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Summary

Structural and functional brain images are playing an important role in helping us understand the changes

associated with neurological disorders such as Alzheimer’s disease (AD). Recent efforts have now started

investigating their utility for diagnosis purposes. This line of research has shown promising results where

methods from machine learning (such as Support Vector Machines) have been used to identify AD-related

patterns from images, for use in diagnosing new individual subjects. In this paper, we propose a new

framework for AD classification which makes use of Linear Program (LP) boosting with novel additional

regularization based on spatial “smoothness”. The algorithm formalizes the expectation that since the

examples for training the classifier are images, the voxels eventually selected for specifying the decision

boundary must constitute spatially contiguous chunks, i.e., “regions” must be preferred over isolated voxels.

This prior belief turns out to be useful for significantly reducing the space of possible classifiers and leads

to substantial benefits in generalization. In our method, the requirement of spatial contiguity (of selected

discriminating voxels) is incorporated within the optimization framework directly. Therefore, unlike some of

the existing methods, post-processing of the optimized classifier to ensure spatial smoothness is not required.

To our knowledge, our method is the first to directly include such a prior belief in a predictive classification

framework for brain image analysis. We perform and report on extensive evaluations of our algorithm on MR
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and FDG-PET images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and discuss

the relationship of the classification output with the clinical and cognitive biomarker data available within

ADNI.

1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder and the leading form of dementia

worldwide. Significant ongoing research is devoted toward establishing clinical biomarkers of the disease and

for the development of new drugs. A number of studies have indicated that AD-related neurodegenerative

change begins decades in advance of symptomatic disease (Johnson et al. (2006), Reiman et al. (1996),

Sager et al. (2005), Thompson and Apostolova (2007)). This suggests that advanced imaging techniques

may be able to provide insights into the early phases of the disease, long before symptoms of dementia are

observable. Studies have shown that AD characteristics such as structural atrophy Jack Jr. et al. (2005),

deToledo-Morrell et al. (2004), Thompson et al. (2001) and impaired metabolism Hoffman et al. (2000),

Matsuda (2001), Minoshima et al. (1994) can be identified (in structural and functional images) in Mild

Cognitive Impaired (MCI) and AD patients as well as at-risk individuals Small et al. (2000). In an effort

to utilize such images in the diagnostic process, a number of groups are focusing on the development of

better diagnostic tools using ideas from machine learning. Typically, available scans of a cohort of confirmed

(or highly likely) AD cases and control subjects, are exploited as training examples for a machine learning

algorithm. The algorithm seeks to optimize some statistical discrimination measure corresponding to the

image data (such as specific brain regions) that is most indicative of whether the subject image is from

the AD or control group. The optimized classifier may then be used to automatically classify (or give a

confidence score for) images of individual subjects where the diagnosis is unknown.

The classification of structural/functional brain images using machine learning techniques has been ap-

plied in the context of specific diseases such as schizophrenia Shen et al. (2003), Demirci et al. (2008),

Alzheimer’s disease Davatzikos et al. (2008), Klöppel et al. (2008), Vemuri et al. (2008), Duchesne et al.

(2008), Arimura et al. (2008), and obsessive-compulsive disorders Soriano-Mas et al. (2007). In the remain-

der of this section, we briefly review several interesting AD classification papers, and lay the groundwork

for introducing our contributions. In Fan et al. (2008), Fan et al. (2008), Davatzikos et al. (2008), Da-

vatzikos et al. (2008), Davatzikos and colleagues proposed a pattern recognition technique for classification

using structural Magnetic Resonance (sMR) scans from the Baltimore Longitudinal Study of Aging (BLSA)

dataset Shock et al. (1984). Their method uses a segmentation of the images into different tissue types

such as gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) regions, followed by a warping
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that preserves a measure of specific tissue types. This is followed by a feature selection step1 where voxels

are discarded (or selected) based on their statistical relevance for classification Sahiner et al. (2000). The

processed data is then used to train a linear Support Vector Machine (SVM) Bishop (2006), which gives

good accuracy on their dataset. Recently, Klöppel et al. Klöppel et al. (2008) also used linear SVMs to

classify AD subjects from controls. In addition, they were also successful in separating AD cases from other

types of dementia (Frontal Temporal Lobar Degeneration or FTLD) using whole-brain images. The authors

reported a high level of accuracy (> 90%) on confirmed AD patients, and less where post-mortem diagnosis

was unavailable. Independently, Vemuri et al. Vemuri et al. (2008) showed promising evaluations on another

dataset obtaining 88−90% classification accuracy (also using linear SVMs). The authors observed that using

all image voxels as features within their framework was counter-productive, as many of these voxels were

in fact misleading their method into choosing inferior classifiers. To address these difficulties, the authors

employed demographic and Apolipoprotein E genotype (APOE) data as auxiliary features in their model

and adopted significant pre- (and post-) processing on the images. For instance, the authors down-sampled

the data to 22 × 27 × 22 voxels, effectively aggregating many voxels’ outputs into a single voxel at lower

resolution. Then, they discarded voxels with less than 10% tissue densities in half or more of the images,

and finally used an ROI to remove the cerebellum. Feature selection was performed by training a linear

SVM, and discarding zero-weight voxels, and then training a second linear SVM on the remaining voxels as

the core learning algorithm. In order to compensate for SVMs’ inability to directly consider spatial relation-

ships between voxels, they pruned the weights from the second SVM by only retaining non-zero weights in

a spatially contiguous 3× 3× 3 neighborhood around top-ranked voxels.

A feature of some of the studies discussed above is the observation that exploiting the spatial structure

of the data can lead to improvements in accuracy. The spatial structure refers to the fact that neighboring

pixels are related, and the feature vector representation of the image volumes also inherits this dependency

(between its coordinate values). The techniques in Davatzikos et al. (2008), Klöppel et al. (2008), Vemuri

et al. (2008) employ a stand-alone classification model which does not directly permit a natural incorporation

of such spatial information. As a result, such properties can only be utilized via an extensive set of pre- (or

post-) processing steps. This suggests (as also noted in Vemuri et al. (2008)), that improvements may be

possible by designing a classification model that leverages the spatial information explicitly. Motivated by

this observation, we pursue a unified learning framework better suited to exploit inter-pixel dependency, a

typical characteristic of learning problems where the input is in the form of images. Our new model uses this

1 If each voxel is considered a “feature”, feature selection involves the estimation of which features are useful
for the problem at hand, and which subset of features can be safely discarded. Note that this procedure
almost always involves loss of information, and the extent of this loss varies as a function of the specific
problem and dataset being studied.
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additional information as constraints or priors during the optimization. The calculated classifier, therefore,

does not require post-processing, (such as pruning or redistributing weights) as it is intrinsically aware of the

spatial information. By directly incorporating this prior, our model allows a more nuanced balance between

the need to address accuracy, and the need to enforce spatial regularity on the learned classifier than is

possible when such priors are applied as pre- or post-processing steps. We consider the issue of efficacy in

detail in Section §4 by an extensive set of experimental results on baseline image scans from the Alzheimers

Disease Neuroimaging Initiative (ADNI) dataset, (http://www.loni.ucla.edu/ADNI/Data/) consisting of

a large set of Magnetic Resonance (MR) and (18fluorodeoxyglucose Positron Emission Tomography) FDG-

PET images. We also report on analysis relating the classifier confidence to approximately twenty different

cognitive biomarker data made available as part of the ADNI study.

The main contributions of this paper are: (1) we present a new predictive classification framework based

solely on imaging data, which incorporates spatial regularity priors, which until now have been utilized in

other frameworks by pre- or post-processing steps, and not included in the learning model. We present this

new model in Section §2; (2) We have conducted exhaustive experiments on the ADNI dataset which we hope

will allow objective comparisons between classification methods, in a way which closely matches real-world

conditions. We present these results in Section §4; (3) We have analyzed anomalous subjects in the hope of

identifying examples of heterogeneous AD pathology in the interest of better characterizing them, that we

may improve future iterations of classification methods, and perhaps even to discover subjects who are not

properly identified as AD or controls by the study. These results are presented in Section §5. We conclude

the paper in Section §6.

2. Algorithm

We briefly discuss some characteristics of the problem in the following section before outlining our proposed

algorithm in §2.2 - §2.4.

2.1 Problem setting

Consider a learning problem in a computer assisted diagnosis setting. The learning task is to utilize

“training data” (where confirmed (or highly likely) diagnosis of the patients into diseased or healthy classes

is available) to learn a classifier to be used for disease diagnosis. Now, if the data is in the form of images,

the first step is to encode the image as a feature vector. Notice that an image volume of size 1002 × 100 in

the training set yields a 106-dimensional vectorial representation. However, the image datasets are in general

relatively small (with at most several hundred images) due to practical difficulties in volunteer recruitment

and associated cost issues. As a result, our feature space is sparse, and the classification model may very

easily overfit and give poor generalization Bradley and Mangasarian (1998). One effect of this may be that
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the “learnt” classifier performs well on training data but poorly on “test” images that we want to classify.

This happens because the model learns the examples in the (relatively small) training set, without learning

the underlying distribution. One way to address this issue is to utilize a larger training set but this may

be infeasible in a variety of settings. On the other hand, if sufficient information about the data is given

(e.g., distribution is Gaussian), we may be able to effectively employ such knowledge in datasets where such

assumptions are valid. Another common strategy to address the high dimensionality is to explicitly utilize

dimensionality reduction tools such as principal components analysis (PCA) Jolliffe (2002). This works well

in some cases but PCA also makes a linearity and Gaussian assumption Jolliffe (2002), and consequently

the ‘signal’ may be attenuated for non-Gaussian datasets. These ideas and well known results from learning

theory Bishop (2006), Mitchell (1997) suggest that inclusion of effective priors (introducing bias) to regularize

the classification model is a promising means of improving performance. We will investigate such priors in

the form of the spatial structure of our data, i.e., the fact that feature vectors in the training set are encodings

of images.

Our classification method utilizes the idea of boosting. Boosting seeks to “boost” the accuracy of weak

(or base) classifiers – the general idea is to assign each classifier a weight and evaluate the goodness of

their aggregate response Freund (1995), Mitchell (1997), Schapire (1990), Demiriz et al. (2002). The weak

classifiers, when considered individually may have low predictive power. However, the premise is that if the

weak classifiers’ errors are uncorrelated, their combination gives a better approximation of the underlying

“signal”. Linear Programming boosting (LPboosting) is a boosting approach Demiriz et al. (2002), Grove

and Schuurmans (1998) where the final classifier is learnt within a linear optimization framework but with

a soft margin bias. That is, emphasis is placed on separating the feature space into two regions (where each

region contains either positively or negatively labeled examples), such that the margin between the positive

and negative regions is maximized. The model places a 1-norm penalty on the weights, which also has the

effect of reducing many of the weights to zero2. Our model in §2.4 will build upon the LPboosting model with

a set of additional priors. Weak classifiers in our case correspond to individual voxels (or features), which

we discuss in more detail in the next section.

2.2 Boosting Approach and Weak Classifiers

Let us denote the set of images in the training set as I = {I1, I2, · · · , In} with known class labels

y = {y1, y2, · · · , yn}, yl ∈ {+1,−1}. Without loss of generality, AD-positive patients (and controls) are

denoted as −1 (and +1) respectively, and I = IAD ∪ ICN where IAD (and ICN) are the image sets of the

AD (and control) groups respectively. The set of image volumes in I are spatially normalized to a common

2In linear SVMs, the penalty is on the 2-norm of the weights, which places more emphasis on the width of
the margin, in a Euclidean sense.
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template space, as a first step. Therefore, a voxel located at (x, y, z) in one image “corresponds” to the voxel

located at (x, y, z) in other images in I.

The proposed method makes no assumptions on a specific imaging modality. For instance, when utilizing

T1-weighted MR scans, the images are segmented into gray matter (GM), white matter (WM), and cere-

brospinal fluid (CSF), and probability maps of different tissue types are generated using standard techniques

Ashburner and Friston (2000), Ashburner (2007), Friston et al. (1996). Either one of these quantities (voxel

intensities) are then used to construct weak classifiers. Our weak classifier construction is partly motivated

by voxel-wise group analysis methods. Each weak classifier at a voxel (x, y, z) tries to correlate variation

at that voxel with the likelihood of AD diagnosis. Since AD is characterized by atrophy in specific brain

regions, we should expect some weak classifiers to be more discriminative than others. Our algorithm will

seek to automatically select and boost such classifiers. For notational convenience, in the remainder of this

paper we will refer to voxels using a single index such as i, rather than (x, y, z).

Let us consider a list of the intensities of voxel i of all images in the training set, I. Now, given the

class labels of individual images in the set, what is a good “thumb rule” if we were to use only this voxel

for classification? Clearly, if this voxel is highly discriminative, the distribution is likely to be well separated

(bi-modal). A threshold separating the two modes will work well for classifying any yet unseen test image

(and also images in I), if the training set were sampled i.i.d. from the unknown but fixed underlying

distribution. In general, however, the information from only one voxel will be far from the ideal setting

above. Nonetheless, the labels on the training data can be used to determine a threshold. The classification

induced by the threshold is the response of the weak classifier. Note that such a threshold may misclassify all

examples in the region where the modes overlap. Fig. 1(b) shows that the weak classifiers give more incorrect

outputs near the threshold, where there is more overlap between the modes, though they are also prone to

errors even in the “safer” regions where their outputs have greater confidence. While such a predictor may

be rather poor for many voxels, fortunately, we only require better accuracy (> 50% when there are two

groups), and only on a subset of voxels.

The responses of the weak classifiers will populate a matrix, H of size m × n, where m is the number

of images and n is the number of classifiers (or voxels). We adopt a “soft” thresholding approach, i.e.,

the response of the weak classifier assigns a confidence score to the classification for each image rather

than explicitly classifying it in either group. We use a logistic sigmoid function with a variable ‘steepness’

parameter ρ, and adjust the range to be [−1, +1]. We first choose a voxel specific threshold, τi, so that the

response is negative (or positive) if less than (or greater than) the threshold. The τi value is calculated as the

midpoint between the gray matter probabilities (or voxel intensities) means at voxel i for the IAD and ICN

groups. Because a decline in GMP represents gray matter atrophy, a clinically consistent assumption here is
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(a) (b)

Figure 1: Classifying/sorting image volumes in two classes using a single voxel. (a) Output of the 2000 most
significant (voxel specific) weak classifiers using the given GMP data. Each row corresponds to a single weak classifier’s
output, individually sorted in non-decreasing order so that each column corresponds to an image volume in the training
set. The image volumes are ordered differently in each row. Note that this is only the weak classifier output and
does not correspond to ground truth. (b) If given access to ground truth labels, we can calculate the prediction error.
Green regions denote entries where the sign of the weak classifier was correct, red and blue indicate false positive and
false negative respectively. The prominent regions of misclassification suggest that individual weak classifiers are not
very accurate.

that the control group mean, µCN(i) is greater than the AD group mean µAD(i) Fox and Schott (2004). Our

choice of an adjusted logistic sigmoid curve is based on the fact that its first derivative closely approximates

the Gaussian distribution, and conversely the value of the sigmoid (before adjustment) corresponds to the

area under the Gaussian density function up to that point. This means that while the weak classifiers do

not output actual probabilities, the level of confidence is related to the probability of class membership.

Figure 2: Weak classifier outputs as a

function of ρ values.

Let Hij be the output of a weak classifier i (a certain voxel or

feature) on image j.

Hij =
2

1 + exp (τi − ρ · Ij(i))
− 1

where ρ is the “steepness” parameter, Ij(i) is the GMP at voxel i in

image Ij ∈ I, and the threshold is given as τi = (µCN(i)−µAD(i))/2.

We illustrate the observed steepness as a function of ρ in Fig. 2.

2.3 Spatial Constraints
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Figure 3: Spatial relationships

(neighborhood) in the original im-

age space are inherited as pair-wise

relations in the feature-vector.

A characteristic of the problem, as discussed in §2.1 is that the fea-

ture vectors are representations of image data. This results in a certain

dependency between the feature vector coordinates, and also the weak

classifiers, see Fig. 3. This property of the data can be leveraged to

introduce a bias (or prior) in the classification which has an advantage

of constraining the complexity (expressiveness or degree of freedom) of

possible classifiers, encouraging better generalization. The classifier con-

sists of a set of weights on weak classifier outputs to define a separating

hyperplane. We enforce spatial regularity by requiring that the weights

assigned to neighboring weak classifiers should be similar. Such a spatial

regularizer also has the benefit that it avoids selecting individual spatially

isolated voxels. Rather, it prefers spatially localized ‘regions’ – a desirable characteristic since isolated voxels

are seldom clinically relevant, and markers of AD, if observable in the image, must be spatially localized.

2.4 Classification model

Our final optimization model is given as

min
w,ξi

wT p̃ + C
∑

i

ξi + D
∑
j∼k

tjk (1)

s.t. yiwT Hi + ξi ≥ 1 ∀i

wj − wk − tjk ≤ 0 ∀j ∼ k

wk − wj − tjk ≤ 0 ∀j ∼ k.

The vector w defines a separating hyperplane, and the term wT Hi is the projection of example i onto the

vector normal to the hyperplane. The sign of this quantity determines the side of the hyperplane onto which

example i falls (this is zero for points on the decision boundary). By specifying that it must be at least ±1,

we place an emphasis on the margin. The term given by the product of wT Hi and by yi (the given class label

of example i: {+1,−1}) imposes a lower bound of +1 for both positive and negative examples. For cases

where the data are not linearly separable, a set of “slack variables” ξi are used to compensate for examples

which cannot be placed on the correct side of the decision boundary. The penalty on the slack variables

(second term in objective) ensures that the hyperplane will be chosen so that it correctly classifies as many

examples as possible. The 1-norm penalty on weights w used here has the effect of selecting a sparse set

of the most discriminative voxels, i.e., a large percentage of weak classifiers are suppressed and assigned a
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zero weight. Sparsity of relevant features allows for an easier clinical interpretation as the output consists

of only a few but highly discriminative (highly weighted) localized regions. This is preferable to diffuse

outputs where many voxels are assigned non-zero weights, since it is difficult to analyze where significant

structural variations are present, and which regions are most discriminative. The 1-norm penalty also serves

a feature selection purpose Fung and Mangasarian (2004), Gaul and Ritter (2000), in many applications.

The vector, p̃, represents the training set error rate of every weak classifier (first term in objective). By

adjusting the penalty on each weight wj relative to its training set error rate, we allow weak classifiers

with greater accuracy to be given slightly greater weight. The auxiliary variables tjk represent the absolute

difference between weights on neighboring voxels j and k (indicated as i ∼ j). These variables are similarly

penalized, which leads the optimizer to choose a separating hyperplane whose weights correspond to a set

of spatially coherent voxels. We note that if t = |w| then t ≥ w and t ≥ −w must both hold simultaneously.

Thus, tjk = |wj − wk|. The parameter C controls the amount of emphasis placed on training set accuracy

relative to margin width. The emphasis on spatial regularity is similarly controlled by D. The model benefits

from a good choice of regularizers, C and D. In Model (1) above, we observed that in practice D > 10 · C

is a reasonable choice to sufficiently enforce the neighborhood constraints. Finally, we note that the linear

program in (1) can be optimally solved efficiently in polynomial time. Once the solution is obtained, the

weights w can be interpreted as the coefficients of a separating hyperplane in the feature space. We use this

hyperplane directly as our classifier, and no additional post-processing is required.

3. Materials and Methods

3.1 Data set

The evaluations of our algorithm focus exclusively on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 million,

5-year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimers disease (AD). Determination of sensitive and specific markers of very early

AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical trials. The Principle Investigator of this initiative is

Michael W. Weiner, M.D., VA Medical Center and University of California San Francisco. ADNI is the result

of efforts of many co-investigators from a broad range of academic institutions and private corporations, and
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controls (mean) controls (s.d.) AD (mean) AD (s.d.)

Age 75.81 4.46 76.11 6.99
Gender(M/F) 59/35 53/36

MMSE 29.01 0.78 21.71 3.04
ADAS 10.14 4.26 32.32 9.10

Table 1
Demographic and neuropsychological characteristics of the study population. The FDG-PET population is a

subset of this population.

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 adults, ages 55 to 90, to participate in the research – approximately 200 cognitively normal

older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people

with early AD to be followed for 2 years.

The baseline data used here includes:

1. T1-weighted Magnetic Resonance(MR) images: using both gray matter and white matter probability

maps (for classification).

2. 18fluorodeoxyglucose-Positron Emission Tomography (FDG-PET) images (for classification).

3. Cognitive and neuropsychological biomarker data (only used to demonstrate that the classification

confidence is correlated with known relevant biomarkers, and is not used in classification.)

Our experimental evaluations utilized a portion of the ADNI database. The subjects included 183 indi-

viduals (112 males, 71 females) in the T1-weighted MR image set, and 149 individuals (88 males, 61 females)

in the FDG-PET image set, and some subjects were common to both populations. Of the 183 individuals in

the MR population, neuropsychological test scores were available for 182 subjects, and semi-automatically

derived brain region volumes from the Anders Dale lab at UCSD were available for 126 subjects. We will

refer to this as UCSD. Similarly derived hippocampus volumes from Colin Studholme at UCSF were also

available for 135 subjects. We will refer to this as UCSF. A summary of demographic and neuropsychological

data are presented in Table 1.

3.2 Preliminary Data Processing

Image processing of the T1weighted images was performed using voxel-based morphometry (VBM) tool-

box in Statistical Parametric Mapping software (SPM, http://www.fil.ion.ucl.ac.uk/spm). Segmenta-

tion in SPM employs a unified approach, combining: segmentation of the original anatomical images into

gray matter (GM), white matter, and cerebrospinal fluid images; normalization (12-parameter affine trans-

formation and non-linear deformation with a warp frequency cutoff of 25) of the segmented images to the
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Montreal Neurological Institute template (MNI); and bias correction, in one iterative process. A modulation

step was also employed, which scales the final GM images by the amount of contraction required to warp the

images to the template. The final result is GM volume maps for each participant, where the total amount of

GM remains the same as in the original images. Finally, the normalized maps were smoothed using an 8-mm

isotropic Gaussian kernel to optimize signal to noise and facilitate comparison across participants. Analysis

of gray matter volume employed an absolute threshold masking of 0.1 to minimize the inclusion of the white

matter in analysis.

4. Experiments and Results

We first cover our results on the T1-weighted MR images, before moving to accuracy evaluations with FDG-

PET image data in §4.2. We then discuss the relation between the classification confidence and various

biomarkers in §4.3. Finally, we describe our solution to several implementation issues in our experiments.

4.1 MR image data

Our evaluations with the ADNI MR image data were performed using leave-two-out cross-validation. In

these experiments we used only the gray matter probability maps (GMPs). We also used GMPs together

with the white matter probability maps (WMPs) for training and classification, however this did not yield

any significant improvements. The classification accuracy was determined by calculating the number of ‘test’

images on which the classifier’s class prediction (AD or CN) was incorrect; we report on the mean of these

errors for both the above mentioned cases. The classification accuracy of the model using GMPs was 82%,

and the sensitivity (and specificity) was 85% (and 80%). The results are summarized in Table 2, and suggest

that the proposed technique works well for the AD classification task using MR image data.

Recall that in addition to a class label for the test images, the algorithm may be asked to report a

classification confidence for each case (i.e., prediction), the summary of these results are shown in Fig. 4. In

Fig. 4(a) we see that the classifier output on AD cases is concentrated between 0 (closest to the classification

boundary) and −3 (farthest from the classification boundary), but the model incorrectly classifies some cases

(which account for the misclassifications in the accuracy reported in Table 2 below). Fig. 4(b) shows the

Receiver Operating Characteristic (ROC) plot where the area under the curve (AUC) of 0.8789 suggests a

high predictive accuracy.

Data set Accuracy Sensitivity Specificity Area under ROC
GMP 82% 85% 80% 0.8789

FDG-PET 80% 78% 78% 0.8781

Table 2: Results of classification experiments on ADNI image data. One set of experiments were conducted
with Gray Matter Probabilities (GMP) derived from T1 weighted MR images as input. The other set of
experiments were conducted with FDG-PET images.
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(a) (b)

Figure 4: (a) Classifier’s output for test images on the MR population. (b) ROC curves on the MR
population.

An important component of our experiments was to evaluate the relative importance of various brain regions

in terms of specifying a good classifier, and whether these regions are consistent with clinically accepted

distribution of AD-specific pathology. Figure 5 shows our results for the entire MR population. We see that

the selected voxels (or weak classifiers) are concentrated in the hippocampus and parahippocampal gyri, but

that there are also some voxels in the medial temporal lobe bilaterally, and scattered in other regions. We

find these results encouraging because the selected regions are all known to be affected in AD patients.

4.2 FDG-PET image data

We applied our algorithm to the FDG-PET scans from the ADNI dataset as well. In all, there were 149

subjects in the MR population who also had FDG-PET scans. We call this group the FDG-PET population.

Our method obtained 80% classification accuracy on the FDG-PET population, The specificity was 78%,

and the sensitivity was 78%, while the area under the ROC curve was 0.8781 as shown in Table 2.

Figure 6(a) shows the output of our classifier on the 149 subjects of the FDG-PET population. Similarly

to the MR population, most of the AD subjects are concentrated between −1 and −2, (and similarly the CN

subjects are concentrated between 1 and 2, while some subjects were misclassified. Again, the area under

the ROC curve in Fig. 6(b) is an indication of the high accuracy of this method.

We also evaluated the brain regions selected by our algorithm in the experiments utilizing FDG-PET

scans in terms of their relevance to AD-specific pathology. From Fig. 7 we can see that the posterior
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Figure 5: Brain regions selected when using GMPs derived from MR scans as input. Numerical scale
corresponds to each voxel’s weight in the classifier, and has no applicable units.

(a) (b)

Figure 6: (a) Classifier’s output for test images in the FDG-PET population (149 subjects overall). (b) ROC
curves on the FDG-PET population.

cingulate cortex and bilateral parietal lobules are well represented, as well as the left inferior temporal lobe.

These regions are known to have well established associations with AD-related neurophysiological changes.

These results illustrate that the algorithm is able to reliably determine clinically relevant regions in different

scanning modalities.
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Figure 7: Brain regions selected when using FDG-PET scans as input. Numerical scale corresponds to each
voxel’s weight in the classifier, and has no applicable units.

4.3 Relationship with cognitive biomarkers and semi-automatically traced brain region volumes

Clinical diagnosis of AD depends on various cognitive test results, such as the Mini-Mental State Exam

(MMSE). It is reasonable to expect that the output of an effective classification algorithm will agree with

these cognitive and clinical measures. We present results showing that our algorithm exhibits these desirable

characteristics. The biomarkers available are divided into two broad categories: neuropsychological battery

scores and hand-traced brain region volumes. As expected, the classification confidence of the algorithm on

the MR population displays a strong statistical correlation with many of these biomarkers, as shown in Fig.

8. Most of the image-based correlation indices are above 0.5 (in absolute value). In Fig. 8(b) we see that the

MMSE scores (a measure of global cognitive status) are tightly correlated with the classification confidence

of our algorithm.

Figure 8: (a) Statistical correlation between each of the biomarker outputs and the algorithm’s output in
the MR population. Note that both the UCSD and UCSF hippocampal volumes are in close agreement with
our method. (b) Classifier’s output as a function of MMSE score for each subject in the MR population.
A linear best-fit approximation is shown. Note that MMSE scores alone are nearly sufficient to decide the
clinical diagnosis for the ADNI cohort, and in fact is a major criterion for the diagnosis of AD.
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4.4 Implementation issues

Our proposed algorithm was implemented in Matlab, using CPLEX as the linear program solver for (1).

The parameters C and D in (1) were chosen to be 100 and 1000 respectively, and ρ was set to 20, see

Fig. 3(a). In practice, we observed that when the parameter D, in (1) is set to 0 (removing the neighbor

constraints), then irrespective of the variations introduced in the other parameters, the algorithm always

chooses between 25 and 50 voxels (non-zero weights), and gives inferior accuracy. However, when D is set to a

reasonable non-zero value depending on the smoothness of the data (e.g. FDG-PET data is far more regular

than unsmoothed GMPs) the number of voxels selected varies between 150 to a few thousand. In most

cases, a choice of D as described above leads to a 4% increase in classification accuracy. The 1-norm penalty

in (1) was scaled (adjusted) using the p-values for each corresponding voxel. Neighboring constraints were

not introduced between neighboring weak classifiers where their training set accuracy varied significantly,

leaving several ‘orphan’ weak classifiers (i.e., those which do not participate in any neighboring constraints);

such orphan voxels were discarded. For computational reasons, we limited the number of weak classifiers by

calculating t-test p-values for each voxel, and discarding all but the most significant ones. We found that

using about 2000 weak classifiers worked well in practice. The running time of the algorithm was 15s to

60s for each fold on a modern workstation (2.33 GHz quad-core Xeon). While the implementation is not

optimized for speed or memory usage, the computation utilizes no more than 3 GB RAM on our dataset of

about 180 volumes of size 91 × 109 × 91. No resampling was needed. The paper has a companion website

(http://erdos.biostat.wisc.edu/~hinrichs/SA_LPBoost2008) where the code and other supplemental

information will be made freely available ¡after publication¿.

5. Analysis of anomalous cases

In addition to the classification experiments described above, we performed a post-hoc analysis on the images,

in an effort to control or identify possible outliers. This analysis revealed that a subset of the images strongly

resembled the opposite class, i.e., some AD subjects resembled controls, while some controls resembled AD

subjects. We briefly discuss these results next. For convenience, we refer to this smaller subset of anomalous

images as group II, while group I refers to the remaining images not included in group II. That is, group

I represents the more homogeneous cases, while group II is comprised of anomalous cases.

Rationale. It is well known that AD-related neurodegenerative pathology is heterogeneous. Thompson

et al. (2001) In addition, while the ADNI dataset is based on the most rigorous quality control protocol

possible barring access to gold standard diagnostics such as biopsy or post-mortem analysis, there is some

expectation that subjects will be misclassified. This may be because of the difficulty in distinguishing AD

from other types of dementia such as Frontotemporal Lobar Dementia (FTLD) or Lewy bodies Klöppel et al.

15



(2008). Further confounding the situation is the possibility of comorbidity of AD with other neurodegener-

ative and neurovascular diseases such as stroke or multi-infarcts.

(a) (b)

Figure 9: (a) Weak classifier outputs for the 183 members of the MR population, ordered by the number of
weak classifiers giving incorrect outputs. Color indicates type and degree of incorrectness; blue corresponds
to false negative, red to false positive, and green indicates correct response. Note the sharp boundaries
between the red and blue bands at either end – these are the members of group II. (b) Percent of weak
classifiers giving incorrect responses for the same subjects.

Identification of possible outlying data. The criterion we used in order to find this group was based

on the extent to which the gray matter levels over the whole brain seemed to contradict the label given each

subject, i.e., AD or CN. In order to do this, we chose the 2000 most significant voxels in terms of p-values

derived from a t-test, and examined the weak classifier predictive outputs on those voxels. These outputs

are shown in Figure 9 (a). Each column corresponds to a single example, and each row to a single weak

classifier. The columns, i.e. subjects, are ordered from those having the most false negatives at the left, to

those having the most false positives at the right. The color indicates the degree of incorrectness, as in Figure

1 (b), with blue indicating false negative, green correct response, and red false positive, respectively. We can

clearly see that there are two “bars” at either end, consisting of subjects which are given the wrong label

by nearly the entire set of weak classifiers. Subjects for which more than 65% of the weak classifiers gave

incorrect outputs were placed in group II (Note that this closely matched the “bars” in Figure 9 (a)). This

gave 10 controls, and 13 AD subjects. Figure 9 (b) shows the percentage of weak classifiers giving incorrect

outputs on each subject. Our labeling of anomalous subjects in this manner is not simply an artifact of our

weak classifiers, but reveals a systemic pattern of deviation from the mean in each group. Evidence from

hippocampus volume measures yields a similar labeling. That is, the set of subjects more than one standard

deviation away from the group mean, (of hippocampal volume), is almost identical to the set of examples

placed in group II as above.
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Effect on classification. As may be expected, when we re-ran our experiments on group I alone,

the accuracy of our algorithm improved dramatically - accuracy increased to 92.5%, with a sensitivity and

specificity of 88% and 96%, respectively, and an area under the ROC curve of 0.9815. This contrasts

significantly with the results reported in Table 2. Perhaps the best way to interpret these results is that the

accuracy reported for the entire population is a lower bound on our method’s accuracy, and the results we

report for group I alone represent a likely upper bound on our algorithm’s accuracy, while the true accuracy

when a gold standard is available will probably lie somewhere in between.

Characteristics of group II controls. We found that in several respects the group II controls were

very similar to group I AD subjects.

• Our first observation was that the group II controls had significantly less total brain volume, even

relative to group I AD subjects: 8.8× 105 (group II CN)3 compared to 1.02× 106 (group I CN) and

9.48× 105 (group I AD) with p-values < 10−9.

• All regions (where manual tracings are provided in the ADNI dataset) were significantly smaller in

group II controls compared to group I controls (p-values < 10−3). Regional volumes for group II

controls were closer to the respective measures from group I AD subjects.

• The ventricles in group II controls were not significantly smaller than controls in group I, which

indicates that the above variations cannot be attributed to smaller brain sizes alone (and suggests

possible atrophy).

• The hippocampal volume measures showed even larger variations in controls between groups I and II.

• Our VBM analysis between group II controls and group I AD subjects gave no discriminating regions

and only isolated voxels.

• VBM analysis also revealed a significant gray matter density deterioration (p-values < 10−6) in the

hippocampus and parahippocampal gyri for group II controls, when compared to controls in group I.

Characteristics of group II AD subjects.

AD subjects in group II similarly resembled group I controls.

• The mean total brain volume of group II AD subjects was almost identical to that of group I controls

(≈ 1.02 × 106 in both groups). By comparison, the mean total brain volume of group I AD subjects

was 9.48× 105.

3Units are mm3.
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• In the hippocampus and entorhinal cortex the mean volume among group II AD subjects was nearly

the same as that of group I controls: 7159.93 (UCSD) in group II AD subjects versus 7390.93 (UCSD)

in group I controls for the hippocampus. By comparison, the same measures were 5520.07 (UCSD) in

group I AD subjects. The mean entorhinal cortex volumes had a similar proportion.

• Our VBM analysis showed greater gray matter densities in the hippocampus for group II AD subjects

compared to group I AD and hypertrophy in the thalamus relative to group I controls.

Cognitive status. While the image based biomarkers showed significant variations between groups I and

II, the associated cognitive status and neuropsychological scores (e.g., MMSE) were relatively consistent.

This is not surprising because cognitive status, especially the MMSE score, is highly relevant to clinical

diagnosis. However, Group II AD subjects did show significant group differences in tests measuring logical

memory – both immediate and delayed recall, number of spontaneous correct responses given on the Boston

Naming Test, and audio visual tests. In all of these, group II AD subjects scored higher indicating slightly

healthier cognitive status (consistent with lower observed atrophy in the preceding discussion). Of these,

the delayed recall was the most significantly different (p-value ≈ 0). There was no significant difference

between the performance of group I and group II controls on any measure of cognitive status. Summaries

of biomarkers significantly differing between both groups I and II are presented in Tables 3 and 4 in the

Appendix.

Summary. We note that confirmed diagnosis of AD is only possible post-mortem. Given the clinical

nature of the ADNI data set, it is possible that some AD subjects in the cohort may have another form of

dementia or possibly depression, while some controls may have AD in the early stages, and have not yet

begun showing signs of cognitive decline. The classification algorithm, however, assumes that every label in

the training data is correct, and therefore tries to correctly classify every training example. In the presence

of incorrectly labeled examples, however, it is difficult for a method to have a lower expected error rate than

the fraction of mislabeled examples in the training set. Clearly, if our data set contains mislabeled examples

Wade et al. (1987), Schofield et al. (1995), Burns et al. (1990), an automated method may not be able to to

outperform this limitation. An interesting question then is, can we detect subjects with signs of abnormality?

Characterizing this set will be useful for not only improving the accuracy of classification systems evaluated

on this dataset, but may also suggest ways that the classifier can be modified to automatically handle them.

Our analysis above, and evaluations of classifier’s performance with/without group II may be a useful first

step in potentially discovering mislabeled subjects that may not have been identified by the study’s strict

quality control protocols.
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6. Conclusions and future directions

We have demonstrated a new algorithm for automated AD classification of the level of single subjects using

either structural or functional image scans. Our technique directly incorporates spatial relationships between

voxels into the learning framework, and requires no extra modality-dependent pre- or post-processing. We

have shown extensive evaluations on the ADNI dataset. Since results from several other existing techniques

were reported on different datasets with different sample sizes, we believe that our results and software

will enable objective comparisons of different methods to evaluate their advantages and disadvantages in

context of this large and well characterized image data. Such comprehensive evaluations will likely lead to

standardization and development of improved classification systems for AD diagnosis.
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Appendix

Supplementary material related to the discussion in Section 5: comparison of various biomarkers between

group I and group II. AD subjects are treated separately from CN subjects. Only biomarkers showing

significant variation are included here.

Biomarker (AD subjects) Group I Group II Z-test p-value

Mini-Mental State Exam (MMSE) 21.5 (3.04) 22.94 (2.84) 0.08

Tau-protein 111.94 (51.77) 151.88 (88.34) 0.0147

Logical Memory - Immediate Recall 3.13 (2.18) 4.91 (3.338) ∼ 10−3

Logical Memory - Delayed Recall 0.48 (0.8) 3.13 (2.54) ∼ 10−16

Boston Naming - Spontaneous Correct Responses 19.69 (6.95) 25.49 (4.70) ∼ 10−3

Audio Visual 1.1 (1.08) 1.99 (2.15) 0.0374

Brain volume (UCSD) 948005.03 (84947.07) 1025001.3 (79868.99) ∼ 10−3

L. Hippocampal volume (UCSD) 2706.69 (382.98) 3446.61 (573.23) ∼ 10−10

R. Hippocampal volume (UCSD) 2813.38 (432.2) 3713.32 (368.21) ∼ 10−12

L. Entorhinal cortex volume (UCSD) 2.44 (0.46) 3.03 (0.36) ∼ 10−5

R. Entorhinal cortex volume (UCSD) 2.50 (0.46) 3.18 (0.42) ∼ 10−7

L. Hippocampal volume (UCSF) 1518.45 (246.11) 1996.95 (426.44) ∼ 10−10

R. Hippocampal volume (UCSF) 1498.39 (334.53) 2163.35 (341.04) ∼ 10−14

Table 3: Comparison of relevant biomarkers in group I AD and group II AD. MMSE is included for reference;
all other biomarkers listed are significantly different between groups at at least the 0.05 level.

Biomarker (CN subjects) Group I Group II Z-test p-value

Mini-Mental State Exam (MMSE) 28.98 (0.8) 29.19 (0.69) 0.33

Ventricles volume (UCSD) 38788.18 (23264.37) 40085.85 (13514.94) 0.84

Brain volume (UCSD) 1023746.53 (86217.87) 880452.33 (75572.03) ∼ 10−9

L. Hippocampal volume (UCSD) 3599.87 (383.32) 3116.90 (301.58) ∼ 10−5

R. Hippocampal volume (UCSD) 3791.06 (422.58) 3159.28 (359.84) ∼ 10−7

L. Mid temporal volume (UCSD) 2.58 (0.17) 2.45 (0.12) ∼ 10−3

R. Mid temporal volume (UCSD) 2.6 (0.20) 2.48 (0.21) 0.0454

L. Inf. temporal volume (UCSD) 2.64 (0.15) 2.49 (0.14) ∼ 10−4

R. Inf. temporal volume (UCSD) 2.60 (0.19) 2.47 (0.25) ∼ 10−2

L. Fusiform volume (UCSD) 2.39 (0.17) 2.25 (0.16) ∼ 10−3

R. Fusiform volume (UCSD) 2.36 (0.17) 2.25 (0.18) ∼ 10−2

L. Entorhinal cortex volume (UCSD) 3.19 (0.30) 2.86 (0.36) ∼ 10−4

R. Entorhinal cortex volume (UCSD) 3.34 (0.32) 3.02 (0.51) ∼ 10−4

L. Hippocampal volume (UCSF) 2126.69 (267.67) 1795.54 (208.3) ∼ 10−5

R. Hippocampal volume (UCSF) 2176.57 (275.65) 1781.65 (252.45) ∼ 10−7

Table 4: Comparison of relevant biomarkers in group I CN and group II CN. MMSE is included for reference;
all other biomarkers listed are significantly different between groups at at least the 0.05 level.

23


	Introduction
	Algorithm
	Problem setting
	Boosting Approach and Weak Classifiers
	Spatial Constraints
	Classification model

	Materials and Methods
	Data set
	Preliminary Data Processing

	Experiments and Results
	MR image data
	FDG-PET image data
	Relationship with cognitive biomarkers and semi-automatically traced brain region volumes
	Implementation issues

	Analysis of anomalous cases
	Conclusions and future directions

