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Abstract theory 29, false discovery rate (FDRY] and permutation
tests P7] are utilized to construct theorrected p-valu¢hat
We present a computational framework for analyzing account for multiple comparisons.

brain hemispheric asymmetry without any kind of image  \e present a radically different framework from this

flipping. In order to perform brain asymmetry analysis, it \ye|| established brain asymmetry analysis paradigm. Our
is necessary to flip 3D magnetic resonance images (MRI)yroposed asymmetry analysis framework starts with seg-
and establish the hemispheric correspondence by register{enting the cortical surfaces using a deformable algorithm
ing the original image to the flipped image. The difference [hjing] and obtaining cortical thickness that measures the

between the original and the flipped images is then used asjistance between outer and inner cortical surfaces. @ortic
ameasure of cerebral asymmetry. Instead of physically flip- thickness varies locally by region and is likely to be influ-

ping MRI and performing image registration, we construct onced by aging, development and clinical statéle [An

the global algebraic representation of cortical surfac@gs  gjgebraic representation of cortical surface is constdict
spherical harmonics. Then using the inherent angular sym-sing spherical harmonics. Inter-hemispheric and between
metry present in the spherical harmonics, image flipping is g hject surface registrations are done within the algebrai
done by changing the sign of the asymmetric partin the rep- e presentation without any numerical optimization that is
resentation. The surface registration between hemisshere needed for many previous surface registration techniques
and different subjects is done algebraically within theresp [8, 9, 21, 2§]. The previous methods solve a compli-
sentation itself without any time consuming numerical op- ated optimization problem of minimizing the measure of
timization. The methodology has been applied in localiz- discrepancy between two surfaces while maximizing the

ing the abnormal cortical asymmetry pattern of in a group  smoothness of deformation. Our proposed technique does
of autistic subjects using the logistic discriminant araly ¢ try to normalize the original cortical meshes, which

sis. Since the logistic discriminant analysis avoids tiee tr 5. highly noise, but instead normalize the algebraic rep-

ditional hypothesis testing paradigm, the complicated-mul  esentation of the cortical surfaces. Utilizing the praper

tiple comparison issue that plagues the brain imaging com- ¢ Hilpert space, on which the algebraic representation re-

munity has been avoided. sides, optimization is performed algebraically withou th
usual numerical optimization.

1. Introduction Instead of physically mirror reflecting the original MRI,
the algebraic surface representation is mirror reflected by
Previous neuroanatomical studies on MRI have mainly simply changing the sign in the representation. Then the
flipped the whole brain 3D MRI to obtain the mirror re- inter-hemispheric correspondence can be established and
flected MRI with respect to the midsaggital cross section the normalized asymmetry index on cortical thickness can
[2, 16]. The anatomical correspondence across the hemi-be computed. The asymmetry index is feed into the logistic
spheres is established and the normalized asymmetry indexliscriminant framework13]. Unlike previous approaches
of type (L-R)/(L+R) is used at each voxel for quantifica- [14, 24, 27] that classify preselected feature vectors, which
tion. Then the asymmetry index is feed into a statistical are obtained mainly from the principal component analysis,
procedure, mainly general linear model (GLM), and a hy- our formulation can locally discriminate shape features at
pothesis on the estimated GLM parameters is tested and theach mesh vertex. The methodology has been applied in
resulting p-value is projected onto a template at each voxel localizing the abnormal cortical asymmetry pattern of in a
In order to address the correlated test statistic acroslsox  group of autistic subjects and obtain the localized diserim
multiple comparison procedures such as the random fieldinant power up to 85%. The proposed method is simi-


http://www.stat.wisc.edu/~mchung

lar to the traditional hypothesis driven statistical pagaic
mapping techniqueZ]. However, unlike the traditional
approach, since there is no hypothesis to test, there is nc
p-value to report and there is no need to account for cor- &
related test statistics across vertices. Hence the prdpose }
discriminant analysis framework can completely bypass the &
complicated multiple comparison issue.

2. Methods

Figure 1. Cortical surface parameterization using Eulgjlem
The human cerebral cortex has the topology of a 2D The planex; — 0, which passes through — 0., is mapped

highly convoluted grey matter shell of average thickness of to the midsagittal cross section of the brain. The nofth=( 0)

3mm. The outer boundary of the shell is called theer 5, the southy = ) poles are chosen along the midsagittal cross
cortical surfacewhile the inner boundary is called thie- section.

ner cortical surface Cortical surfaces are segmented from
magnetic resonance images (MRI) using a deformable sur-
face algorithm [blind] and mapped to unit sphei& The
resulting surfaces are represented as high resolutiomgtaa
meshes with the average inter-vertex distance of 3mm.
Let ¢ be the bijective mapping from = (u;) € S?

g satisfyingAg + \g = 0. The eigenfunctioryy,, corre-
spondmg to the eigenvaluél + 1) is called thespherical
harmonicof degred and ordem. The explicit form ofY,,,
is given in [blind] [7]. With respect to the inner product

to the pointp = (p;) € M, the outer cortical surface.

The mapping enforces the one-to-one correspondence be- - / f dp(%2),

tween the outer cortical mesh and the spherical mesh. The

coordinates: is parametrized by Euler anglé ¢): Y, form the orthonormal basis ii*(S*), the space of

square integrable functions. THe?-norm is defined as
(u1,uz2,us3) = (sin @ cos p, sin O sin ¢, cos ) IfIl = (f, f)/2. For a vector functionaf = (f;), the
_ norm is similarly defined af|| = (3 || f;11%)*/2.

with Q@ = (0,¢) € N = [0, 7] ® [0, 27). The polar angle Using spherical harmonics, the heat kernel is written as

0 is the angle from the north pole and the azimuthal angle

¢ is the angle along the horizontal cross section. We fur- "

ther parameterize surfackt with Euler angles in such a Z Z DY, (DY (2. (3)

way that the planes,, which passes through = 0,7, is 1=0m==1

mapped to the midsagittal cross section of the brain (FigureBy substituting 8) into equation ) and exchanging the in-

1): p(Q2) = (ou(). tegral with the summation, heat kernel smoothi@y Ias
The coordinatep(2) are expected to be noisy. To the following spectral representation:

filter out mesh noisy, we performdiffusion-based surface l

smoothindg 1, 6, 19, 25, 2€] [blind] on mesh vertices. Leh _ - —U(i41)o

be the spherical Laplacian defined as Ko xp Z Z € PimYim ()

(4)
=0 m=—1
1

0
A= sin 6 89(Sm9

2 1 &

wherep;,, = (p,Yin) are the spherical harmonic coeffi-
00

sin® 0 0% cients. The finite expansion off( has the Hilbert space

Consider the isotropic diffusion of the coordinates interpretation as stated in Theorém

of
Oo

The solution of {) is given in terms of the integral trans-
form calledheat kernel smoothingJ [blind] as

Theorem 1 Let the subspace
=Af, f(Q,0=0)=p(Q). (1)

k l
Hi={>_ > BumYim: i € R} C LX(S?),
=0 m=—1
which is spanned by up toth degree spherical harmonics.
K,+p(Q) = | K (Q,Q)p(Q) du(), ) Leth be the solution of). Then the closest functidnin
52 the subspac®(,, to h is given by

wheredu(2) = sin0dfdy and K, is the heat kernel with ko ! W
bandwidths. Heat kernel smoothingl) has the spectral DN e T Vi () = arg juin A — holl.
representation. Consider eigenvalueand eigenfunctions 1=0 m=—1 :



Unlike previous literaturel], 6, 19, 25, 26] [blind] that
solve surface diffusion numerically using the finite differ
ence scheme, Theorehprovides a new framework for per-
forming surface diffusion by computing a series expansion. =
The advantage of this new framework is the ability to ex- ™
plicitly model surface diffusion using the Karhunen-Loeve
expansion of a random field J]. The Fourier coefficient
vector p;,,, can be modeled to follow independent multi-
variate normalV (u,,., D), where the covariance matrix is

_ 2 9 9 e i . .
of the form D = Cl_lag(al_l’al%"w)' W'th_'n the same de _ Figure 2. Cross correlation of up to 42 degrees. Each rows
gree, equal covariance is assumed. This model assumptioRny columns are arranged in a vectorized fashion startitly wi

Cross correlation

is equivalent to the following. (I,m) = (0,0), (1,—1),(1,0), (1,1),- - -. Right figure is the en-
L . largement of small white square in the top left corner of #&fé |
4oy figure. The average correlation is 0.16 and the most of arogis
Z Z ¢ Pim ¥im are extremely low indicating the independence of Fouri&ffeo
1=0 m=-1 cients.
kool
_ Z Z el Ly, _ _
pr il mem number of mesh vertices and the degree of the expansion
B m; are large.
i i in 1.2(S2 -
n Z Z e—lo, v _ Consider a functional datg in _L_(S ). The func_
il tional dataf is measured at the finite number of points
e Q1,--+,9,. Then the weighted Fourier series representa-
wheree,,,, are independent multivariate normalN (0, D). tion evaluated af; is
The components of the second term are the form of the PR
Karhunen-Loeve expansion{l. The normality assump- £(Q)) = Z Z AT f V(). (5)
l

tion was tested using the Jarque-Bera statistig for the
parametersi = 42,0 = 0.001) used in the study. For ) , ) .
instance, 10 out of tota2 + 1)2 = 1,849 Fourier coef- The system of equationS)(can be written in a matrix form.
ficients of xz-component inp;,,, do not show normality at Let

significance levebr = 0.05. Since uncorrelated Gaussian f = (f( ), -, (W),

random variables are independent, we have also computed

=0 m=—

I
the cross correlation of all, 8492 pairs of coefficients to 8= (oo i1 fro fug oo fie)s
check independence (Figugg The most pairs show very Y = (871(1+1)U}/Im(ﬂj))-
low correlation and the average correlation is 0.16 indicat \jatrix Y is the size ofn x (k + 1)%. The columns of
ing the independence assumption is valid. Y areYpo, Vi 1, Y10, Yi,- - evaluated afdy, -, Q,.

The finite series expansion given in Theorémwill be
called as theveighted Fourier seriesThe weighted Fourier
series shares similarity with the spherical harmonic repre R
sentation ] 1, 12, 24] which has been used to model simpler B=(YY) 'Yt (6)

anatomical objects such as hippocampilé§ nd ventricles For most cortical surface segmentation algorithsLf],

[11]. in brain imaging. Wher = O,_the welghte_d Fourier > 40,000 and the matrix size can easily reach the phys-
series becomes exactly the spherical harmonic representg memory limit of the most personal computers for
tion. 42. To address this issue, we have developed an iterative
method for solving a large least squares problem by decom-
posing it into smaller least squares problems [blind]. The
There are many available methods for computing Fourier algorithm shares similarity to thmatching pursuit method
coefficients [blind] p, 11, 12, 24]; however, these methods [20] in the underlying Hilbert space construction but differs
are not suitable for computing the Fourier coefficients for in numerical implementation and motivation. While our al-
a cortical mesh due to fairly large number of vertices. The gorithm was developed to avoid the computational burden
fast Fourier transfornt], 17] usually need a predefined reg- of inverting a huge linear equation, the matching pursuit
ular grid so if the mesh topology is different for each cor- method was developed to compactly decompose a time fre-
tical mesh, a time consuming interpolation is needed. Thequency signal into a linear combination of pre-selected poo
least squares method T, 24] is also not suitable when the of basis functions.

Then the system of equatiory €an be written af = Y 3,
where the Fourier coefficients are estimated as

2.1. Model parameter estimation



Using the sample cortical thickness data, we simulated
the measurement of the fornT)(by computings;,, =
(g9, Y1m) (Figure 3 top left). Then we have compared the
weighted Fourier series representatioryaigainst the the
analytical ground truthg) along the surface mesh (Figure
3). We have used = 0.001 and the corresponding op-

Simulated cortical Ground truth Weighted Fourier timal d(_agredf = 42. The relative er_ror is up to 0.013 at
thickness series a certain vertex and the mean relative error over all mesh
vertices is 0.0012. Our validation results demonstratas th
Figure 3. Cortical thickness is simulated from the samphtical the numerical implementation of the weighted Fourier se-

thickness. The ground truth is analytically constructemithe ries representation is sufficiently good.
simulation. Then the weighted Fourier series represemadie

compared against the ground truth. The mean relative esrat i 2 3, Surfaceregistration in function space
0.0012.
Comparing measurements defined at different cortical

surfaces is not a trivial task due to the fact that no two

cortical surfaces are identically shaped. We need to es-

tablish surface correspondence between hemispheres and
() = fooYoo(2;). between subjects for subsequent statistical analysis. We

present a new surface registration technique utilizing the

If we let foo to be the least squares estimation, the next setHilbert space property of weighted Fourier series. Conside

of coefficientsf _1, f1,0, f1,1 are estimated by solving parameterizationg andq obtained from coordinatgsand

q respectively:

We briefly describe the algorithm. Initially, we estimate
the first coefficientfyy by solving

1
F) = fooYoo() = > e 107 1 v0,(9).

m=-—1 - Z Z ~lHD)e m}/lm(Q);

The subsequent set of coefficierfts_», - - - , f2 2 are esti- =0 m=-t

mated by solving kot
a(0) = e—l(H—l)a imYim Q).
_— L aner o (%) ;m;l A Yim (2)
_; Z:lflm im(95) = Zze JomYom(82;)- Suppose the surfage is deformed top + d, whered =
e " (d,) is the displacement vector field to be estimated. We
At each iteration, the residual of the previous fit is used to find optimal displacement that minimizes the discrepancy
estimate the next set of coefficients. The process continuegetweerp+d andq in the finite subspack;, using thelL?-
until the residual is no longer statistically significantt A norm:
thel-th iteration, the iterative algorithm inverts manageable
smaller(2] — 1) x (21 — 1) matrix instead of hugék +1)? x
(k + 1)? matrix in (6).

2.2. Validation D (=D ) Yim = arg min ||p+d—q].
lzgm;l Pim)Yi g min [[p+d—q]

Theorem 2 Given parameterizatiop andq, the optimal
displacement fronp to q is

The weighed Fourier series representation is validated _ _ .
against analytically constructed ground truth. We haveluse ~ Theorem2 shows that the optimal displacement is ob-
the cortical thickness of a subject in constructing the ana-tained by taking the difference between two parametric rep-

lytical ground truth. Consider a surface measurement of therésentations and matching coefficients of the same degree
form and order. Note that we are not taking the difference be-

tween the original noisy surface meshes. Thec?eran be
_ Z Z BimYi 7) further used to establish the inter-hemispheric correspon

— =, dence by lettingj to be the mirror reflection op.

Theorem 3 If p* denotes the mirror reflection @ with re-
spect to the midsaggital cross section, the optimal digplac
ment fromp to p* is

for given (3;,,,. Heat kernel smoothing of is given as an
exact analytic form, which serves as the ground truth for
validation:

l
k
_ p _ —Il(l+1)o _ . ~ o
Korg@ =33 075, ¥, ®) 23 Y e PumYim = arg min |[p+d —p°|l.

l
. =0 m=0

=0 m=—



Figure 4. Demonstration of surface registration based cgofidm?2 with parametersk = 78 ando = 0.0001. The first surfacep is
registered to the last surfage Each surface corresponds toget ad for o = 0,0.2,0.4,0.6,0.8, 1. The last surface i§ = p + d.

Proof. From the way the spherical coordinates are set upasg(d, ¢) = S(0, ) + A(0, ¢), where
(Figurel), we obtain

1
. . S50,¢) = 5|9(0,¢)+9(0,2m — )
P (0,9) = P21 —¢) 2k[ ) }
k l _ S —1(l4+1)o
— Z Z e_l(l+1)aplmylm(9727T _ SD) = Z € glelm(97<P)
1=0 m=—1 =1 m=—l
k —1
and
= DD T Y (0, ¢)
1=0 m=—1 1. ~
. All.9) = 3 [9(9, ©) —g(0, 2T — sa)}
—I(l4+1)o
- Z Z € plm}/lm(ov <P) k L
=0 m=0 — Z Z e_l(H_l)Uglevlm(ea QD)
=0 m=0
The last decomposition into negative and positive orders is ) )
obtained from the property of spherical harmonics: Then thel:ormallzed asymmetry index type (L-R)/(L+R)
is given by

_lem 97 ® _
Yim(aj i SD) - { }/lm(év <P) . 2521 Emlz—l 671(l+1)gglm}/lm(97 <P)

Z;C:O Zin:O e_l(H_l)Uglevlm (97 90) .
Then lettingg = p*, we obtain the resulf]

Theoren3 shows that the the optimal inter-hemispheric The numerator is the sum of all negative orders while the
correspondence is obtained by matching the parameterizadenommator is the sum of f_;lll positive and the 0-th orders.
tion p(6, ) to (A, 2 — ). Again note that we are not The larger the value of the index, the larger the amount of
trying to match the original mesh coordinate®, ¢) but asymmetry. Figur® shows the asymmetry index for 3 se-
their algebraic representations. lective subjects.

)7 _lgmg_la
0<m<I.

3

N0, ¢)

2.4. Localized asymmetry index 2.5. Localized discriminant analysis

For each subject, its normalized asymmetry index
N(0, ) is computed and modeled as a zero mean Gaussian
random field. For the traditional group comparison between
autistic and normal control subjecis statistic at each point
(0, ») would be constructed. SincE statistics at differ-
ent points are correlated, it becomemaltiple comparison
problem[4, 22, 29]. The corrected p-value of the test is de-
termined by computing the superima distribution of the
random field 9], i.e.

Theorem3 enables us to establish the inter-hemispheric
correspondence and, in turn, to construct cortical thiskne
based asymmetry index. Suppgsis the weighted Fourier
series representation of cortical thickngssAt each posi-
tion p(f, ¢), we have cortical thickneggd, »). Then from
TheorenB, we matchy(0, ¢) to g(0, 2 — ) for the hemi-
spheric correspondence.

Comparing the expansion @f6, ¢) andg(6, 27 — ¢),
we see that the negative order terms are invariant while the
positive order terms change the sign. Hence, we decom-
poseg(d, ¢) into symmetricS and antisymmetricd parts P (Gil)lgsg 70, ¢) < h] ©)



Figure 5. Three representive subjects showing corticaktfess ¢), its weighted-SPHARM representatiog)( asymmetry index 4),
symmetry index §) and normalized asymmetry inde¥§. The Cortical thickness is projected onto the originaltsurfaces while all
other measurements are projected ontolth¢h degree weighed Fourier series representation.

Unfortunately, computing the suprima distribution of the

T random field is not an easy task and requires satisfy-

Since the loglikelihood functionl(l) is not easy to maxi-
mize analytically, the Newton-Raphson method is used to

ing many distributional assumptions and the estimation of maximize it in an iterative fashion. Starting with an arbi-
the smoothness of the random field. We use a differenttrary initial vector3°, we estimate iteratively

approach called thiagistic discriminant analysi§10, 13]

that bypasses the multiple comparison issue and still able
to detect the regions of abnormal asymmetry pattern in the

autistic subjects. Unlike previous discriminant techmisju
[14, 24, 27] that tried to classify preselected feature vec-

tors, our approach does not require any preselected feature
vectors and performs the classification at each mesh vertex:

Let n; denotes the normalized asymmetry index for the
i-th subject at a particular poiiié, ¢). LetY; be the clini-
cal state of thé-th subject modeled as a Bernoulli random
variable with parameter;. Y; = 1 if the i-th subject is
autistic with probabilityr; while Y; = 0 if the subject is
normal with probabilityl — ;. Then we have the following
logistic model, which links the probability of clinical ste
m; to the asymmetry index;:

T

1 Bo + Bini.
=

log (10)
The unknown parametef$ = (5, 51) are estimated by
maximizing the loglikelihood functiod.(3). The loglikeli-

hood function is given by

log L(B) = const+ > yi(Bo + f1ni) +log(1 — m;). (11)

i=1

g = 4 1) 28D )
op

wherel is the Fisher information matrix.p, 13].

Once we estimated the parameters, we classifyi-tie
subject as autistic iP(Y; = 1) > P(Y; = 0), which is
equivalent to the conditiom; > 1/2. The classification
error ratey(6, ¢) at each poin{6, ) is estimated by the
leave-one-out cross-validation scheme. Denotgas the
error rate for leaving théth subject out. Note that ; = 0
if the subject is classified correctly white ; = 1 if the

subject is misclassified. Then the error rates estimated

as
n
S
=1

Thediscriminant poweis then given ag — 7 and it is dis-
played in Figures localizing the regions of abnormal asym-
metry pattern in autistic subjects.

:)/\:

S|

3. Application

Three Tesld';-weighted MR scans were acquired for 16
high functioning autistic and 12 control right handed males



The autistic subjects were diagnosed by a trained and certi-
fied psychologist [blind]. The average ages &rel + 2.8
and16.1 + 4.5 for control and autistic groups respectively.
The standard image processing steps, such as the inter
sity non-uniformity correction and the global affine normal
ization into the Montreal neurological institute steredta
space, were performed [blind]. Afterwards, an automatic
tissue-segmentation algorithm based on a supervised artifi
cial neural network classifier was used to segment gray and o _
white matters. Cortical surface meshes were constructed by '9ure 6. Discriminant power projected on top of the average

a deformable surface algorithm and cortical thickngaad tical sur.fa?e' .The. d!SC”m'nam POWEr ranges from 32.1 W85
mesh vertice are obtained. Using the bijective mapping 'I_'he logistic dlgc_:rlmlnant analysis framework prov_ldes Haraa-

. . . tive to the traditional corrected p-value approach in the group
from the unit sphere to the cortical surface_, mesh vergices comparison setting and avoids complicated multiple cormepar
were parameterized by Euler anglésy) (Figurel). issue.

The weighted Fourier series representafioandg for
28 subjects was constructed using the iterative algorithm
with bandwidthe = 0.001 corresponding td: = 42 de- heat diffusion, surface registration and spherical haimon
grees (Figures). The representation has been validated representations in a consistent framework.
against the ground truth and shown to perform sufficiently ~ As an illustration, the methodology was applied quan-
with the average relative error of 0.0012 (FiguBe The tifying the abnormal cortical asymmetry pattern of autisti
symmetry §), asymmetry 4) and normalized asymmetry subjects using the normalized asymmetry index. The asym-
() indices were computed and projected ohte: 42 de- metry index that measures the amount of asymmetry pre-
gree representation (FiguBe. The normalized asymmetry sented in the cortical surface, was constructed as the ratio
index was used in localizing the regions of cortical asym- of spherical harmonics of negative and positive orders. The

metry difference between two groups. regions of abnormal pattern in the autistic subjects were lo
Instead of performing the usual two sample t-test, which calized using the logistic discriminant analysis. This eom
introduces multiple comparison issues £2, 29, logistic pletely avoids using the p-value formulation that accounts

discriminant analysis was performed. At each point, the lo- the multiple comparison issues using the random field the-
gistic model (L0) was fitted to link the probability of clinical ~ ory [29].
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