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Abstract. The correlation and the partial correlation are widely used
for measuring connectivity of an undirected brain network. It is known
that the brain network has a small-world and a scale-free topology, but
its structure drastically changes depending on the criterion of how to
threshold correlations. The exact threshold criterion has not been known
yet, except for the statistical significance which is usually determined
heuristically.

In this paper, we propose a novel framework for automatically deter-
mining the threshold based on the clustered structure of the network.
By building sparse linear regression framework on correlations, we can
utilize the inherent sparseness of the brain network and thus making the
threshold easy to determine. We will show that our proposed method
finds the biologically meaningful connectivity by making the best repre-
sentation of the data characteristics and it discriminates brain networks
between groups very well.

1 Introduction

The majority of connectivity analyses has been on thresholding correlation in
detecting focal regions of correlated voxels [1–4]. The main limitation of connec-
tivity analyses based on correlation is that they fail to explicitly factor out the
confounding effect of other regions. To remedy this limitation, partial correlation
has been naturally introduced in factoring out the dependencies of other regions
[5–7] or eliminating the effect of experimental designs [8].

The correlation and the partial correlation are important measures for rep-
resenting the brain connectivity, however, it depends on how we choose the
threshold. Depending on the threshold, the characteristics of the brain network
change from random to a more structured small-world network [9]. There are
three possible scenarios. (1) If the threshold is low and the most of the nodes are
connected, the averaged shortest path length is long and the clustering coefficient



becomes high. Thus, the brain network with low threshold behaves like a ran-
dom graph. (2) However, if we increase the threshold, at a certain threshold, all
edges with long shortest path will be disconnected, but still the clustering coeffi-
cients will remain high. Therefore, the brain network with the specific threshold
will become a small-world network. (3) If we increase the threshold even futher,
the clustering coefficient become lower since the edges with the short shortest
path length will also disappear. Therefore, the brain network again return to
become more like a random graph. The specific threshold will maximizes the
small-worldness of the brain network and it approximately corresponds to the
threshold that maximizes the number of clusters.

In this paper, we propose a novel framework for automatically determining
the threshold based on the number of clusters in the graph. Since the brain
networks are known to be sparse and highly clustered, it is reasonable to incor-
porate the sparsity of network structures in estimating correlation and partial
correlations [10, 6]. Since the partial correlation cannot find the exact solution
under the small n large p setting, it is necessary to add the sparseness con-
straint such as the penalized inverse covariance estimation, [11–14]. We employ
the adaptive least absolute shrinkage and selection operator (LASSO) which is
the sparse linear regression with the weighted l1 penalty [15, 16]. It allows us to
find the sparse correlation and partial correlation as well as it helps to select the
consistent variables under certain conditions [17]. We also impose the discrim-
inability on the correlations using the separating hyperplane of SVM between
two groups as the weight in the adaptive LASSO.

For numerical experiments, we have used both the correlation and the partial
correlation in two different ways. We have applied the correlation to clustering
which provides the global structure of the brain network while the partial cor-
relation is used in classification in estimating the discriminant power of local
connections. The proposed methods are applied to the 97 regions of interest
(ROIs) extracted from FDG-PET data for 26 autism and 11 pediatric control.
Numerical experiments shows that our method finds the proper threshold which
reflects the meaningful data structure and discriminates between groups very
well.

2 Background

Suppose that we are given data
{

f1, . . . ,fp

}

, measured at the p selected ROIs
on the FDG-PET images. We assume that f i is normally distributed with mean
0 and variance 1. The correlation coefficient between feature vectors f i and f j

is ρij = f⊤
i f j . When the inverse of the covariance matrix is given by Π =

[πij ] ∈ R
p×p, the partial correlation between f i and f j while accounting for the

confounding effects of all other (p− 2) regions is θij = −πij/
√
πiiπij .

3 Main Ideas

Our main contribution is to propose a new method for automatically selecting
the threshold based on a clustering structure of the graph within the sparse



Fig. 1. Depending on the threshold, the structures of the brain networks of autism
(a)-(c) and PedCon (d)-(e) are changed. ‘(a) and (d)’ and ‘(b) and (e)’ have the same
significant level. ‘(c) and (e)’ have the same number of edges. The numbers are the
threshold, the significant level and the number of edges.

regression framework. We incorporate the correlation and partial correlation
estimation into the adaptive LASSO regression framework. It allows us a con-
sistent, sparse and discriminative solution under the small n and the large p
condition. Within this new sparse regression framework, as main applications,
we will consider network clustering and classification problems.

Clustering. A similarity-based graph partitioning helps to understand the
global structure of graphs. Correlation is a popular similarity measure which
have been used for data clustering and graph partitioning [18, 19]. It is known
that the brain network in autism has the local overconnectivity and the global un-
derconnectivity. The clustering of brain network can distinguish the autism and
the normal controls in a biologically meaningful way. The sparse linear regres-
sion estimation and the proposed thresholding methods make a brain network
clustering/partitioning much easier.

Classification. We propose to use partial correlation in group classification by
using the residual in the sparse linear regression. Our method can classify the
data as well as it finds the local connections which contribute to improving the
classification accuracy.

3.1 Thresholding with Maximum Number of Clusters

Fig. 1 shows the brain networks when the thresholds are fixed with the significant
levels .01 and .001, and the number of edges is fixed at 35. Although we use the
popular significant levels, it is difficult to find the difference between the brain
networks (a) and (d) or between (b) and (e). The graphs of autism and PedCon
are more different shapes when the number of edges is fixed as shown in (c)
and (e); however, we should heuristically select the proper number of edges by
observing the graph structure with neurological prior knowledge about their
differences.

As we increase the threshold, the number of clusters increase until a certain
threshold. Then it decreases making it more or less concave (Fig.2 upper right).
This interesting phenomenon is directly related to the small-worldness of graph,
which is the ratio between the clustering coefficient and the characteristic path
length (Fig. 2 lower right) [20]. This remarkable similarity is no coincidence. If the
threshold is sufficiently small, the most nodes are connected to each other, thus
making the number of clusters closes to one. When the threshold increases, some
connections disappear, and the number of clusters starts to increase. At a certain



Fig. 2. Brain networks with the maximum number of clusters of autism (left) and
PedCon (right). The upper right panel shows that the number of clusters with more
than 2 edges varying the threshold and the lower right panel shows that the small-
worldness varying the threshold. The red solid line is for 26 different subsets of autism
data by jackknifing and the blue dashed line is for 11 subsets of PedCon. The point
on each line in the right upper panel means the selected threshold. The edges in the
brain networks of autism and PedCon appears with at least with probability 0.7 during
jackknifing. The color of nodes indicates different lobes.

threshold, the number of clusters begins to decrease because weakly connected
clusters, which contains small number of edges, are removed and only strongly
connected clusters may survive. Maximizing the number of clusters means that
disconnecting all edges which make the shortest path length long and maxi-
mizing the clustering coefficients in each cluster. Therefore, the threshold which

maximizes the number of clusters also likely to maximize the small-worldness

as directly demonstrated in Fig. 2. We propose to use this as the threshold for
constructing network groups.

3.2 Sparse Regression

Correlation Coefficients. The correlation coefficients ρij can be obtained by
the linear regression as follows :

f i = ρijf j + ǫi, for i = 1, ..., p. (1)

Partial Correlation. It is known that the partial correlation is estimated by
the linear regression estimation as follows [21] :

f i =
∑

j 6=i

βijf j + ǫi, for i = 1, ..., p, (2)

where ǫi is uncorrelated with all variables except f i and βij is considered as the
measure of relationship between the i-th feature and the j-th feature given all
other features. Then, the partial correlation θij is given by θij = −πij/

√
πiiπjj =

βij

√

(πii/πjj), where var(ǫi) = (1/πii) and cov(ǫi, ǫj) = πij/(πiiπjj).



Fig. 3. (a) Discriminative networks of the autism (left) and the PedCon (right) and
(b) the partial correlation graph which is divided into small trees.

LASSO. The linear regression (2) does not have the exact solution due to the
small n large p problem. We impose the lasso shrinkage into the linear regression
given by (2) as follows :

β̂ij = argmin

p
∑

i=1

‖ f i −
∑

j 6=i

βijf j ‖2 +λ
∑

i,j

|βij |, (3)

where λ is the regularization parameter. It estimates the biased, but suboptimal
solutions [22, 16]. The lasso penalization plays a role as a variable selector as
well as it guarantees the consistent solution under certain conditions [17].

Adaptive LASSO. To add discriminability, we introduce the adaptive LASSO
[15]. It use the weighted l1 penalty with parameter γ such as

β̂ij = argmin

p
∑

i=1

‖ f i −
∑

j 6=i

βijf j ‖2 +λ
∑

i,j

|wi|−γ |βij |. (4)

The larger the value of wi is, the less penalized βij is. We have chosen wi such
that it satisfies yt(w

⊤xt − b) ≥ 1, the separating hyperplane in linear SVM,
where xt ∈ R

p is a sample data measured in the p ROIs, yt ∈ {−1, 1} is the
corresponding label and w = [w1, . . . wp]

⊤ is the weights related with the ROIs.

3.3 Classification by Ensemble of Local Connections

The sparse partial correlation matrix and our thresholding method construct a
union of the tree-like structured graphs [13]. Fig. 3b shows that the graph can be
separated into small trees consisting of parent f i and their connected children
f j (j 6= i & βij 6= 0) with their strength of connection βij in Eq. (4). If a new
data is given, each small tree become a classifier, which estimates a residual
and determines whether it fits to the small tree or not. Then whether the data
belongs to the graph, which is the collection of the small trees, is determined
by an ensemble of the classifiers. In this way, we can classify a new data into a
proper group label as well as estimate the discriminative power of each classifier,
i.e., each connected brain regions.



Fig. 4. The ratio of the unreliable elements, the nonzeros and zeros (a) autism and (b)
the pediatric control in correlation matrix and (c) autism and (d) the pediatric control
in partial correlation matrix . The λ value varied from 0 (standard methods) to 7 in
the horizontal axis. The red, green and blue in each image represents the ratio of the
number of the unstable elements, zeros and the stable nonzeros.

4 Experimental Results

4.1 Data Acquisition and Preprocessing

The data consists of two groups : 26 autism and 11 pediatric control (PedCon).
PET images were preprocessed using Statistical Parametric Mapping (SPM)
package. After spatial normalization to the standard template space, mean FDG
uptake within 97 ROIs were extracted. The values of FDG uptake were globally
normalized to the individual’s total gray matter mean count.

4.2 Consistency Check using Jackknife

To verify the consistency of the correlation and partial correlation estimates,
we apply the jackknife method which recalculates them using the subset of the
sample data leaving out one sample at a time. Thus, we obtain the correlation
and the partial correlation matrices as many as the number of trials of jackknife.
We checked the consistency by determining whether the standard deviation is
less than 0.05 or not, varying λ (= 0, 1, 3, 5, 7). λ = 0 indicates the standard
method without the sparseness constraint.

Our dataset is under high-dimension-small-sample-size setting where the ex-
act partial correlation cannot be obtained properly, therefore, we borrowed 3
kinds of Schäfer’s methods: the pseudoinverse of the covariance matrix, the in-
verse of the ensemble of the sample covariance matrix and the pseudoinverse of
the ensemble of the sample covariance matrix, which are obtained by bootstrap
aggregation (bagging) [23]. In Fig. 4, we show that the sparseness constraint pro-
vides the consistent correlation and partial correlation, reducing the red region
which is the ratio of unreliable elements more than 0.05 standard deviation, as
well as makes many zeros, increasing the green region. The partial correlation
is more sensitive to λ than the correlation due to the small-n large-p problems.
We choose λ = 1 for the simulation.
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Fig. 5. Comparing (a) the number of edges, (b) the maximum number of clusters, (c)
the number of connections between lobes, (d) the number of connections in lobe, the
number of connections (e) in frontal lobe, (f) in parietal lobe, (g) in temporal lobe
and (h) between frontal and parietal lobe. The red box for autism and the blue box for
PedCon. The asterisk (*) represents the significant difference obtained by the Wilcoxon
rank sum test.

4.3 Clustering based on Correlation

In Fig. 2, the representative clustered brain networks of autism and the pediatric
control are shown. This result supports that the autistic brain network has local
overconnectivity and global underconnectivity compared to the normal control.
To verify the hypothesis, we performed the Wilcoxon rank sum test on the
number of edges, the number of clusters, the number of edges between lobes, the
number of edges in lobes, the number of edges in frontal lobe, parietal lobes and
temporal lobes and the number of edges between fronto-parietal lobes (Fig. 5).

4.4 Classification based on Partial Correlation

For classification, we partitioned the dataset into training and test data sets,
which consist of the randomly chosen two samples, from each group. After train-
ing the partial correlations which are coefficients of the p linear equations in Eq.
(4), we estimate the p residuals from the regression and classify the data using
p residuals. The classification accuracy is 84.44% when λ = 1 and γ = 0.1. We
also calculate the discriminative power of each connected region (Fig. 3a). Thus,
our method can find the local differences between different groups.

5 Conclusion

We proposed a novel thresholding framework in sparse regression on correlations.
The threshold is chosen to maximize the number of clusters, which is related
with the small-worldness. The sparse linear regression model was introduced for
the consistent, sparse and discriminative correlation and the partial correlation
estimation. The numerical experiments confirmed that (1) the partial correlation
estimated in the linear regression framework can be used for classification, which
can find the local differences between groups and (2) the correlation is a good
measure for graph partitioning which represents the global difference between
groups.
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