 ∈− σnj ,

0 otherwise.
(1)

The coboundary operator ∂>i is represented by M>
i . σni in Ki is represented by

a vector in Z|Ki| in which the nth entry is 1 and the rest is 0. The linear combi-
nation of σi’s can be represented by the linear combination of |Ki|-dimensional
vectors.

Combinatorial Hodge Laplacian A combinatorial Hodge Laplacian Li :
Ci → Ci is defined by

Li = Lupi + Ldowni = M i+1M
>
i+1 + M>

i M i, (2)

where Lupi ∈ Z|Ki|×|Ki| and Ldowni ∈ Z|Ki|×|Ki| are composite functions ∂i+1∂
>
i+1 :

Ci → Ci+1 → Ci and ∂>i ∂i : Ci → Ci−1 → Ci, respectively [12,13,14,18] The
kernel and image of Li are denoted by kerLi and imgLi, respectively. The kerLi
is called harmonic classes Hi [14].

The ith homology and cohomology groups of C = {Ci, ∂i} are defined re-
spectively by

H̃i(C) = ker∂i/img∂i+1 and H̃i(C) = ker∂>i+1/img∂>i .

Theorem 1 (Combinatorial Hodge Theory [12,14,18]). Suppose that a
chain complex {Ci(X;R), ∂i} is given for i = 0, . . . , N , and Ci(X;R) is consid-
ered as an R-vector space. Harmonic classes Hi obtained by the combinatorial
Laplacian Li are congruent to the ith homology and cohomology groups, H̃i and
H̃i of C, i.e.,

Hi
∼= H̃i(C;R) ∼= H̃i(C;R).



HH dissimilarity 5

Proof. rankHi = rankCi−rankLi = rankCi−(rank∂i+rank∂i+1) = rankH̃i(C;R).

The harmonic classes Hi = kerLk is also called a harmonic space [14]. The
homology group H̃i in persistent homology can be replaced with a harmonic
space Hi, and the rank of Hi is the same as the ith Betti number. We call a hole
in Hi a harmonic hole (HH), and a hole in H̃i estimated by Smith normal form
a binary hole [28].

Given a simplicial network with p nodes, q edges, and r filled-in triangles,
we estimate L1 ∈ Zq×q in (2), and Hi =

{
x ∈ Rq×1|L1x = 0

}
. The eigenvector

of L1 with zero eigenvalue, x ∈ Rq×1 represents a HH. The entry of x can
be positive or negative depending on the orientation of edges in the hole. The
absolute value of the entry of x represents the weight of the corresponding edge
in the hole. Since x and −x have zero eigenvalue, they represent the same hole,
and ‖ x ‖= 1.

Computing persistent HHs In this study, we have the distances between
pairs of nodes in a brain network. Given a set of nodes and their distances,
Rips complex with threshold ε is the clique complex induced by a set of edges
with their distances less than ε. Rips filtration is the nested sequence of Rips
complexes obtained by increasing threshold ε. To compute persistent holes over
threshold, we perform Rips filtration on brain network nodes [2,10].

Zomorodian and Carlsson developed an efficient algorithm for computing
persistent holes based on the Smith normal form [28]. It is an incremental algo-
rithm that updates the range and null spaces of incidence matrices during Rips
filtration. The representation of a persistent binary hole is changed by adding
simplexes during Rips filtration. The ZC algorithm chose the youngest binary
hole at the birth of the persistent hole. The ZC algorithm is fast in practically
linear-time, however, the obtained binary hole shows only one path around the
hole and the other paths are ignored. On the other hand, a HH shows all possible
paths around the persistent hole, and represents the contribution of a path to
the generation of the hole by edge weights in the path. Thus, the HH is better
in localizing a persistent hole than a binary hole when we want to extract local
connectivity in a brain network. However, there is no algorithm for estimating
persistent HHs during the filtration in literature.

In this study, we will estimate the youngest persistent HHs just like the ZC
algorithm. First, we sort edges e1, . . . , eq in the ascending order of an edge dis-
tance, and perform the Rips filtration by the fast ZC algorithm. To avoid having
the same edge distance, we select the ordered index 1, . . . , q as the filtration
value, instead of the edge distance. The reason for performing the ZC algorithm
first is that the computation of eigen-decomposition at every filtration value is
too expensive. Then, we obtain a PD which is the set of the birth and death
thresholds of persistent holes. If a persistent hole appears at iX and disappears
at iZ , we perform the eigen-decomposition of Hodge Laplacian at iX , iZ , and
iY = iZ − 1 to estimate the corresponding HH. The iY is the threshold just
before the death of the persistent hole.
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The harmonic spaces at iX , iY , and iZ are written by matrices

HX = [x1, · · · ,xl] ∈ Rq×l, HY = [y1, · · · ,ym] ∈ Rq×m, HZ = [z1, · · · , zn] ∈ Rq×n,

respectively. The HH appearing at iX and disappearing at iZ will be in HX and
HY , but not in HZ . We find which y ∈ HY does not depend on zi’s in HZ .
If y ∈ HY depends on HZ , the smallest singular value of the matrix [HZ ,y] is
close to 0. It implies that y still exists in HZ . Therefore, we choose y ∈ HY such
that

y = arg max
y∈HY

{the smallest singular value of [HZ ,y]} . (3)

The chosen y by (3) is the oldest persistent HH. Next, we choose the youngest
persistent HH x ∈ HX such that

x = arg min
x∈HX

{the smallest singular value of [x,y]} = arg min
x∈HX

{
1− |x>y|

}
. (4)

This procedure is repeated for all persistent holes. The incidence matrices
are already estimated during the ZC algorithm. Since the incidence matrices
and their combinatorial Hodge Laplacian are very sparse, the computation of
persistent HHs is not so hard in our experiments. In our experiments, the total
number of persistent holes during the filtration is not more than 50, and the
number of persistent holes at each filtration value is not more than 20.

2.3 HH dissimilarity

Bottleneck distance If Ka and Kb have m and n persistent holes. The PDs
of Ka and Kb are denoted respectively by PDa = {ta1 , · · · , tam} and PDb ={
tb1, · · · , tbn

}
, where ti is a point with the birth and death thresholds of the

corresponding hole. Bottleneck distance between two simplicial complexes, Ka

and Kb is defined by [8]

DB(Ka,Kb) = d(PDa, PDb) = inf
η:PDa→PDb

sup
t∈PDa

‖ t− η(t) ‖∞,

where η is a bijection from PDa to PDb and ‖ (x, y) ‖∞= max {|x|, |y|} is the
L∞−norm. If there is no corresponding hole in the other PD because of m 6= n,
the points on the diagonal line x = y that have the shortest distance from
the point t are included. In this way, the bottleneck distance measures network
distance by the difference of the birth and death thresholds of holes, not by the
difference between holes themselves.

Dissimilarity between HHs If the eigenvectors with zero eigenvalues of two
different combinatorial Laplacians are denoted by x and y, their dissimilarity is
defined by one minus the absolute value of their inner product, i.e.,

dh(x,y) = 1− |x>y|. (5)

This is the smallest singular value of the matrix [x,y] in (4) that shows the
dependency between x and y. If x and y are similar, their dissimilarity is close
to 0; otherwise, it is close to 1.
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HH dissimilarity Suppose that two networks Ka and Kb have m and n persis-
tent HHs, denoted by Ha = [xa1 , · · · ,xam] and Hb =

[
xb1, · · · ,xbn

]
, respectively.

The dissimilarity based on persistent HHs (HH dissimilarity) is defined by

DH(Ka,Kb) = d(Ha,Hb) = inf
ζ:Ha→Hb

1

min(m,n)

∑
x∈Ha

dh(x, ζ(x)), (6)

where ζ is a bijection from Ha to Hb.

The correspondence ζ between persistent HHs in two different networks is
determined by minimizing the total distances between the pairs of HHs based
on Munkres assignment algorithm, also known as Hungarian algorithm. Some
of persistent HHs can not find their corresponding HHs in the other network
because of m 6= n. In this study, we ignore them and average the dissimilarities
of the obtained pairs of persistent HHs.

Citation of HH The advantage of using HH dissimilarity is the ability to
quantify how much a persistent HH contributes in differentiating networks. The
degree of the contribution of HH is called the citation of HH. If a persistent HH x
in Ha corresponds to a persistent HH y = ζ(x) in Hb in (6), their dissimilarity
is dh(x,y) = 1−|x>y|, and their similarity is defined by |x>y|. If the persistent
HHs of l networks are denoted by H = {H1, · · · ,H l} and they are compared
with Ha, the citation of x is defined by∑

ζ(x)∈H,∀H∈H

|x>ζ(x)|.

If we find the most cited HHs by comparing networks within a group, we can
determine which submodule makes two networks in a group close to each other.
Furthermore, if we find the most cited HHs by comparing network between
groups, we can determine which submodule makes differences.

3 Results

3.1 Brain network construction

We had 4 groups, NC, sMCI, pMCI, and AD which had 181, 91, 77 and 135
subjects, respectively. The subjects in a group could be heterogeneous. Thus, we
obtained 600 bootstrap samples from each group by randomly selecting the sub-
set of the number of subjects in each group with replacement [22]. The number
of bootstrap samples was heuristically determined in comparison with previous
study [22]. We constructed 600 bootstrapped networks from bootstrap samples
in each group by diffusion distance in Sec. 2.1. The total number of generated
brain networks was 2400.
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Fig. 1. Distance of 2400 networks. (a) L2, (b) GH, (c) KS0, (d) KS1, (e) Bottleneck,
and (f) HH. The 2400 networks were sorted in the order of NC, sMCI, pMCI, and AD.
Each group had 600 networks. The clustering accuracy is shown in Table 1.

3.2 Network clustering

We clustered 2400 bootstrapped brain networks into 4 groups by Ward’s hi-
erarchical clustering method. The Ward’s hierarchical clustering method found
the group labels based on the distance between data points, which is a network
in our application. The network distance was estimated by (a) L2, (b) GH dis-
tance, (c) KS0, (d) KS1, (e) bottleneck distance of holes, and (f) HH dissimilarity
[3,6,7,8,16]. The obtained distance matrices of 2400 networks were shown in Fig.
1. After clustering networks, we matched the estimated group label with the
true group label of networks and calculated the clustering accuracy of 8 distance
matrices. The clustering accuracy of 8 distance matrices was shown in Table 1.
We also clustered 1200 bootstrapped networks in sMCI and pMCI into 2 groups
by the same way. The clustering accuracy was shown in Table 1.

3.3 The most cited HHs

We selected the 600 most cited HHs within NC, sMCI, pMCI, and AD, and
divided them into 5 clusters based on the dissimilarity between HHs in (5). In Fig.
3 (a-d), because the dissimilarity of HHs in the cluster 5 was large, we considered
HHs in the cluster 5 as outliers. We calculated the center of HHs in clusters 1,
2, 3, and 4, by selecting the HH with the minimum sum of dissimilarities with
the other HHs in the cluster. The 4 representative HHs of 4 clusters were shown
on the left of Fig. 3 (a-d). In each panel, the upper row showed the HHs in a
brain, and the lower row showed the HHs in a 2-dimensional plane. The location
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of nodes in the 2-dimensional plane was estimated by Kamada-Kawai algorithm
implemented in a network analysis/visualization toolbox, Pajek [1]. In Fig. 3
(a-d), the width of an edge was proportional to the edge weight in the HH. The
larger the weight of an edge, the darker the color of an edge. The color of nodes
represented the location of nodes in a brain. If a node was located in frontal,
parietal, temporal, occipital, subcortical, and limbic regions, the color of the
node was red, blue, green, purple, yellow, and orange, respectively.

We also selected the 600 most cited HHs when we compared networks between
sMCI and pMCI, and divided them into 5 clusters. In Fig. 2 (a), the cluster 5
contained the outliers. Thus, we estimated the center HHs in cluster 1-4. The
representative HHs in sMCI and the corresponding holes in pMCI were shown
in Fig. 2 (b).

4 Discussion and conclusions

In this study, we proposed a new network dissimilarity, called HH dissimilarity.
Unlike a binary hole estimated by the ZC algorithm, a HH show all possible
paths of edges around a hole, and the contribution of paths to forming the hole
is represented by the weight of edges on the paths. If an edge belongs to a unique
path that forms a hole, its edge weight will be large. If an edge belongs to one
of many alternative paths as in a module, its edge weight will be small. In this
way, HHs can extract the substructures of a brain network including holes and
modules. Moreover, since the HHs can be represented as real-valued orthonormal
vectors we can define the dissimilarity between HHs as well as HH dissimilarity
between brain networks easily using vector product.

Brain networks of different groups may share common substructure as well
as have different substructures that make individual and group differences. The
proposed HH dissimilarity first finds candidates of common substructures be-
tween brain networks and estimates the over all dissimilarities between candi-
dates. The clustering results showed that brain networks of different groups had
similar substructures, however, the averaged similarities was much larger than
that of brain networks within a group.

The goal of persistent homology may be to find persistent features that last
for a long duration. However, in brain network analysis, it has been applied for

Table 1. Clustering accuracy

Distance
4 groups 2 groups

(NC, sMCI, pMCI, and AD) (sMCI and pMCI)

(a) L2 66.09 % 98.50 %
(b) GH 45.96 % 87.58 %
(c) KS0 52.54 % 74.00 %
(d) KS1 77.38 % 79.83 %
(e) Bottleneck 45.71 % 76.58 %
(f) HH 100 % 100 %
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Fig. 2. (a) Clustering of the 600 most cited HHs when sMCI and pMCI were compared.
(b) Representative HHs in cluster 1, 2, 3 and 4. The left two columns showed HHs in
sMCI and the right two columns showed the corresponding HHs in pMCI. Each HH
was visualized in a brain and in a 2-dimensional plane. The shape of the HH was more
clearly shown in the plane, and the location of the HH could be checked in the brain.
The color of nodes was determined by the location of nodes in a brain: frontal (red),
parietal (blue), temporal (green), occipital (purple), subcortical (yellow), and limbic
(orange) regions. If the edge weight was larger in a HH, the color of edge was darker
and the width of edge was larger.

finding the change of topology, especially the change of connected components,
instead of the persistence of topology. This study suggested a more coherent
framework to observe, capture, and quantify the change of holes in brain net-
works. Depending on imaging modality and study populations, brain networks
may have different characteristics of shapes. Therefore, it is necessary to apply
proper network measures to brain networks depending on modality and popula-
tion. The results showed that when the Alzheimer’s disease progresses, the hole
structure was changed in metabolic brain networks, and HHs and HH dissimi-
larity could predict the disease progression.
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Fig. 3. Distance matrix of the 600 most cited HHs within (a) NC, (b) sMCI, (c) pMCI,
and (d) AD. The most cited holes were clustered into 5 groups. The last cluster 5 had
outliers with large dissimilarities between HHs. The representative HHs of the first 4
clusters were plotted on the right. The upper row showed the HHs in a brain and the
lower row showed the HHs in a 2-dimensional plane.
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