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Abstract

We present a computational framework for analyzing
brain hemispheric asymmetry without any kind of image
flipping. In order to perform brain asymmetry analysis, it
is necessary to flip 3D magnetic resonance images (MRI)
and establish the hemispheric correspondence by register-
ing the original image to the flipped image. The difference
between the original and the flipped images is then used as
a measure of cerebral asymmetry. Instead of physically flip-
ping MRI and performing image registration, we construct
the global algebraic representation of cortical surface using
spherical harmonics. Then using the inherent angular sym-
metry present in the spherical harmonics, image flipping is
done by changing the sign of the asymmetric part in the rep-
resentation. The surface registration between hemispheres
and different subjects is done algebraically within the repre-
sentation itself without any time consuming numerical op-
timization. The methodology has been applied in localiz-
ing the abnormal cortical asymmetry pattern of in a group
of autistic subjects using the logistic discriminant analy-
sis. Since the logistic discriminant analysis avoids the tra-
ditional hypothesis testing paradigm, the complicated mul-
tiple comparison issue that plagues the brain imaging com-
munity has been avoided.

1. Introduction

Previous neuroanatomical studies on MRI have mainly
flipped the whole brain 3D MRI to obtain the mirror re-
flected MRI with respect to the midsaggital cross section
[2, 16]. The anatomical correspondence across the hemi-
spheres is established and the normalized asymmetry index
of type (L-R)/(L+R) is used at each voxel for quantifica-
tion. Then the asymmetry index is feed into a statistical
procedure, mainly general linear model (GLM), and a hy-
pothesis on the estimated GLM parameters is tested and the
resulting p-value is projected onto a template at each voxel.
In order to address the correlated test statistic across voxels,
multiple comparison procedures such as the random field

theory [29], false discovery rate (FDR) [4] and permutation
tests [22] are utilized to construct thecorrected p-valuethat
account for multiple comparisons.

We present a radically different framework from this
well established brain asymmetry analysis paradigm. Our
proposed asymmetry analysis framework starts with seg-
menting the cortical surfaces using a deformable algorithm
[blind] and obtaining cortical thickness that measures the
distance between outer and inner cortical surfaces. Cortical
thickness varies locally by region and is likely to be influ-
enced by aging, development and clinical statue [3]. An
algebraic representation of cortical surface is constructed
using spherical harmonics. Inter-hemispheric and between-
subject surface registrations are done within the algebraic
representation without any numerical optimization that is
needed for many previous surface registration techniques
[8, 9, 21, 28]. The previous methods solve a compli-
cated optimization problem of minimizing the measure of
discrepancy between two surfaces while maximizing the
smoothness of deformation. Our proposed technique does
not try to normalize the original cortical meshes, which
are highly noise, but instead normalize the algebraic rep-
resentation of the cortical surfaces. Utilizing the property
of Hilbert space, on which the algebraic representation re-
sides, optimization is performed algebraically without the
usual numerical optimization.

Instead of physically mirror reflecting the original MRI,
the algebraic surface representation is mirror reflected by
simply changing the sign in the representation. Then the
inter-hemispheric correspondence can be established and
the normalized asymmetry index on cortical thickness can
be computed. The asymmetry index is feed into the logistic
discriminant framework [13]. Unlike previous approaches
[14, 24, 27] that classify preselected feature vectors, which
are obtained mainly from the principal component analysis,
our formulation can locally discriminate shape features at
each mesh vertex. The methodology has been applied in
localizing the abnormal cortical asymmetry pattern of in a
group of autistic subjects and obtain the localized discrim-
inant power up to 85.7%. The proposed method is simi-

1

http://www.stat.wisc.edu/~mchung


lar to the traditional hypothesis driven statistical parametric
mapping technique [29]. However, unlike the traditional
approach, since there is no hypothesis to test, there is no
p-value to report and there is no need to account for cor-
related test statistics across vertices. Hence the proposed
discriminant analysis framework can completely bypass the
complicated multiple comparison issue.

2. Methods

The human cerebral cortex has the topology of a 2D
highly convoluted grey matter shell of average thickness of
3mm. The outer boundary of the shell is called theouter
cortical surfacewhile the inner boundary is called thein-
ner cortical surface. Cortical surfaces are segmented from
magnetic resonance images (MRI) using a deformable sur-
face algorithm [blind] and mapped to unit sphereS2. The
resulting surfaces are represented as high resolution triangle
meshes with the average inter-vertex distance of 3mm.

Let ζ be the bijective mapping fromu = (uj) ∈ S2

to the pointp = (pj) ∈ M, the outer cortical surface.
The mappingζ enforces the one-to-one correspondence be-
tween the outer cortical mesh and the spherical mesh. The
coordinatesu is parametrized by Euler angles(θ, ϕ):

(u1, u2, u3) = (sin θ cosϕ, sin θ sin ϕ, cos θ)

with Ω = (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π). The polar angle
θ is the angle from the north pole and the azimuthal angle
ϕ is the angle along the horizontal cross section. We fur-
ther parameterize surfaceM with Euler angles in such a
way that the planeu2, which passes throughϕ = 0, π, is
mapped to the midsagittal cross section of the brain (Figure
1): p(Ω) = ζ ◦ u(Ω).

The coordinatesp(Ω) are expected to be noisy. To
filter out mesh noisy, we performdiffusion-based surface
smoothing[1, 6, 19, 25, 26] [blind] on mesh vertices. Let∆
be the spherical Laplacian defined as

∆ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂2ϕ
.

Consider the isotropic diffusion of the coordinatesp:

∂f

∂σ
= ∆f, f(Ω, σ = 0) = p(Ω). (1)

The solution of (1) is given in terms of the integral trans-
form calledheat kernel smoothing[23] [blind] as

Kσ ∗ p(Ω) =

∫

S2

Kσ(Ω, Ω′)p(Ω′) dµ(Ω′), (2)

wheredµ(Ω) = sin θdθdϕ andKσ is the heat kernel with
bandwidthσ. Heat kernel smoothing (1) has the spectral
representation. Consider eigenvaluesλ and eigenfunctions

Figure 1. Cortical surface parameterization using Euler angles.
The planeu2 = 0, which passes throughϕ = 0, π, is mapped
to the midsagittal cross section of the brain. The north (θ = 0)
and the south (θ = π) poles are chosen along the midsagittal cross
section.

g satisfying∆g + λg = 0. The eigenfunctionYlm corre-
sponding to the eigenvaluel(l + 1) is called thespherical
harmonicof degreel and orderm. The explicit form ofYlm

is given in [blind] [7]. With respect to the inner product

〈f, g〉 =

∫

S2

f(Ω)g(Ω) dµ(Ω),

Ylm form the orthonormal basis inL2(S2), the space of
square integrable functions. TheL2-norm is defined as
‖f‖ = 〈f, f〉1/2. For a vector functionalf = (fj), the
norm is similarly defined as‖f‖ = (

∑
j ‖fj‖2)1/2.

Using spherical harmonics, the heat kernel is written as

Kσ(Ω, Ω′) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(Ω)Ylm(Ω′). (3)

By substituting (3) into equation (2) and exchanging the in-
tegral with the summation, heat kernel smoothing (2) has
the following spectral representation:

Kσ ∗ p(Ω) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σplmYlm(Ω), (4)

whereplm = 〈p, Ylm〉 are the spherical harmonic coeffi-
cients. The finite expansion of (4) has the Hilbert space
interpretation as stated in Theorem1.

Theorem 1 Let the subspace

Hk = {
k∑

l=0

l∑

m=−l

βlmYlm : βi ∈ R} ⊂ L2(S2),

which is spanned by up tok-th degree spherical harmonics.
Leth0 be the solution of (1). Then the closest functionh in
the subspaceHk to h0 is given by

k∑

l=0

l∑

m=−l

e−l(l+1)σplmYlm(Ω) = arg min
h∈Hk

‖h − h0‖.



Unlike previous literature [1, 6, 19, 25, 26] [blind] that
solve surface diffusion numerically using the finite differ-
ence scheme, Theorem1 provides a new framework for per-
forming surface diffusion by computing a series expansion.
The advantage of this new framework is the ability to ex-
plicitly model surface diffusion using the Karhunen-Loeve
expansion of a random field [17]. The Fourier coefficient
vectorplm can be modeled to follow independent multi-
variate normalN(µlm, D), where the covariance matrix is
of the formD = diag(σ2

l1, σ
2
l2, σ

2
l3). Within the same de-

gree, equal covariance is assumed. This model assumption
is equivalent to the following.

k∑

l=0

l∑

m=−l

e−l(l+1)σplmYlm

=

k∑

l=0

l∑

m=−l

e−l(l+1)σµlmYlm

+
k∑

l=0

l∑

m=−l

e−l(l+1)σǫlmYlm,

whereǫlm are independent multivariate normal∼ N(0, D).
The components of the second term are the form of the
Karhunen-Loeve expansion [17]. The normality assump-
tion was tested using the Jarque-Bera statistic [15] for the
parameters (k = 42, σ = 0.001) used in the study. For
instance, 10 out of total(42 + 1)2 = 1, 849 Fourier coef-
ficients ofx-component inplm do not show normality at
significance levelα = 0.05. Since uncorrelated Gaussian
random variables are independent, we have also computed
the cross correlation of all1, 8492 pairs of coefficients to
check independence (Figure2). The most pairs show very
low correlation and the average correlation is 0.16 indicat-
ing the independence assumption is valid.

The finite series expansion given in Theorem1 will be
called as theweighted Fourier series. The weighted Fourier
series shares similarity with the spherical harmonic repre-
sentation [11, 12, 24] which has been used to model simpler
anatomical objects such as hippocampus [24] and ventricles
[11] in brain imaging. Whenσ = 0, the weighted Fourier
series becomes exactly the spherical harmonic representa-
tion.

2.1. Model parameter estimation

There are many available methods for computing Fourier
coefficients [blind] [5, 11, 12, 24]; however, these methods
are not suitable for computing the Fourier coefficients for
a cortical mesh due to fairly large number of vertices. The
fast Fourier transform [5, 12] usually need a predefined reg-
ular grid so if the mesh topology is different for each cor-
tical mesh, a time consuming interpolation is needed. The
least squares method [11, 24] is also not suitable when the

Figure 2. Cross correlation of up to 42 degrees. Each rows
and columns are arranged in a vectorized fashion starting with
(l, m) = (0, 0), (1,−1), (1, 0), (1, 1), · · · . Right figure is the en-
largement of small white square in the top left corner of the left
figure. The average correlation is 0.16 and the most of correlations
are extremely low indicating the independence of Fourier coeffi-
cients.

number of mesh vertices and the degree of the expansion
are large.

Consider a functional dataf in L2(S2). The func-
tional dataf is measured at the finite number of points
Ω1, · · · , Ωn. Then the weighted Fourier series representa-
tion evaluated atΩj is

f(Ωj) =

k∑

l=0

l∑

m=−l

e−λ(λ+1)σflmYlm(Ωj). (5)

The system of equations (5) can be written in a matrix form.
Let

f = (f(Ω1), · · · , f(Ωn))′,

β = (f00, f1,−1, f1,0, f1,1, · · · , fkk)′,

Y = (e−l(l+1)σYlm(Ωj)).

Matrix Y is the size ofn × (k + 1)2. The columns of
Y areY00, Y1,−1, Y1,0, Y1,1, · · · evaluated atΩ1, · · · , Ωn.
Then the system of equations (5) can be written asf = Yβ,
where the Fourier coefficients are estimated as

β̂ = (Y′Y)−1Y′f . (6)

For most cortical surface segmentation algorithms [9, 18],
n > 40, 000 and the matrix size can easily reach the phys-
ical memory limit of the most personal computers fork ≥
42. To address this issue, we have developed an iterative
method for solving a large least squares problem by decom-
posing it into smaller least squares problems [blind]. The
algorithm shares similarity to thematching pursuit method
[20] in the underlying Hilbert space construction but differs
in numerical implementation and motivation. While our al-
gorithm was developed to avoid the computational burden
of inverting a huge linear equation, the matching pursuit
method was developed to compactly decompose a time fre-
quency signal into a linear combination of pre-selected pool
of basis functions.



Figure 3. Cortical thickness is simulated from the sample cortical
thickness. The ground truth is analytically constructed from the
simulation. Then the weighted Fourier series representation are
compared against the ground truth. The mean relative error is at
0.0012.

We briefly describe the algorithm. Initially, we estimate
the first coefficientf00 by solving

f(Ωj) = f00Y00(Ωj).

If we let f̂00 to be the least squares estimation, the next set
of coefficientsf1,−1, f1,0, f1,1 are estimated by solving

f(Ωj) − f̂00Y00(Ωj) =

1∑

m=−1

e−1(1+1)σf1mY1m(Ωj).

The subsequent set of coefficientsf2,−2, · · · , f2,2 are esti-
mated by solving

f(Ωj)−
1∑

l=0

l∑

m=−l

f̂lmYlm(Ωj) =

2∑

m=−2

e−2(2+1)σf2mY2m(Ωj).

At each iteration, the residual of the previous fit is used to
estimate the next set of coefficients. The process continues
until the residual is no longer statistically significant. At
thel-th iteration, the iterative algorithm inverts manageable
smaller(2l−1)×(2l−1) matrix instead of huge(k+1)2×
(k + 1)2 matrix in (6).

2.2. Validation

The weighed Fourier series representation is validated
against analytically constructed ground truth. We have used
the cortical thickness of a subject in constructing the ana-
lytical ground truth. Consider a surface measurement of the
form

g(Ω) =

k∑

l=0

l∑

m=−l

βlmYlm(Ω) (7)

for given βlm. Heat kernel smoothing ofg is given as an
exact analytic form, which serves as the ground truth for
validation:

Kσ ∗ g(Ω) =
k∑

l=0

l∑

m=−l

e−l(l+1)σβlmYlm(Ω). (8)

Using the sample cortical thickness data, we simulated
the measurement of the form (7) by computingβlm =
〈g, Ylm〉 (Figure3 top left). Then we have compared the
weighted Fourier series representation ofg against the the
analytical ground truth (8) along the surface mesh (Figure
3). We have usedσ = 0.001 and the corresponding op-
timal degreek = 42. The relative error is up to 0.013 at
a certain vertex and the mean relative error over all mesh
vertices is 0.0012. Our validation results demonstrates that
the numerical implementation of the weighted Fourier se-
ries representation is sufficiently good.

2.3. Surface registration in function space

Comparing measurements defined at different cortical
surfaces is not a trivial task due to the fact that no two
cortical surfaces are identically shaped. We need to es-
tablish surface correspondence between hemispheres and
between subjects for subsequent statistical analysis. We
present a new surface registration technique utilizing the
Hilbert space property of weighted Fourier series. Consider
parameterizationŝp andq̂ obtained from coordinatesp and
q respectively:

p̂(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σplmYlm(Ω),

q̂(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σqlmYlm(Ω).

Suppose the surfacêp is deformed tôp + d, whered =
(dj) is the displacement vector field to be estimated. We
find optimal displacementd that minimizes the discrepancy
between̂p+d andq̂ in the finite subspaceHk using theL2-
norm:

Theorem 2 Given parameterization̂p and q̂, the optimal
displacement from̂p to q̂ is

k∑

l=0

l∑

m=−l

e−l(l+1)σ(qlm−plm)Ylm = arg min
dj∈Hk

‖p̂+d−q̂‖.

Theorem2 shows that the optimal displacement is ob-
tained by taking the difference between two parametric rep-
resentations and matching coefficients of the same degree
and order. Note that we are not taking the difference be-
tween the original noisy surface meshes. Theorem2 can be
further used to establish the inter-hemispheric correspon-
dence by lettinĝq to be the mirror reflection of̂p.

Theorem 3 If p̂∗ denotes the mirror reflection of̂p with re-
spect to the midsaggital cross section, the optimal displace-
ment fromp̂ to p̂∗ is

−2

k∑

l=0

l∑

m=0

e−l(l+1)σplmYlm = arg min
dj∈Hk

‖p̂ + d− p̂∗‖.



Figure 4. Demonstration of surface registration based on Theorem2 with parametersk = 78 andσ = 0.0001. The first surfacebp is
registered to the last surfacebq. Each surface corresponds to tobp + αd for α = 0, 0.2, 0.4, 0.6, 0.8, 1. The last surface isbq = bp + d.

Proof. From the way the spherical coordinates are set up
(Figure1), we obtain

p̂∗(θ, ϕ) = p̂(θ, 2π − ϕ)

=

k∑

l=0

l∑

m=−l

e−l(l+1)σplmYlm(θ, 2π − ϕ)

=

k∑

l=0

−1∑

m=−l

e−l(l+1)σplmYlm(θ, ϕ)

−
k∑

l=0

l∑

m=0

e−l(l+1)σplmYlm(θ, ϕ).

The last decomposition into negative and positive orders is
obtained from the property of spherical harmonics:

Ylm(θ, 2π − ϕ) =

{
−Ylm(θ, ϕ), −l ≤ m ≤ −1,
Ylm(θ, ϕ), 0 ≤ m ≤ l.

Then lettingq̂ = p̂∗, we obtain the result.�
Theorem3 shows that the the optimal inter-hemispheric

correspondence is obtained by matching the parameteriza-
tion p̂(θ, ϕ) to p̂(θ, 2π − ϕ). Again note that we are not
trying to match the original mesh coordinatesp(θ, ϕ) but
their algebraic representations.

2.4. Localized asymmetry index

Theorem3 enables us to establish the inter-hemispheric
correspondence and, in turn, to construct cortical thickness
based asymmetry index. Supposeĝ is the weighted Fourier
series representation of cortical thicknessg. At each posi-
tion p̂(θ, ϕ), we have cortical thicknesŝg(θ, ϕ). Then from
Theorem3, we matcĥg(θ, ϕ) to ĝ(θ, 2π − ϕ) for the hemi-
spheric correspondence.

Comparing the expansion of̂g(θ, ϕ) and ĝ(θ, 2π − ϕ),
we see that the negative order terms are invariant while the
positive order terms change the sign. Hence, we decom-
poseĝ(θ, ϕ) into symmetricS and antisymmetricA parts

asĝ(θ, ϕ) = S(θ, ϕ) + A(θ, ϕ), where

S(θ, ϕ) =
1

2

[
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

]

=

k∑

l=1

−1∑

m=−l

e−1(l+1)σglmYlm(θ, ϕ)

and

A(θ, ϕ) =
1

2

[
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)

]

=

k∑

l=0

l∑

m=0

e−l(l+1)σglmYlm(θ, ϕ).

Then thenormalized asymmetry indexof type (L-R)/(L+R)
is given by

N(θ, ϕ) =

∑k
l=1

∑−1
m=−l e

−1(l+1)σglmYlm(θ, ϕ)
∑k

l=0

∑l
m=0 e−l(l+1)σglmYlm(θ, ϕ)

.

The numerator is the sum of all negative orders while the
denominator is the sum of all positive and the 0-th orders.
The larger the value of the index, the larger the amount of
asymmetry. Figure5 shows the asymmetry index for 3 se-
lective subjects.

2.5. Localized discriminant analysis

For each subject, its normalized asymmetry index
N(θ, ϕ) is computed and modeled as a zero mean Gaussian
random field. For the traditional group comparison between
autistic and normal control subjects,T statistic at each point
(θ, ϕ) would be constructed. SinceT statistics at differ-
ent points are correlated, it becomes amultiple comparison
problem[4, 22, 29]. The corrected p-value of the test is de-
termined by computing the superima distribution of theT
random field [29], i.e.

P
[

sup
(θ,ϕ)∈S2

T (θ, ϕ) < h
]
. (9)



Figure 5. Three representive subjects showing cortical thickness (g), its weighted-SPHARM representation (bg), asymmetry index (A),
symmetry index (S) and normalized asymmetry index (N ). The Cortical thickness is projected onto the original brain surfaces while all
other measurements are projected onto the42-th degree weighed Fourier series representation.

Unfortunately, computing the suprima distribution of the
T random field is not an easy task and requires satisfy-
ing many distributional assumptions and the estimation of
the smoothness of the random field. We use a different
approach called thelogistic discriminant analysis[10, 13]
that bypasses the multiple comparison issue and still able
to detect the regions of abnormal asymmetry pattern in the
autistic subjects. Unlike previous discriminant techniques
[14, 24, 27] that tried to classify preselected feature vec-
tors, our approach does not require any preselected feature
vectors and performs the classification at each mesh vertex.

Let ni denotes the normalized asymmetry index for the
i-th subject at a particular point(θ, ϕ). Let Yi be the clini-
cal state of thei-th subject modeled as a Bernoulli random
variable with parameterπi. Yi = 1 if the i-th subject is
autistic with probabilityπi while Yi = 0 if the subject is
normal with probability1−πi. Then we have the following
logistic model, which links the probability of clinical statue
πi to the asymmetry indexni:

log
πi

1 − πi
= β0 + β1ni. (10)

The unknown parametersβ = (β0, β1)
′ are estimated by

maximizing the loglikelihood functionL(β). The loglikeli-
hood function is given by

log L(β) = const.+
n∑

i=1

yi(β0 + β1ni) + log(1 − πi). (11)

Since the loglikelihood function (11) is not easy to maxi-
mize analytically, the Newton-Raphson method is used to
maximize it in an iterative fashion. Starting with an arbi-
trary initial vectorβ0, we estimate iteratively

βj+1 = βj + I(βj)−1 ∂ log L(β)

∂β
(βj),

whereI is the Fisher information matrix [10, 13].
Once we estimated the parameters, we classify thei-th

subject as autistic ifP (Yi = 1) > P (Yi = 0), which is
equivalent to the conditionπi > 1/2. The classification
error rateγ(θ, ϕ) at each point(θ, ϕ) is estimated by the
leave-one-out cross-validation scheme. Denotee−i as the
error rate for leaving thei-th subject out. Note thate−i = 0
if the subject is classified correctly whilee−i = 1 if the
subject is misclassified. Then the error rateγ is estimated
as

γ̂ =
1

n

n∑

i=1

e−i.

Thediscriminant poweris then given as1 − γ̂ and it is dis-
played in Figure6 localizing the regions of abnormal asym-
metry pattern in autistic subjects.

3. Application

Three TeslaT1-weighted MR scans were acquired for 16
high functioning autistic and 12 control right handed males.



The autistic subjects were diagnosed by a trained and certi-
fied psychologist [blind]. The average ages are17.1 ± 2.8
and16.1 ± 4.5 for control and autistic groups respectively.
The standard image processing steps, such as the inten-
sity non-uniformity correction and the global affine normal-
ization into the Montreal neurological institute stereotaxic
space, were performed [blind]. Afterwards, an automatic
tissue-segmentation algorithm based on a supervised artifi-
cial neural network classifier was used to segment gray and
white matters. Cortical surface meshes were constructed by
a deformable surface algorithm and cortical thicknessg and
mesh verticesp are obtained. Using the bijective mapping
from the unit sphere to the cortical surface, mesh verticesp

were parameterized by Euler angles(θ, ϕ) (Figure1).
The weighted Fourier series representationp̂ and ĝ for

28 subjects was constructed using the iterative algorithm
with bandwidthσ = 0.001 corresponding tok = 42 de-
grees (Figure5). The representation has been validated
against the ground truth and shown to perform sufficiently
with the average relative error of 0.0012 (Figure3). The
symmetry (S), asymmetry (A) and normalized asymmetry
(N ) indices were computed and projected ontok = 42 de-
gree representation (Figure5). The normalized asymmetry
index was used in localizing the regions of cortical asym-
metry difference between two groups.

Instead of performing the usual two sample t-test, which
introduces multiple comparison issues [4, 22, 29], logistic
discriminant analysis was performed. At each point, the lo-
gistic model (10) was fitted to link the probability of clinical
statue to the asymmetry index. The logistic model was used
to estimate the probability of the asymmetry index belong-
ing to the autistic group. Then we computed the discrimi-
nant power, which is defined as the rate of correct classifi-
cation. The discriminant power was projected onto the av-
erage cortical surface constructed by averaging the Fourier
coefficients of all subjects within the same spherical har-
monics basis using Theorem2 (Figure6). The average sur-
face serves as an anatomical landmark for displaying these
indices as well as projecting the logistic discriminant analy-
sis result. The regions of high discriminant power indicates
the likelihood of the regions to exhibit abnormal asymmetry
in the autistic subjects.

4. Conclusions

We have presented a novel cortical asymmetry analysis
technique called the weighted Fourier series representation
that performs parameterization, smoothing and registration
in a unified algebraic framework. The weighed Fourier se-
ries representation is given as the least squares approxima-
tion to an isotropic heat diffusion on a unit sphere. The
diffusion time controls the amount of smoothing in the rep-
resentation and enables the multiscale representation. The
proposed method was able to connect diverse concepts of

Figure 6. Discriminant power projected on top of the averagecor-
tical surface. The discriminant power ranges from 32.1 to 85.7%.
The logistic discriminant analysis framework provides an alterna-
tive to the traditional corrected p-value approach in the two group
comparison setting and avoids complicated multiple comparison
issue.

heat diffusion, surface registration and spherical harmonic
representations in a consistent framework.

As an illustration, the methodology was applied quan-
tifying the abnormal cortical asymmetry pattern of autistic
subjects using the normalized asymmetry index. The asym-
metry index that measures the amount of asymmetry pre-
sented in the cortical surface, was constructed as the ratio
of spherical harmonics of negative and positive orders. The
regions of abnormal pattern in the autistic subjects were lo-
calized using the logistic discriminant analysis. This com-
pletely avoids using the p-value formulation that accounts
the multiple comparison issues using the random field the-
ory [29].
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