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Abstract. We present a robust and accurate atlas-based brain segmen-
tation method which uses multiple initial structure segmentations to si-
multaneously drive the image registration and achieve anatomically con-
strained correspondence. We also derive segmentation confidence maps
(SCMs) from a given manually segmented training set; these characterize
the accuracy of a given set of segmentations as compared to manual seg-
mentations. We incorporate these in our cost term to weight the influence
of initial segmentations in the multi-structure registration, such that low
confidence regions are given lower weight in the registration. To account
for correspondence errors in the underlying registration, we use a super-
vised atlas correction technique and present a method for correcting the
atlas segmentation to account for possible errors in the underlying reg-
istration. We applied our multi-structure atlas-based segmentation and
supervised atlas correction to segment the amygdala in a set of 23 autis-
tic patients and controls using leave-one-out cross validation, achieving a
Dice overlap score of 0.84. We also applied our method to eight subcorti-
cal structures in MRI from the Internet Brain Segmentation Repository,
with results better or comparable to competing methods.

1 Introduction

Developing robust, automated tools for brain MR image registration and seg-
mentation is challenging due to many factors including the high degree of neu-
roanatomical variability in both healthy controls and patients. Registration and
segmentation of medical images can be aided by using expert-derived features,
but this manual intervention step can become costly in very large studies and
can also suffer from rater drift. Automated computation of such features can
eliminate the need for manual intervention, however the reliability and accuracy
of automatically generated features is also influenced by the variability in image
quality and neuroanatomy, in addition to the systemic bias, if any, present in
this automated method. Hence, using a small set of manually labeled training
images, learning the accuracy of the automatically generated features can be
used to improve the overall utility of these features.

We have extended the large deformation atlas-based brain MRI segmenta-
tion approach of [1], which used Freesurfer segmentation labels to initialize the
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region of interest (ROI) based registration, to instead use the Freesurfer labels as
anatomical constraints simultaneously during registration. The main motivation
for this is that the simultaneous usage of the automated segmentations as sepa-
rate cost terms allows the overall MR image matching to help avoid local minima,
while providing flexibility in setting weights for different channels to emphasize
certain properties, such as larger weight for smaller structures, or smaller weight
where the channel data is known to be less reliable. We accomplish this by using
a multi-cost registration framework, with each additional data term utilizing the
matching of one automatically-generated segmentation label.

Our approach is also similar in spirit to [2], which presented multi-channel
registration with a few semi-automatically defined subcortical structures that
were quality controlled and corrected manually prior to their use in the registra-
tion. However, instead of correcting the automated segmentations manually for
each image, we attempt to learn the errors made by the automatic segmentation
method using the segmentation confidence maps from a small set of manually
labeled images, and account for these for segmentation of all other images in the
database. To avoid computation of SCMs for each cohort atlas and to work with
cohort datasets that do not have some manually segmented scans to construct
the SCMs, we show how to transfer SCMs from another database atlas. We gen-
erate and apply the SCMs to weight the automated segmentations that are used
as “features” in our atlas-based segmentation.

In single atlas propagation, errors or bias in the atlas segmentation, perhaps
due to manual rater error, can also lead to the bias being propagated in all atlas-
propagation derived segmentations. Furthermore, if the atlas contains anatomi-
cal variability, which the registration is not able to accommodate fully, then the
propagated segmentations will also possess this template-dependent anatomical
bias. To account for this additional source of variability, we present a supervised
atlas correction procedure, which involves performing atlas-based segmentation
on a manually labeled training set to learn the systematic bias present in the
atlas, and correcting the atlas segmentation correspondingly. In this paper we
describe our method for the generation of SCMs, multi-structure registration and
supervised atlas correction, apply these techniques to two datasets, and compare
our results with current brain segmentation methods.

2 Method and Materials

2.1 Brain MRI datasets

The Internet Brain Segmentation Repository (IBSR) dataset consists of 18 T1-
weighted MR scans, with some manually segmented structures. This is a public
database used by many groups to test segmentation methods ([3–7]). The amyg-
dala dataset consisted of T1-weighted scans from 24 subjects (12/12 autism/control),
aged 10-24 [8], along with manual segmentations.

2.2 Segmentation confidence maps

In using automated segmentations for registration, segmentation errors could
result in correspondence errors. We wish to learn the errors that an automated
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segmentation method makes so that if a given region in an automated segmenta-
tion consistently exhibits lower accuracy, we would like to reduce its contribution
to the registration. To this end we have defined a segmentation confidence map
(SCM), αj , for each anatomical structure, j, as the probability of accuracy:

αj(x) = P (f j
error(x) < ε), (1)

where f j
error(x) is the distribution of segmentation errors at spatial location x,

and ε is a distance bound placed on the confidence map. To find f j
error(x), we

require a map of segmentation errors between a manual gold standard, M j ,
and an automated segmentation, Aj . Because correspondence between M j and
Aj is not known, we approximate this using the signed distance transforms of
the binary segmentations, denoted as DT (·), to obtain the closest boundary
distances between the manual and automated contours, so that:

f j
error(x) ≈ dj

M,A(x) =

{
0 if M j(x) = Aj(x),
(|DTMj (x)|+ |DTAj (x)|)2 if M j(x) 6= Aj(x).

We also used grayscale dilation followed by Gaussian smoothing (σ = 1.0) to
widen the affected neighborhood. After computing this approximation for f j

error,
we can determine αj by evaluating P (f j

error(x) < ε) over a manually labeled
training set.

Supervised training/learning For a given small set of M training images Ak,
we first compute error maps f j

error,Ak
for each structure j in each image Ak. To

learn the combined confidence map, we then spatially transform these to a chosen
template space, B, using the large deformation diffeomorphic metric mapping
(LDDMM) transformation between individual automated segmentations, Aj

k and
Bj . To compute the confidence map on B, we use the transformed error maps
f j

error,Ak
◦φBj ,Aj

k
, to generate sample histograms at each voxel using a 3×3×3×M

neighborhood. We used a distance bound, ε = 1mm, and Equation 1 to compute
αj

B for each segmented structure j. Note that for computational reasons we
computed confidence maps for each structure in each hemisphere separately,
then combined them to create a confidence map relating to both hemispheres
of a given structure. Figure 1 shows the SCM for the caudate nucleus in which
the highest variability in automated segmentation is found to be around its tail.
This is reasonable as the narrow caudate tail is where automated segmentation
algorithms are likely to yield the highest variability.

Propagation to cohort atlas If cohorts are structurally similar such as matched
for age and pathological state, then the SCMs learned from one cohort can be
propagated to the other cohort atlas. We propagate SCMs from one cohort at-
las, αj

B , to another, αj
C , by spatially transforming the maps, defined on B, to

the space of C using the LDDMM transformation between their automated seg-
mentations, Bj and Cj . By performing this step for each structure, j, we can
estimate the SCMs for any cohort atlas given a previously trained SCM.
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M j=caudate
Template , Aj=caudate

Template f j=caudate
error,Template αj=caudate
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Fig. 1. Visualizations showing the generation of the segmentation confidence map
(SCM) for the caudate nucleus: (a) manual (magenta) and initial automated (blue)
segmentations for the template brain, (b) distance error map f j=caudate

error,Template, (c) cau-

date SCM, αj=caudate
Template , computed using distance error maps from all images in the

training set. Note that the SCM identifies regions of highest segmentation variability
to be near the tail of the caudate.

2.3 Multi-structure confidence-weighted registration

To introduce multiple structures into a diffeomorphic registration scheme, we
extended the large deformation diffeomorphic metric mapping (LDDMM) [9]
method to use multiple data terms, each weighted with a SCM. Let the pair
AMR and BMR of brain ROI MR images be given to be registered, where B
is the designated template, and let their N automated segmentations, Aj , j ∈
[1, . . . , N ] and Bj , j ∈ [1, . . . , N ] be available. The diffeomorphic transformation
matching A and B is given by ϕ = φ1 : Ω → Ω such that A(φ−1

1 ) ≈ B. This
transformation φ−1

1 results from velocity φ̇t = vt(φt), vt ∈ V, t ∈ [0, 1] where V
is a space of smooth vector fields on Ω. The energy for the extended confidence-
weighted multi-structure registration to be minimized is therefore:∫ 1

0

‖vt‖2V dt+ ‖AMR(φ−1
1 )−BMR‖2L2 +

N∑
j=1

‖
√
αj

B

(
Aj(φ−1

1 )−Bj
)
‖2L2 , (2)

which uses the confidence map for a given structure, αj
B to weight the mismatch

Aj(φ−1
1 )−Bj . Note that because the cost is computed in the coordinate frame

of template B, the SCM need only be specified for B. Figure 2 shows the multi-
structure registration images for the the left amygdala ROI registration, along
with the corresponding SCMs.

2.4 Supervised atlas correction

Suppose atlas-based segmentation between an atlas, A and a target image T
gives an invertible transformation φA,T which transforms the atlas labels, AM

to T via φA,T (AM ). In the ideal case of perfect registration, if TM are known
target labels, then φT,A(TM ) = AM , but due to errors in registration and manual
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Fig. 2. Illustration of the multi-structure confidence-weighted registration for the left
ROI in the amygdala segmentation, showing the MR images, initial segmentations,
and SCMs. The multi-structure registration used the left hippocampus, amygdala and
lateral ventricle along with the MRI images to find the optimal ROI transformation.

labeling, this is not observed. However, if, given the manually labelled target TM ,
the atlas labels were ‘corrected’ to be φT,A(TM ), then label propagation would
result in perfect segmentation correspondence. We use this insight to average the
back-propagated labels, φT,A(TM ), for all images in a training set, and denote
this as the ‘corrected’ atlas segmentation. The corrected segmentation accounts
for both manual labeling inconsistencies and systematic correspondence errors,
thus improving the overall label propagation.

2.5 Experimental Procedure

All brain MR images were processed with the Freesurfer image analysis suite
(version 4.1.0), using the subcortical processing stream [10], which labels 37
volumetric structures; these segmentations were used as the initial automated
segmentations for our method. In preparation for atlas-based ROI segmentation,
the MR images underwent pre-processing including affine registration, definition
of a bounding box for each hemisphere and histogram-based intensity normal-
ization. Thus for each target image, a cropped region of interest (ROI) for each
hemisphere, containing the structures to be segmented, was linearly aligned and
intensity normalized to the corresponding ROI in the template MRI.

For the IBSR dataset, we used two disjoint sets for training and testing; nine
brains were used to generate Freesurfer SCMs for the left and right caudate, puta-
men, pallidum, nucleus accumbens, thalamus, hippocampus, amygdala, and lat-
eral ventricles, with the other nine used as the test data. The multi-structure reg-
istration used all eight structures along with the MRI to find the diffeomorphic
transformation for each hemispheric ROI. For the amygdala dataset, we propa-
gated the IBSR SCMs to an arbitrarily chosen control subject, and performed
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multi-structure registration using ROIs containing the hippocampus, amygdala
and lateral ventricles. Supervised atlas correction was tested with a leave-one-
out cross-validation scheme on the above described test data. Spatial overlap
was measured with the Dice similarity coefficient, DSC(A,M) = 2V (A∩M)

V (A)+V (M) ,

where V (A) and V (M) refers to the volume of the automated and manual seg-
mentations respectively.

3 Results

Spatial overlaps for the amygdala dataset are shown in top row of Figure 3,
with the multi-structure segmentation outperforming the Freesurfer segmenta-
tions used in the multi-structure registration, and the supervised atlas correc-
tion further improving the results. For all methods performance is better for
the control subjects, with the highest mean DSC being 0.85 and 0.83 for con-
trol and autism subjects respectively. Bottom panel shows representative MRI
slices of an autism subject, with manual and our automated (multi-structure,
atlas-corrected) segmentation outlines. Table 1 compares the amygdala DSCs to
competing methods, and Table 2 summarizes results on the IBSR database.

4 Conclusions and Discussions

As evident in Table 1, performance of our amygdala segmentations compares
very favorably among the current state-of-the-art methods; only the method in
[11], which performs hierarchical parcellation of the brain, reports slightly higher
but comparable numbers. Multiple atlas propagation and fusion is used in [12]
with good results, a technique that can also be applied with the proposed method
to further improve performance at the cost of additional registrations. The best
results for the IBSR database, shown in Table 2, are emphasized in bold, with our
method showing the highest spatial overlap for the majority of structures (lateral
ventricles, caudate, putamen, thalamus, nucleus accumbens, and hippocampus),
and within 0.02 of the highest for the pallidum and amygdala.

Supervised training in this setting, used in both the SCM generation and at-
las correction steps, can be problematic if differences exist between the training
set and the test set, such as manual segmentation protocols, scanner differences,
or pathological differences. For the supervised atlas correction these differences
could lead to degraded performance, since errors in the corrected segmentation
would correspond directly with final segmentation errors, which is why we chose
to use cross-validation on the test data for this purpose. For the SCM genera-
tion, however, we did use a single training set for both the IBSR and amygdala
segmentation; satisfactory results were obtained likely because the Freesurfer
segmentations had consistent bias or errors for both datasets. We plan to further
study the consistency and applicability of SCMs generated from different train-
ing sets. To conclude, we have proposed a novel two-fold strategy for improving
performance of atlas-based brain segmentation using multi-structure confidence-
weighted registration, and supervised atlas-correction. Results show promise for
improved segmentation of many subcortical structures, including the amygdala,
with performance better than or comparable to the leading current methods.
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Fig. 3. Top: Mean DSC for the amygdala dataset, where the height of the error bars is
equal to the standard deviation. Bottom: Representative axial (left), sagittal (center),
and coronal (right) slices showing amygdala segmentations for the manual rater (pink),
Freesurfer (yellow) and the multi-structure atlas-corrected method.

Method Cohort Age range DSC (L ; R)

Our method healthy/autistic 13-23/10-24 0.85± 0.033 / 0.83± 0.043
Fischl et al. [10] healthy/autistic 13-23/10-24 0.71± 0.047 / 0.66± 0.068
Pohl et al. [11] schiz.+healthy 18-41 0.86± 0.028; 0.85± 0.030

Chupin et al. [13] healthy/Alzheimer’s < 35/66-81 0.81± 0.04 / 0.76± 0.07
Heckemann et al. [12] healthy 20-54 0.80 ; 0.81

Table 1. Dice similarity coefficients for amygdala segmentation for our method and
competing methods using various datasets, with standard deviations shown if available.
Note that both methods in the first two rows use the same amygdala dataset.

Method Lat. Vent. Caud. Put. Thal. Pall. Nuc. Acc. Hipp. Amyg.

Our method
0.85 0.83 0.87 0.89 0.72 0.61 0.76 0.66
(0.06) (0.03) (0.02) (0.01) (0.09) (0.10) (0.03) (0.08)

Fischl et al. [10]
0.78 0.82 0.81 0.86 0.71 0.58 0.75 0.68

(0.07) (0.05) (0.02) (0.02) (0.13) (0.08) (0.02) (0.06)

Akselrod-Ballin et al. [3] - 0.80 0.79 0.84 0.74 - 0.69 0.63

Gouttard et al. [4] 0.85 0.76 0.78 - 0.72 - 0.67 0.64

Joshi et al. [5] - 0.54 0.49 0.60 - - 0.41 -

Ciofolo et al. [6] - 0.65 0.70 0.77 0.58 - - -

Zhou et al. [7]
- 0.80 0.81 0.84 - - 0.70 0.64

(0.08) (0.06) (0.06) (0.11) (0.15)

Shen et al. [14] (in [5]) - 0.54 0.45 0.74 - - 0.30 -

Woods et al. [15] (in [5]) - 0.40 0.36 0.65 - - 0.50 -
Table 2. DSCs on the IBSR dataset, with bold entries denoting the highest performing
for each structure, with standard deviation shown in parentheses when available.




