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ABSTRACT

Community and rich-club detection are a well-known method
to extract functionally specialized subnetwork in brain con-
nectivity analysis. They find densely connected subregions
with large modularity or high degree in brain connectivity
studies. However, densely connected nodes are not the only
representation of network shape. In this study, we propose a
new method to extract abnormal holes, which are another rep-
resentation of network shape. While densely connected com-
ponent characterizes network’s efficiency, abnormal holes
characterize inefficiency. The proposed method differs from
the existing hole detection in two respects. One is to use
Hodge Laplacian to obtain a harmonic hole in the linear com-
bination of edges, rather than a subset of edges. The other is
to use the kernel density estimation of persistence diagram
of random networks to determine the significance of a hole,
rather than using the persistence of a hole. We applied the
proposed method to find the abnormality of metabolic con-
nectivity in the FDG PET data of ADNI. We found that, as
AD severely progressed, the brain network had more abnor-
mal holes. The localized holes showed how inefficient the
structure of brain network became as the disease progressed.

Index Terms— Hole, Brain connectivity, Alzheimer’s
disease, Kernel density estimation, Hodge Laplacian
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1. INTRODUCTION

Functional specialization has been often studied in brain
imaging analysis. By introducing the concept of network,
the research interest of brain imaging analysis has been ex-
tended from functional specialization of local regions to the
functional integration in the whole brain connectivity [1]. Al-
though the complex graph theoretic measures such as small-
worldness and modularity have been widely used for finding
the global characteristics of brain connectivity, we still want
to know which parts of brain are related to the specific cog-
nitive function or neurodegenerative disease. In this sense,
community and rich-club detection have been proposed to
extract functionally specialized subnetwork [2, 3]. They find
densely connected subregions with large modularity or high
degree in the whole brain connectivity. Those regions are
usually considered to be related with the specific cognitive
function, and weakened by the disease progression. How-
ever, it is rarely mentioned how the shape of brain network is
changed after the deterioration of connections in the regions.

In this paper, we propose a hole detection method to find
the shape change during the disease progression. Hole is also
a connected component, but there is a path that any node in
the hole can return to itself, and the path consists of at least
four consecutive edges. Like a connected component, a hole
is also the fundamental shape descriptor defined in algebraic
topology [4]. While densely connected component represents
the network’s local efficiency, the hole with many consecutive
edges characterizes the network’s inefficiency. The concept
of hole defined in topological data analysis has been already
used for brain network analysis [5, 6, 7]. In the topological
data analysis, a persistent hole that lasts for a long threshold
is considered as a signal of network and a hole with short du-
ration of threshold is considered as a noise. In this sense, the
existing hole detection methods find the significant hole us-
ing the persistence of the hole. However, we determine the
significance of hole using the probability map of persistence
diagram because not only the persistent hole, but also the hole
that appears and disappears at abnormal thresholds are impor-
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tant to determine the shape of brain network. The kernel den-
sity estimation is used for obtaining the probability map of
persistence diagram.

The proposed method finds a harmonic hole represented
by the weighted sum of edges based on Hodge Laplacian
[8, 5], while the existing method usually finds a hole in the
binary representation of edges, i.e., a subset of edges [6, 7, 9].
The weights of the harmonic hole are proportional to the con-
tribution of edges to the hole. Moreover, while the existing
method can not find the unique representation of a hole, i.e.,
there are many other possible subsets of edges for represent-
ing a hole, the harmonic hole method finds the unique repre-
sentation of a hole. In experiments, the proposed method was
applied to FDG PET data of Alzheimer’s disease neuroimag-
ing initiative (ADNI) and showed that the proposed method
can find the abnormal shape of network as AD progressed.

2. METHODS

2.1. Network construction

The ADNI FDG-PET dataset consists of three groups, 181
normal controls (NC), 168 mild cognitive impairment (MCI),
and 135 Alzheimer’s disease (AD) subjects (Age: 73.7 ˘
5.9, range 56.1 ´ 90.1). The MCI group was divided into
two groups, 91 stable MCI (sMCI) and 77 progressive MCI
(pMCI), depending on whether a subject remained stable or
progressed to AD after three years. Details of data sets and
preprocessing are in [10]. The whole brain image was parcel-
lated into 94 regions of interest (ROIs) based on automated
anatomical labeling (AAL2) except for cerebellum [11]. Each
ROI serves as a node and its measurement is obtained by av-
eraging FDG uptakes in the ROI. The distance between two
nodes was estimated by the diffusion distance on positive cor-
relations between measurements of two ROIs. The diffusion
distance considers an average distance of all direct and indi-
rect paths between two nodes via random walk.

2.2. Hole
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Fig. 1: Example of Rips complex (a) without a hole and (b)
with a hole, represented in two different binary representa-
tions. (c) Harmonic hole of (b), represented by the weighted
sum of edges.

Suppose that a weighted network N pV,E,Lq consists of
p nodes in a set V and q edges in E, and an edge distance
matrix L P Rpˆp. The entry of L “ rlpeijqs is the distance of
the edge eij P E connecting two nodes vi and vj (vi, vj P
V ). Given a threshold ε ą 0, Rips complex, denoted by
RN pεq, is the collection of nodes V , edges satisfying lpeq ă
ε, e P E and triangles satisfying lpeijq, lpejkq, lpekiq ă ε,
eij , ejk, eki P E, vi, vj , vk P V . When the sequence of
thresholds is given by ε0 “ 0 ď ε1 ď ε2 ď ¨ ¨ ¨ , the sequence
of Rips complexes is estimated by RN pε0q Ď RN pε1q Ď
RN pε2q Ď ¨ ¨ ¨ . This procedure is called the Rips filtration
[4].

Definition 1. Holes in RN pεq is a subset H Ď E where con-
secutive edges form a cycle, but are not a boundary of any
consecutive triangles (See Fig. 1) [9]. The number of holes
in RN pεq is the first Betti number, denoted as β1.

Definition 2. If a hole appears at the threshold ξ and dis-
appears at τ p0 ď ξ ď τ ă 8q, it is encoded into a 2-
dimensional point t “ pξ, τq P R2. Given weighted net-
work N pV,E,Lq, if m holes appear and disappear during
the filtration of N , they are represented by a set of m points
P “ tt1, . . . , tmu . The scatter plot of P is called a persis-
tence diagram (PD) of N [9]. Because ξi ě τi for @i, the
points are always in the upper regions of the diagonal line
y “ x in R2.

2.3. Kernel density estimation of persistence diagram

Let u1, . . . , um P R2 be an independent, identically dis-
tributed random sample from an unknown density p. Kernel
density estimation can be expressed as

p̂mpuq “
1
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where K : R2 Ñ R is a smooth kernel function and h ą 0 is
the smoothing bandwidth that controls the amount of smooth-
ing. The kernel function should satisfy two requirements, nor-
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Then, we can write the kernel density of persistence diagram
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We use the student’s t-distribution for the kernel K because it
is more robust to errors with heavier trails than normal distri-
butions

Definition 3. Given N random weighted networks, we can
obtain N persistence diagrams, P1, . . . , PN , and the corre-
sponding kernel density p̂1, . . . , p̂N in (1). Then, the proba-
bility density of persistence diagram is estimated by the aver-
age kernel density map p̄ “ 1

N

řN
i“1 p̂i. If the birth and death

of a hole is in the region of significance level ă .05 in p̄, we
call it an abnormal hole of which birth and death are rarely
found in random networks.

2.4. Hodge Laplacian for hole localization

Since the boundary of an edge is two nodes, we denote an
edge by ei “ vi1 ´ vi2. If two edges ei “ vi1 ´ vi2 and
ej “ vj1 ´ vj2 have common node with the same orientation,
i.e., vi1 “ vj1 or vi2 “ vj2 , we say that ei and ej are lower ad-
jacent with similar orientation, denoted as ei a` ej . If they
have common node with different orientation, i.e., vi1 “ vj2
or vi2 “ vj1, we say that they are lower adjacent with dissim-
ilar orientation, denoted as ei a´ ej . If two edges ei and ej
belong to the same triangle, we say that they are upper adja-
cent, denoted as ei ` ej . The number of triangles to which ei
belongs is denoted as dupeiq.

Definition 4. Suppose that Rips complex RN pεq has the or-
dered edges, e1, . . . , eq . The first Hodge Laplacian H1pεq P
Rqˆq is defined by

rH1pεqsij “

$

’

’

&

’

’

%

dupeiq ` 2 i “ j,
1 i ‰ j,„ pei ` ejq, ei a` ej ,
´1 i ‰ j,„ pei ` ejq, ei a´ ej ,
0 otherwise,

(2)

where „ p¨q is 1 if p¨q is 0, and 0 if p¨q is 1 [8, 5]. The number
of zero eigenvalues of H1 is equal to the number of holes β1
in RN pεq. The corresponding null eigenvectors is called the
harmonic holes.

Let a hole t “ pξ, τq is abnormal. If we choose ε in rξ, τ s,
the null eigenvectors of H1pεq include the harmonic hole of t.
While t is a subset of edges, the harmonic hole is the weighted
sum of edges (See Fig. 1). If H1pεqz “ 0, the harmonic hole
is represented by

řq
i“1 ziei, where z “ rzis. The absolute

value |zi| is proportional to the contribution of ei to the hole.
If it is large, the edge is an unique path on the hole. Otherwise,
alternative paths exist on the hole. To find the harmonic hole
of t, we estimate H1pε1q,H1pε2q, and H1pε3q for ξ “ ε1 ă
ε2 ă ε3 “ τ and find their common null eigenvector.

3. RESULTS

We generated 5000 random networks in a group by permuta-
tions and estimated the kernel density of persistence diagram

Fig. 2: Kernel density of persistence diagram of (a) NC, (b)
sMCI, (c) pMCI, and (d) AD. 27, 26, 25, and 35 holes are
plotted by blue dots in (a) NC, (b) sMCI, (c) pMCI, and (d)
AD, respectively. Three holes t1, t2 and t3 in (c) pMCI and
(d) AD were significant (p ă .05). t4 is the hole with the
smallest p value in sMCI. t4 and three abnormal holes are
shown in Fig. 3.

in Definition 3. The kernel density of persistence diagram of
NC, sMCI, pMCI, and AD were shown in Fig. 2. 27, 26,
25, and 35 holes were found in NC, sMCI, pMCI, and AD,
respectively. The blue and red dots represented holes and ab-
normal holes, respectively. Among them, only pMCI and AD
had an abnormal hole (p ă .05). t1 was an abnormal hole
of pMCI and t2 and t3 were that of AD. The duration of the
hole t3 was not persistent enough, however, it was selected as
an abnormal hole by the proposed method. To see the hole
structure of sMCI, we chose t4 in (b) which has the smallest
p value in sMCI (p “ 0.122). t1, . . . , t4 are shown in Fig. 3.

4. DISCUSSION AND CONCLUSIONS

The brain regions of NC and sMCI may be well-connected
to each other because there was no abnormal hole in NC
and sMCI. pMCI and AD had similar abnormal hole where
the connections between two large modules, the fronto-
subcortical and parieto-occipital regions, were disturbed by
right interior, middle, superior temporal gyrus (ITG, MTG,
STG), right supplementary motor area (SMA), posterior cin-
gulate cortex (PCC) and paracentral lobule (PCL). The results
show that the abnormal hole was found in the functional con-
nectivity when AD severely progressed. By the localization
of abnormal holes, we can see how the shape of network
after the deterioration of brain. However, further discussion
is needed on the biological meaning of abnormal holes. We



also need to investigate how the hole structure will vary with
age, gender, apoE, and so on in a group in the future.
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Fig. 3: (a) Hole t4 in Fig. 2 (b) sMCI, (b) abnormal hole t1
in Fig. 2 (c) pMCI, and (c,d) abnormal holes t2 and t3 in Fig.
2 (d) AD. The node color represents the lobe location (red:
frontal, green: parietal, blue: temporal, purple: occipital, yel-
low: limbic, green: basal ganglia, circle: right, triangle: left
hemisphere). The color of edge is determined by the corre-
sponding |zi| in Sec. 2.4. As |zi| increases, the edge color is
changed from gray through yellow to dark red.
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