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Abstract. One of outstanding issues in brain network analysis is to
extract common topological substructure shared by a group of indi-
viduals. Recently, methods to detect group-wise modular structure on
graph Laplacians have been introduced. From the perspective of alge-
braic topology, the modules or clusters are the zeroth topology infor-
mation of a topological space. Higher order topology information can
be found in holes. In this study, we extend the concept of graph Lapla-
cian to higher order Hodge Laplacian of weighted networks, and develop
a group-level hole identification method via the Stiefel optimization. In
experiments, we applied the proposed method to three synthetic data and
Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimen-
tal results showed that the coidentification of group-level hole structures
helped to find the underlying topology information of brain networks
that discriminate groups well.

Keywords: Hole structure · Group analysis · Hodge Laplacian ·
Stiefel optimization · ADNI

1 Introduction

Persistent homology has been widely applied for brain network analysis [4,9].
Especially, the concept of filtration in persistent homology helps to solve the
thresholding problem of correlation-based brain networks. During the filtration, a
weighted network is decomposed into the sequence of unweighted networks at all
possible thresholds, and the change of network shape is observed over thresholds.
The persistent homology focuses on the birth and death of topological features,
called holes, and the change of their numbers, called Betti numbers, during
the filtration. Persistence diagram is a useful tool for analyzing and visualizing
the change of holes and Betti numbers during the filtration. The most widely
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used algorithm to compute persistent homology was developed by Zomorodian
and Carlsson, called the ZC algorithm [11]. It is very efficient in computing
a persistence diagram. However, since the ZC algorithm finds only one sparse
representation of a hole among many possible representations, it can obscure the
identification of holes in practice [6,7].

The k-dimensional holes in a network span in the intersection of the null space
of the kth and (k + 1)th incidence matrices [5–7,11]. The null space of a matrix
is generally estimated by the Gaussian elimination or eigen-decomposition. The
ZC algorithm is on the Smith normal form of the incidence matrices, which is the
extension of the Gaussian elimination [11]. Another approach to the hole estima-
tion is based on the eigen-decomposition of the kth Hodge Laplacian constructed
by the kth and (k+1)th incidence matrices [5–7,11]. The Gaussian elimination of
sparse incidence matrices gives us the sparse representation of holes. On the other
hand, the eigen-decomposition of Hodge Laplacian estimates a dense representa-
tion of holes, called a harmonic form. The harmonic form can express all possible
paths around a hole with their weights representing the amount of contributions
[6]. Another advantage of the harmonic form estimation method is to represent
the convex optimization problem on the Stiefel manifold of Hodge Laplacian [8].
If we change the harmonic form estimation method to an optimization problem,
we can easily add regularization term such as sparseness constraints as well as
extend to group-level analysis [8].

A further consideration when computing holes during the filtration is that
the shape of a hole is changed from its birth to death by increasing the number
of edges during the filtration. The ZC algorithm chooses the youngest persis-
tent hole at birth for the localization of a hole. However, the best solution in
the hole localization is to find the consistent shape of a hole from its birth to
death. In this paper, we add the weight to simplexes including edges and higher
order counterparts in a network for the consistency of holes during filtration [5].
Since the connections (topology) in a network is not changed by the weight of
a simplex, the Betti numbers and the birth and death of holes are not affected
by the presence of weights. The harmonic form is affected both by topology and
geometry. If we assign large weights to edges at birth and small weights to edges
at death, it is possible to reduce the change of the shape of the harmonic form.

The contribution of this paper is (1) to introduce a weighted version of the
kth Hodge Laplacian for computing harmonic forms of a brain network during
filtration, (2) to propose a harmonic form estimation method based on the Stiefel
optimization, and (3) to extend a group analysis of harmonic form estimation
by adding the constraint of pairwise similarity between harmonic forms in a
group. In experiments, we applied to three synthetic data and the FDG PET
dataset in Alzheimer’s disease neuroimaging initiative (ADNI) database. The
experimental results showed that coidentification of group-level hole structure
helped to find the underlying topology information that improves the clustering
accuracy between the groups.
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2 Methods

2.1 Datasets and Preprocessing

FDG PET images in ADNI data set was used for application1. It consists of 4
groups, 181 normal controls (NC), 91 mild cognitive impairment non-converters
(MCIn), 77 MCI converters (MCIc), and 135 Alzheimer’s disease (AD). The FDG
PET images were preprocessed by statistical parametric mapping (SPM8)2. The
whole brain image was divided into 94 regions of interest (ROIs) based on auto-
mated anatomical labeling (AAL2) excluding cerebellum. The distance between
two ROIs (nodes) was obtained by diffusion distance on positive correlation
between the measurements [2]. We transformed the distance to the similarity
(weight) between two nodes by Gaussian kernel with bandwidth 0.005 [1]. The
edge weight between nodes i and j are denoted by wij .

2.2 Hodge Laplacian of Weighted Simplicial Network

Weighted Simplicial Network. Given a non-empty node set V , a k-simplex
is an element with nodes, v1, ..., vk+1 ∈ V , denoted by σk = [v1, ..., vk+1]. An
abstract simplicial complex K is a subset of the power set of V , i.e., K ⊆
2V such that (1) ∅ ∈ K, and (2) if σ ∈ K and τ ∈ σ, τ ∈ K [11]. The
dimension of K, denoted by dimK, is the maximum dimension of σ ∈ K. The
collection of σk’s in K is denoted by Kk (−1 � k � dimK). The number of
simplices in Kk is denoted by |Kk|. The (k − 1)-face of σk is obtained by σk,ǰ =
[v1, . . . , vj−1, vj+1, . . . , vk+1] ∈ Kk−1. We call a simplicial complex a (simplicial)
network for convenience [6].

In a weighted simplicial network, each simplex has its own weight function
w : 2V → (0,∞). Suppose that a weighted simplicial network has the ordered
σi

k ∈ Kk, i = 1, . . . , |Kk| for 0 � k � dimK. The weight matrix of σk’s are a

diagonal matrix such that W k = diag
{

w(σ1
k), · · · , w(σ|Kk|

k )
}

∈ R
|Kk|×|Kk|. In

this study, we define the weight of simplexes as follows [10]:
⎧
⎨
⎩

w(σ0 = [vi]) = 1(1 � i � p),
w(σ1 = [vi, vj ]) = wij(1 � i < j � p),
w(σk) = min(σk,1̌, . . . , σk, ˇk+1) for k > 1.

Hodge Laplacian. Given a finite simplicial complex K, a chain complex Ck

is defined by Z
|Kk| with C−1 = Z. Z

k is a k-dimensional integer space [11].
The boundary operator ∂k and coboundary operator ∂�

k are functions such that
∂k : Ck → Ck−1 and ∂�

k : Ck−1 → Ck, respectively. For k = 0, ∂0 : C0 → 0.

1 http://adni.loni.usc.edu.
2 http://www.fil.ion.ucl.ac.uk/spm.

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm
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Given σk = [v1, ..., vk+1] ∈ Ck and its weight w(σk), the boundary of σk is
algebraically defined as [5,10]

∂kσk =
k+1∑
j=1

w(σk)
w(σk,ǰ)

(−1)j−1σk,ǰ . (1)

If the sign of σk−1 in ∂kσk is positive/negative, it is called positively/negatively
oriented with respect to σk. It is denoted by σk−1 ∈+(−) σk.

Given Kk,Kk−1 ⊂ K, the kth incidence matrix Mk ∈ Z
|Kk−1|×|Kk| is defined

by [Mk]ij = 1, if σi
k−1 ∈+ σj

k; −1, if σi
k−1 ∈− σj

k; 0 otherwise [5]. Then, the
boundary operator ∂k in (1) is written by ∂k = W −1

k−1MkW k, and The cobound-
ary operator ∂�

k is written by W kM�
k W −1

k−1 [3]. The kth Hodge Laplacian
Lk : Ck → Ck of a weighted simplicial network is defined by [3,5]

Lk = ∂�
k ∂k + ∂k+1∂

�
k+1

= W kM�
k W −2

k−1MkW k + W −1
k Mk+1W

2
k+1M

�
k+1W

−1
k . (2)

Harmonic Form. The kernel of Lk are denoted by kerLk. The dimension of
kerLk, i.e., the number of zero eigenvalues of Lk is the kth Betti number, denoted
by βk. Eigenvectors with zero eigenvalues in kerLk are called a harmonic k-form,
denoted by Hk = [h1,k, · · · ,hβk,k] ∈ R

|Kk|×βk . The eigenvalue of hi,k can be
written by λi,k = h�

i,kLkhi,k = 0 for i = 1, · · · , βk.

2.3 Stiefel Optimization for Group-Level Harmonic Forms

Given a network K, the problem of estimating harmonic k-forms of Lk can be
written by an optimization problem on a Stiefel manifold

min
Hk∈S(|Kk|,r)

H�
k LkHk + β ‖ Hk ‖1, (3)

where S(|Kk|, r) is a Stiefel manifold which is the set of all r-tuples of orthonor-
mal vectors in R

|Kk|, ‖ · ‖1 is the l1-norm of ·, and β is the control parameter
for sparseness [8].

Pairwise Similarity Constraint for Group Analysis. Suppose that there
are N simplicial networks in a group. Their kth Hodge Laplacians and har-
monic forms are denoted by L

(1)
k , . . . ,L

(N)
k and H

(1)
k , . . . ,H

(N)
k , respectively. To

estimate group-level harmonic forms, we extend (3) to

min
Hn∈S(|Kk|,r)

N∑
n=1

(
(H(n)

k )�L
(n)
k H

(n)
k + β ‖ H

(n)
k ‖1

)

+
μ

2

∑ ∑
m,n,1�m �=n�N

‖ H
(m)
k − H

(n)
k ‖22, (4)
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where μ is a parameter to control pairwise similarity between harmonic forms.
When μ = 0, the obtained H

(n)
k s are an individual-level harmonic form. The

larger the μ, the stronger the group-level constraint. The derivative of the opti-
mization problem in (4) is 2L

(n)
k H

(n)
k + βsign(H(n)

k ) + μ
∑N

m=1,m �=n(−H
(m)
k ).

We used the trust-region algorithm on a Stiefel manifold for the proposed opti-
mization problem (4).

Threshold-Dependency Constraint for Filtration. Suppose that the
threshold of weights (similarities between nodes) is given by ε1 � ε2 � · · · � εT .
Here, we mainly consider the 2nd Hodge Laplacians and their harmonic 2-forms
(k = 2). Therefore, we omit k in Lk, hi,k and λi,k in (1–4).

The Hodge Laplacian at εt in the nth network is now written by L(n)
εt . The

group-level harmonic form in (4) is denoted by H(n)
εt = [h(n)

1t · · · h(n)
rt ] ∈ R

q×r,
where q is the number of edges in K(n) and r is β2 at εt. The eigenvalue of H(n)

εt

is denoted by λ(n)
εt = [λ(n)

it = (h(n)
it )�L(n)

εt h
(n)
it ] ∈ R

r. Then, we have the hole
sequence of the nth network at ε1, ε2, . . . , εT defined by

Hn : (H(n)
ε1 ,λ(n)

ε1 ) → · · · → (H(n)
εT ,λ(n)

εT ). (5)

To impose the dependency between (H(n)
εt−1

,λ(n)
εt−1

) and (H(n)
εt ,λ(n)

εt ), we replace

L(n)
εt in (4) with L̃

(n)

εt = (1 − α)L(n)
εt−1

+ αL(n)
εt (0.5 � α � 1). Then, a persistent

harmonic form lasted from the threshold εt−1 will be selected first at εt.

2.4 Similarity Between Hole Sequences

As eigenvalue λ
(n)
it approaches zero, the corresponding eigenvector h

(n)
it becomes

a harmonic form. Given two hole sequences, Hm and Hn, we define a similarity
between Hm and Hn as follows:

Γ (Hm,Hn) =
r∑

i=1

T∑
t=1

w(λ(m)
it , λ

(n)
it )

∣∣∣(h(m)
it )�h

(n)
it

∣∣∣ ,

where w(λ(m)
it , λ

(n)
it ) = exp(−λ

(m)
it /s) exp(−λ

(n)
it /s)

∑
t exp(−λ

(m)
it /s) exp(−λ

(n)
it /s)

. Since h
(m)
it and h

(n)
it are an

eigenvector, 0 �
∣∣∣(htrue

it )�h
(n)
it

∣∣∣ � 1. When Hm = Hn, Γ (Hm,Hn) = 1. It

compares two hole sequences using the shape of holes in the eigenvectors H(n)
εt

and the existence of the holes in the eigenvalues λ(n)
εt .

3 Results

3.1 Experiments on Synthetic Data

The synthetic data used in this experiment were (1) house data with 5 nodes
and one hole; (2) snowman data with 11 nodes and two holes; and (3) three
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Fig. 1. (a) Synthetic data, house, snowman, and three rings. Each data consists of true
network and 5 noisy networks. (b) The first row shows the hole sequence of the true
network, and the second and third rows respectively show the individual- and group-
level hole sequences of the noisy network 1 in the house data. The similarity between
the true and individual-level hole sequences is 0.74, and the similarity between the
true and group-level hole sequences is 0.88. (c) Average and standard deviation of the
similarities of hole sequences between true and 5 noisy networks. U and W represent
when not using and using the weight of simplexes during the harmonic form estimation.
(Color figure online)

rings data with 18 nodes and three holes. We generated 5 noisy networks by
adding Gaussian noise with mean 0 and standard deviation 0.13 to the position
of nodes in the true networks in Fig. 1(a). The measurement of a node is the
position of a node in (a), and the edge weight were estimated by Gaussian
kernel of the measurements of two nodes. We assumed that the individual-level
hole sequences of noisy networks (μ = 0) were different from the true hole
sequence, while the group-level hole sequences of 5 noisy networks (μ > 0) were
close to true topology. We estimated the group-level hole sequences of 5 noisy
networks for μ = 0, 0.1, 0.5, 1, and estimated the similarity between the true and
5 individual- and group-level hole sequences. Figure 1(b) showed the true hole
sequence, individual- and group-level hole sequences of house data from top to
bottom. The background color of each hole was determined by the eigenvalue of
the hole as shown in the right colorbar. In each hole, a thick and dark edge had
large weight which is proportional to its contribution to the hole. The average
of 5 similarities were shown in Fig. 1(c). The similarity to the true network was
maximized when we used the weight of simplexes (W) for μ > 0. It meant that
the group-level hole estimation could find the true topology of a network.
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Fig. 2. (a) L2-norm, (b) Bottleneck distance of holes. (c) Similarity matrix between
hole sequences for U (top) and W (middle), and µ = 0, 0.5, 1.0, 1.5 from left to right.
The similarity matrix of individual-level hole sequences were in (i, v) in (c). When
µ increased, the 3 group-level hole sequences in a group resembled each other. Thus,
dark 3× 3 block matrices with large similarity were found in the diagonal term of
the matrices in (iv, viii) in (c). (d) Clustering accuracy. (e) Similarity between hole
sequences over CV iterations. The most of maximum accuracy and similarity were
found at (viii) W, µ = 1.5 in (c).

3.2 Experiments on ADNI Data

We randomly divided the data of a group into 3 parts, and constructed 3 brain
networks for each group, NC, MCIn, MCIc, and AD. We estimated 3 individual-
and group-level hole sequences from 3 networks by varying μ = 0, 0.5, 1, 1.5. We
repeated this 3-fold cross validation (CV) procedure 5 times, and compared the
individual- and group-level hole structures of 5 CV iterations. The number of
networks we used was 3 folds/group × 4 groups × 5 CV iterations = 60.

Figure 2(c) showed the similarity between 60 hole sequences when μ increased
from left to right. If the group-level holes identified the ground truth hole struc-
ture of a group, the group-level holes were reproducible over CV iterations.
Moreover, the closer the group-level hole structures were to the ground truth,
the better the group-level holes discriminated the groups. We clustered 60 hole
sequences into 4 groups by Ward’s hierarchical clustering method based on the
similarity matrix in (c). The clustering accuracy was shown in Fig. 2(d) with the
accuracy based on L2-norm and bottleneck distance of holes in (a) and (b). The
clustering accuracy when using the weight of simplexes in (v–viii) in (c) was
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Fig. 3. (a) Sequence of the two smallest eigenvalues of Hodge Laplacian over thresholds.
When the eigenvalue was close to zero (dark region), the corresponding eigenvector
became a group-level harmonic form. We selected 6 group-level holes from (a). Holes
in (b) NC, (c) MCIn, (d, e) MCIc, and (f, g) AD.

better than the clustering accuracy without weights in (i–iv) in Fig. 2(c). The
larger the μ, i.e., the stronger the group-level constraint, the better the cluster-
ing accuracy. We also estimated the sum of similarity between hole sequences
obtained from different CV iterations in Fig. 2(e). The similarity of hole struc-
tures increased as μ increased in Fig. 2(e). It meant that the group-level hole
structure was reproducible. The similarity was the largest in AD, followed by NC,
MCIc, and MCIn. It might be related with the data homogeneity. The sequence
of the two smallest eigenvalues over thresholds in each group were shown in
Fig. 3(a), and six selected holes were plotted in (b–g). A hole was found in sub-
cortical region in NC in (b), while there were holes in cortico-cortical connections
in AD in (f, g).
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et Géométrie Différentielle Catégoriques 31(3), 229–243 (1990)

4. Giusti, C., Ghrist, R., Bassett, D.S.: Two’s company, three (or more) is a simplex.
J. Comput. Neurosci. 41(1), 1–14 (2016)

5. Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial com-
plexes. Adv. Math. 244, 303–336 (2013)

6. Kim, Y.J., Kook, W.: Harmonic cycles for graphs. Linear Multilinear Algebra 67,
1–11 (2018)

7. Lee, H., Chung, M.K., Kang, H., Lee, D.S.: Hole detection in metabolic connec-
tivity of alzheimer’s disease using k -laplacian. In: Golland, P., Hata, N., Barillot,
C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 297–304.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0 38

8. Lu, C., Yan, S., Lin, Z.: Convex sparse spectral clustering: Single-view to multi-
view. IEEE Trans. Image Process. 25(6), 2833–2843 (2016)

9. Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae
restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp.
80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9 7

10. Zomorodian, A.: Fast construction of the Vietoris-Rips complex. Comput. Graph.
34, 263–271 (2010)

11. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33, 249–274 (2005)

https://doi.org/10.1007/978-3-319-10443-0_38
https://doi.org/10.1007/978-3-319-59050-9_7

	Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian
	1 Introduction
	2 Methods
	2.1 Datasets and Preprocessing
	2.2 Hodge Laplacian of Weighted Simplicial Network
	2.3 Stiefel Optimization for Group-Level Harmonic Forms
	2.4 Similarity Between Hole Sequences

	3 Results
	3.1 Experiments on Synthetic Data
	3.2 Experiments on ADNI Data

	References




