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We present a unified statistical framework for ana-
lyzing temporally varying brain morphology using the
3D displacement vector field from a nonlinear defor-
mation required to register a subject’s brain to an
atlas brain. The unification comes from a single model
for structural change, rather than two separate mod-
els, one for displacement and one for volume changes.
The displacement velocity field rather than the dis-
placement itself is used to set up a linear model to
account for temporal variations. By introducing the
rate of the Jacobian change of the deformation, the
local volume change at each voxel can be computed
and used to measure possible brain tissue growth or
loss. We have applied this method to detecting regions
of a morphological change in a group of children and
adolescents. Using structural magnetic resonance im-
ages for 28 children and adolescents taken at different
time intervals, we demonstrate how this method
works. © 2001 Academic Press

Key Words: volume change; volumetry; brain growth;
morphometry; atrophy; deformation; brain develop-
ment.

INTRODUCTION

Temporally varying morphological differences in the
brain have been examined primarily by MRI-based
volumetry. Classical MRI-based volumetry requires
segmentation of the identical region of interest, either
manually or by spatial normalization, in two MR im-
ages taken at different times t1 and t2. Then the total
volumes V1 and V2 of the homologous regions are cal-
culated by counting the total number of voxels. After-
ward, the volume variation DV 5 V2 2 V1 is used as an
index of morphological changes (Giedd et al., 1996a;
Rajapakse et al., 1996; Reiss et al., 1996; Thirion and
Calmon, 1999).

As a part of deformation-based morphometry, a new
technique called deformation-based volumetry is
merging; this method does not require segmentation
f a priori regions of interest (Davatzikos, 1999; Ash-
1

urner and Friston, 2000). In deformation-based volu-
etry, the Jacobian of the deformation field that is

equired to register one brain to another is used to
etect volumetric changes. By definition, the Jacobian
f the deformation is the volume of the unit-cube after
he deformation. Assuming that one can find the defor-
ation field at any voxel, volume change can be de-

ected at a voxel level. So the advantage of this tech-
ique over the classical MRI-based volumetry is that it
oes not require a priori knowledge of the region of
nterest to perform the morphological analysis. More-
ver, the deformation-based volumetry improves the
ower of detecting the regions of volume change within
he limits of the accuracy of the registration algorithm.
hese two advantages of the deformation-based volu-
etry over the standard MRI-based volumetry have

lso been noted by Davatzikos (1999) and Ashburner
nd Friston (2000).
Because the deformation-based morphometry (DBM)

s a relatively new method, very few morphological
tudies have used the Jacobian for local volume
hange. Davatzikos et al. (1996) used the Jacobian of
he 2D deformation field as a measure of local area
hange in 2D cross-sections of the corpus callosum to
est gender-specific shape differences. Thompson and
oga (1999) applied the Jacobian of 3D deformations as
measure of the regional growth of the corpus callo-

um. Also volume dilatation, which is the first-order
pproximation of the Jacobian, has been used instead
f the Jacobian itself to measure local volume change.
hirion and Calmon (1999) used the divergence of the
isplacement vector field, which is equivalent to the
ilatation, for detecting growth of brain tumors.
hompson et al. (2000) used local rates of dilatation,
ontraction, and shearing from the deformation field to
etect morphological changes in brain development.
There has also been a parallel development in de-

ecting morphological changes without volumetry us-
ng Hotelling’s T2 statistic for the displacement field

(Thompson et al., 1997; Joshi, 1998; Collins et al., 1998;
Gaser et al., 1999; Cao and Worsley, 1999). Although it
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2 CHUNG ET AL.
seems that there are many different ways of detecting
morphological changes in deformation-based mor-
phometry, a translation, a rotation, and a strain are
sufficient for detecting a relatively small displacement
and, in turn, for characterization of morphological
changes over time.

In this paper, we present a unified statistical frame-
work for detecting brain tissue growth and loss is tem-
porally varying brain morphology. As an illustration,
we will demonstrate how the method can be applied to
detecting regions of tissue growth and loss in brain
images longitudinally collected in a group of children
and adolescents.

METHODS

Statistical Model

Unlike other brain morphological studies that try to
characterize the structural variabilities among differ-
ent individuals of similar age groups, morphological
studies of temporally varying brain structure have an
extra temporal dimension. Therefore, a different ap-

FIG. 1. The statistical analysis of local volume change data on
ives an incorrect impression that the local volume change only occur
b) t map of local volume change. Local maxima appear around the c

t map of local volume change after 10-mm Gaussian kernel smoothin
signal-to-noise ratio improves. (d) Thresholded t map superimposed o
volume increase. When the corrected threshold of t . 6.5 is applied,
isthmus and splenium of the corpus callosum.
proach to morphometry is required to fully understand
the spatiotemporal complexity of brain development.

Let U(x, t) 5 (U1, U2, U3) be the 3D displacement
vector field required to move the structure at position
x 5 (x1, x2, x3) [ R3 and at the reference time 0 of a
subject brain to the corresponding position after time t.
Thus the structure at x deforms to x 1 U(x, t) with
respect to a fixed reference coordinate. The displace-
ment field U(x, t) at fixed time t is usually estimated
via volume-based nonlinear registration techniques on
two images taken at time 0 and at time t. Then we
propose to test the following stochastic model of brain
development,

­U

­t
~x, t! 5 L~U! 1 S 1/2~x!e~x!, (1)

where L is a partial differential operator involving
patial components and S(x) is the 3 3 3 symmetric

positive-definite covariance matrix, which allows cor-
relations between components of the deformations and
depends on the spatial coordinates x only. Since S is

midsagittal section. (a) The sample mean dilatation rate Mvolume. It
ear the outer cortical boundaries due, perhaps, to registration error.
us callosum. A lot of noise on the cortical boundaries disappears. (c)
The smoothing is applied directly to the displacement fields and the
he midsagittal section of the atlas brain. The corpus callosum shows
st of the red regions disappears except for the local maximum in the
the
s n
orp
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3DEFORMATION-BASED MORPHOMETRY
symmetric positive-definite, the square root of S al-
ays exists. The components of the error vector e are

ndependent and identically distributed as smooth sta-
ionary Gaussian random fields with zero mean and
nit standard deviation. The error structure S1/2e was

first introduced in Worsley (1996) and Cao and Worsley
(1999). An equation of type (1) is called a stochastic
evolution equation and it models how the structure
evolves over time. Any smooth morphological change
can be completely described by (1) within the bound set
by the error structure S1/2e. Modeling the rate of
change as a differential equation originates from New-
ton. If the deformation is assumed to follow a diffusing
behavior, then L can be chosen as the Laplacian oper-
ator

L 5 s 2S ­ 2

­x 1
2

1
­ 2

­x 2
2

1
­ 2

­x 3
2D .

If the morphological changes are assumed to follow a
fluid dynamics model, L becomes a Navier–Stokes op-
erator given in Landau and Lifshitz (1989).

Longitudinal analysis based on (1) is essentially the
inverse problem of brain registration. This analysis
tries to determine the partial differential operator L

FIG. 2. Square grid under translation, rotation, and volume chan
ranslation. (a) Square grid under no deformation. (b) Horizontal tran
otation. The rotation induces the outer region of the center of the ro
o radially translate outward.
ith given displacement fields. On the other hand, in
rain registration, the objective is to find the displace-
ent field U that matches homologous points between

wo images based on minimizing a cost function or
ctually solving partial differential equations. The
ost widely used physical models that have been used

n brain registration are elastic deformations and fluid
ynamics models (Christensen et al., 1993; Thompson
t al., 1999; Davatzikos, 1999; Gee and Bajcsy, 1999).
uppose that the displacement field U is obtained as a
olution of the elastic deformation equation given by

­U

­t
5 Lelastic~U! 1 S1/2e,

where the elastic operator

Lelastic~U! 5 l1¹
2U 1 l2¹~¹ z U! 1 F

is defined in Warfield et al. (1999). Then using this
displacement field U as given data, we try to estimate
(1) which minimizes a certain error criterion based on
S1/2e. Then the best estimator of L is heavily biased
toward the prior operator Lelastic. It indicates that the
estimation of (1) should be based on an image registra-

Red, volume increase; blue, volume decrease; gray, rotation; yellow,
tion caused by local volume increase on the left side. (c) 45° clockwise
ion to translate. (d) Volume expansion in the middle causes the grid
ge.
sla
tat
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4 CHUNG ET AL.
tion method that does not assume an a priori physical
model or on an empirical Bayesian framework. We will
use intensity-based registration algorithms that do not
have explicit physical model assumptions to warp one
brain to another (Collins et al., 1995; Ashburner et al.,
1997), but there should be further comparative studies
of the different image registration methods to draw
any general conclusions.

It can be assumed that, in the case of morphological
changes occurring in a healthy brain over a relatively
short period of time, deformation occurs continuously
and smoothly, so the higher order temporal derivatives
of the displacement U are relatively small compared to
the displacement itself. In such a case, the first-order
approximation to L(U) is sufficient to capture most of
the morphological variabilities over time. Therefore,
we approximate ­U/­t with only a first-order term m0(x)
which is constant over time; i.e.,

­U

­t
~x, t! 5 m0~x! 1 S 1/2~x!e~x!. (2)

By taking the expectation E on the both sides of (2),
e see that m0 5 E ­U/­t, the mean displacement rate.

Under the linear model (2), the problem of detecting
local displacement can be solved with a simple hypoth-
esis test:

H0 : m0~x! 5 0 vs H1 : m0~x! Þ 0.

If one wishes to see the convexity of the growth
curve, an additional second-order term is needed in (2).
Unlike estimating the first-order linear term m0, the
problem of estimating the second-order nonlinear term
requires a large amount of data to have a statistically
stable result due to intrasubject variabilities across
spatial and temporal dimensions. In this paper, we
have limited our discussion to the detection of the
first-order morphological changes and we will not at-
tempt to analyze the full model (1).

Detecting Local Displacement

We are interested in detecting regions with statisti-
cally significant changes in displacement using the
linear model (2) under a Gaussian error structure. This
is a standard multivariate statistical inference prob-
lem and solved using Hotelling’s T2 statistic (Thompson
t al., 1997; Joshi, 1998; Gaser et al., 1999; Cao and
orsley, 1999).
Let Uj(x, tj) be the 3D displacement vector field re-

quired to deform the structure at the reference time 0
of the brain of subject j to the corresponding homolo-
gous position after time tj. Let

V j~x! 5
U j~x, tj!

t
j
be the displacement velocity of subject j. Then the
sample mean displacement velocity V# is given by

V# ~x! 5
1

n O
j51

n

V j~x!,

while the sample covariance matrix C of the displace-
ment velocity is given by

C~x! 5
1

n 2 1 O
j51

n

~V j~x! 2 V# ~x!!~V j~x! 2 V# ~x!! t,

where the superscript t denotes the matrix transpose.
Then Hotelling’s T2 field H(x) is defined as

H~x! 5 nV# t~x!C 21~x!V# ~x!. (3)

At each voxel x, under the hypothesis of no mean dis-
placement velocity, i.e., m0(x) 5 0, H(x) is distributed
as a multiple of an F distribution with (3, n 2 3)
degrees of freedom; i.e.,

H~x! , 3
n 2 1

n 2 3
F3,n23.

Then the P value of the maxima of H(x), which corrects
for searching across a whole brain volume, is used to
localize the region of statistically significant structural
displacement (Cao and Worsley, 1999). As pointed out
in Ashburner and Friston (2000), Hotelling’s T2 statis-
ic based on the displacement field does not directly
ocalize regions within different structures, but rather
dentifies brain structures that have translated to dif-
erent positions. It measures relative position of two
articular voxels before and after the deformation.
herefore, in the context of temporally varying brain
orphology where the brain volume change is an im-

ortant concern, the statistic based on the displace-
ent field should be taken as an indirect measure of

rain growth. The more direct morphological criterion
hat corresponds to the actual brain tissue growth or
oss is the Jacobian of the deformation field, which we
ill look at the next section.

etecting Local Volume Change

The deformation in the Lagrangian coordinate sys-
em, i.e., fixed coordinate system at time t, is

x 3 x 1 U~x, t!.

he local volume change of the deformation in the
eighborhood of a point x and at time t is determined
y the Jacobian J, which is defined as J(x, t) 5 det(I 1
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­U/­x), where I denotes an identity matrix and ­U/­x is
the 3 3 3 displacement gradient matrix of U given by

­U

­x
~x, t! 5 1

­U1

­x1

­U1

­x2

­U1

­x3

­U2

­x1

­U2

­x2

­U2

­x3

­U3

­x1

­U3

­x2

­U3

­x3

2 .

The component ­Uj/­xi is called the displacement ten-
sor and, in tensor-based morphometry (Ashburner and
Friston, 2000), these nine components form scalar
fields used to measure the second-order morphological
variabilities. Note that local translation captures the
first-order morphological variability. A statistical
model for the displacement gradient ­U/­x can be di-
rectly derived from (1) by taking the partial derivative
with respect to the spatial coordinates x. Hence, by
modeling the morphological changes in the random
fields (Adler, 1981; Worsley et al., 1996), the situation
of having two possibly incompatible statistical models
on the displacement U and the displacement gradient
­U/­x can be avoided. In our unified statistical model-
ing approach using (1), all possible statistical distribu-
tions of morphological test criteria can be directly de-
rived and easily manipulated from (1).

Since the Jacobian J measures the volume of the
deformed unit-cube after time t, the rate of the change
of the Jacobian J, i.e., ­J/­t, is the rate of the local
volume change. In brain imaging, a voxel can be con-
sidered the unit-cube; therefore, ­J/­t(x) essentially
measures the change in the volume of voxel x after the
deformation.

Expanding the Jacobian J, we get

J 5 det~I 1 ¹U!

5 1 1 tr~¹U! 1 detr2~¹U! 1 det~¹U!,

here detr2(¹U) is the sum of 2 3 2 principal minors of
U. For relatively small displacements, which is the

case in brain development, we may neglect the higher
order terms and get J ' 1 1 tr(¹U). Taking the partial

erivative with respect to the temporal coordinate t, we
et

­J

­t
<

­ 2U1

­t­x1
1

­ 2U2

­t­x2
1

­ 2U3

­t­x3

5
­

­t
~¹ z U!

5 ¹ z S­UD ,

­t
where ¹z is the divergence operator. In elastic theory,
the volume dilatation is defined as Qvolume(x) 5 ¹ z U
(Marsden and Hughes, 1983). Therefore, the rate of the
Jacobian change is approximately the rate of the vol-
ume dilatation change for relatively small displace-
ments, i.e.,

­J

­t
<

­

­t
Qvolume~x! 5 Lvolume~x!,

where we term Lvolume to be the volume dilatation rate.
Since derivatives of a Gaussian field and the sum of
components of a multivariate Gaussian field are again
Gaussian field, from (2), we have a linear model on the
volume dilatation rate Lvolume given by

Lvolume~x! 5 lvolume~x! 1 evolume~x!, (4)

where lvolume is the mean volume dilatation rate and
evolume is a Gaussian random field with zero mean. When
lvolume(x) 5 0 in the neighborhood of x, the deformation
is incompressible so there is no volume change. How-
ever, if lvolume(x) . 0, the volume increases while
lvolume(x) , 0, the volume decreases after the deforma-
tion. In certain registration algorithms, the Jacobian J
is forced to be larger than a certain threshold to ensure
the homologous correspondence between two brains
(Christensen et al., 1997). When such a registration
algorithm is used, the power of detecting the region of
statistically significant volume change may be reduced.
Statistical inference on the linear model (4) is easier
than that of (2) since it is a univariate Gaussian. To
detect statistically significant local volume change, the
T random field with its P value of the maximum field
can be used (Worsley et al., 1994).

Let Qvolume
j denote the volume dilatation of the dis-

placement Uj 5 (U1
j , U2

j , U3
j ) for subject j after time tj.

Then the volume dilatation rate or growth rate Lvolume
j of

subject j is

L volume
j 5

1

tj
Q volume

j 5
1

tj
S­U 1

j

­x1
1

­U 2
j

­x2
1

­U 3
j

­x3
D .

In the actual numerical implementation, the displace-
ment tensor ­Ui

j/­xi can be computed by the finite
difference on rectangular grid. For example, at voxel
position x 5 (x1, x2, x3),

­U 1
j

­x1
<

U 1
j ~x1 1 dx1, x2, x3! 2 U 1

j ~x1, x2, x3!

dx1
,

where dx1 is the length of the edge of a voxel along the
x axis. Then the T random field is defined as
1
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6 CHUNG ET AL.
T~x! 5 În
Mvolume~x!

Svolume~x!
, (5)

where Mvolume and Svolume are the sample mean and
standard deviation of Lvolume

j . Under the assumption of
no local volume change at x, i.e., lvolume(x) 5 0, T(x) ;
tn21, a Student t distribution with n 2 1 degrees of
freedom. As we shall see under Results, the sample
mean dilatation rate Mvolume does not provide accurate
nformation about where the brain growth is dominant
ut the T field does (Fig. 1). Then the P value of the
axima of T(x), which corrects for searching across a
hole brain volume, is used to localize the region of

tatistically significant structural displacement (Wors-
ey, 1994).

mportant Measures in Brain Development

We have presented two different statistics, (3) and
5), based on local translation and local volume
hanges to measures morphological changes over time.
ne might ask if these two statistics are sufficient to

apture temporally varying morphological changes in
rain and how one statistic is related to the other. Do
hey measure common morphological properties or dif-
erent aspects of morphological changes? In this sec-
ion, we will give some answers to these questions.

FIG. 3. The procedure for computing the displacement vector fie
can registered onto the atlas brain Vatlas. (2) Compute the displacem

(3) Compute the difference Uj 5 US1
j 2 US2

j , which is then automatic
For relatively small displacement, neglecting higher
rder terms in the Taylor expansion, the displacement

at x 1 dx can be written as

U~x 1 dx, t! < U~x, t! 1
­U

­x
~x, t!dx.

As we have pointed out, in tensor-based morphometry
some of all elements of the 3 3 3 displacement gradient
matrix ­U/­x are used to measure morphological
changes (Thirion and Calmon, 1997; Ashburner et al.,
2000; Thompson et al., 2000). The displacement tensor
can be further decomposed into two parts depending on
whether it is symmetric or antisymmetric:

­Uj

­xi
5

1

2 S­Uj

­xi
2

­Ui

­xj
D 1

1

2 S­Uj

­xi
1

­Ui

­xj
D .

The antisymmetric first part corresponds to a rotation
or vorticity of the deformation and the symmetric sec-
ond part corresponds to a strain. Then the displace-
ment at x 1 dx can be decomposed into three parts,

U~x 1 dx, t! < U~x, t! 2 w~x, t! 3 dx 1 e~x, t!dx,

j for subject j. (1) Compute the displacement field US1
j from the first

field US2
j from the second scan registered onto the atlas brain Vatlas.

y defined at each voxel x [ Vatlas.
ld U
ent
all
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7DEFORMATION-BASED MORPHOMETRY
where w 5 1
2 (¹ 3 U) is the vorticity vector and e 5

(eij) 5 1
2 [­U/­x 1 (­U/­x)t] is the strain matrix. By

aking the temporal derivative, we have the displace-
ent velocity decomposed into three parts:

U

­t
~x 1 dx, t! <

­U

­t
~x, t! 2

­w

­t
~x, t! 3 dx

1
­e

­t
~x, t!dx. (6)

Equation (6) captures most of the spatiotemporal vari-
abilities of the displacement velocity into three compo-

FIG. 4. (Left) 3D statistical parametric maps of local volume incr
hresholded at the probability 0.025, 0.025, 0.05 (corrected). (Right) S
oronal sections of the atlas brain MRI. The cross-sections are ta
somatosensory and motor cortex). The white lines indicate where t
nents: the rate of changes in a translation, a rotation,
and a strain for relatively small displacements.

The strain-rate tensor ­eij/­t can be further sepa-
rated into two parts: the diagonal elements ­eij/­t de-
scribing the length change of the volume element in
each x1, x2, and x3 coordinate, and the off-diagonal
elements ­eij/­t (i Þ j) describing the shearing rate of
the volume element. The volume element is a mathe-
matical abstraction defined as an infinitesimally small
cube, but because the smallest unit in brain imaging is
a voxel, we may take the voxel as the volume element.
Shearing is the deformation that preserves the volume
of a voxel but distorts its shape. Note that the sum of

e (red), volume decrease (blue), and structural displacement (yellow)
istical parametric maps are superimposed on the axial, sagittal, and
n at the interior of the largest red cluster inside the purple box
ross-sections are taken.
eas
tat
ke
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8 CHUNG ET AL.
the diagonal elements of the strain rate is the first-
order approximation to the rate of the Jacobian
change; i.e.,

­J

­t
<

­K

­t
5

­e11

­t
1

­e22

­t
1

­e33

­t
.

It seems that we may have to consider transla-
tional, rotational, and strain changes for a complete
morphological description. However, the most mean-
ingful measurement of brain tissue growth or loss is
the rate of the Jacobian change because it directly
measures the volumetric changes in the brain. The
local translation, the local rotation, and the local
shearing change can all be considered as readjust-
ments and reorientations of the local brain structure
due to the volumetric changes in the neighboring
regions (Fig. 2). In between-subject morphological
studies of different clinical populations, such mea-
surements might be useful criteria of shape differ-
ences. However, in temporally varying within-sub-
ject brain morphological studies, we are more
interested in regions of brain tissue growth or loss
that cause the volumetric changes. Hence, the rate of
the Jacobian change is the most meaningful morpho-
logical measure of brain tissue growth or loss in
deformation-based morphometry.

Finally, the dilatation statistic that consists of
spatial derivatives of the displacement field is statis-
tically independent from the local translation statis-
tic. To see this, note that any partial derivative of a
stationary Gaussian random field is statistically in-
dependent from the field itself (Adler, 1981). Since
the dilatation consists of spatial derivatives of the
displacement, it must be statistically independent of
the displacement. So Hotelling’s T 2 field of the dis-
placement and the T field of the dilatation measure
morphologically different properties at the same
voxel.

Detecting Global Volume Change

Standard MRI-based volumetry, where we are in-
terested in detecting volume changes of the regions
of interest (ROI), can be considered a special case of
deformation-based volumetry. Let V t

ROI be the 3D
region of interest with smooth 2D boundary ­V t

ROI at
time t. The region V0

ROI deforms to V t
ROI under the

eformation x 3 x 1 U( x, t). Note that the volume of
t
ROI is given by

iV t
ROIi 5 E

V t
ROI

dx 5 E
V 0

ROI

J~x, t!dx.
Then the ROI volume-dilatation rate LROI is given by

LROI 5
1

iV0
ROIi

­

­t
iV t

ROIi

5
1

iV 0
ROIi E

V 0
ROI

­J

­t
dx

<
1

iV 0
ROIi E

V 0
ROI

Lvolumedx.

Therefore, the global ROI volume dilatation rate LROI is
equivalent to the average of the local volume dilatation
rate Lvolume taken over all V0

ROI. Since Lvolume is distrib-
uted as a Gaussian random field, LROI becomes a
Gaussian random variable. So testing the hypothesis
whether there is any volume change between V0

ROI and
Vt

ROI can be performed through a simple t test.
It is also possible to test the global volume change

via surface-based deformation analysis. Gauss’s Diver-
gence Theorem states that

E
V 0

ROI

¹ z Udx 5 E
­V 0

ROI

U z ndA, (7)

where n is a unit normal vector on the surface ]V0
ROI

and dA is the surface area element (Marsden and
Hughes, 1983). It follows that

LROI <
1

iV0
ROIi E

­V 0
ROI

V z ndA,

where V 5 ­U/­t is the surface displacement velocity
defined on the boundary ]V0

ROI. Since V is distributed as
a Gaussian random field, LROI is distributed as a
Gaussian random variable and statistical inference
will be again based on a simple t test.

RESULTS

Twenty-eight normal subjects were selected based on
he same physical, neurological, and psychological cri-
eria described in Giedd et al. (1996a). Two T1-

weighted MR scans were acquired for each subject at
different times on the same GE Sigma 1.5-T supercon-
ducting magnet system. The first scan was obtained at
the age of 11.5 6 3.1 years (min 7.0 years, max 17.8
ears) and the second scan was obtained at the age of
6.1 6 3.2 years (min 10.6 years, max 21.8 years). The
ime difference between the first and the second scan
as 4.6 6 0.9 years (min time difference 2.2 years, max
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time difference 6.4 years). Using the automatic image-
processing pipeline (Zijdenbos et al., 1998), a total of 56
MR images were transformed into standardized stereo-
tactic space via a global affine transformation (Ta-
lairach and Tournoux, 1988) followed by a nonlinear
deformation to match the atlas brain Vatlas. The global
affine transformation removes most of the intra- and
intersubject global differences in brain sizes; adult
brains are approximately 5% larger than those of
5-year-old children (Dekaban, 1977; Dekaban and
Shadowsky, 1978). Because we are only interested in
finding local morphological changes, these global mor-
phological variabilities should be removed via global
affine transform in order to improve the power of de-
tection. These registration procedures are based on an
automatic multiresolution intensity matching algo-
rithm (Collins et al., 1995; Collins and Evans, 1999).
Unlike other registration algorithms that assume a
certain fluid dynamics or an elastic deformation model,
the intensity-based registration does not assume any
explicit physical model in which the deformation from
the subject brain to the atlas brain should follow (Gee
and Bajcsy, 1999; Thompson et al., 2000). So the defor-

ation fields obtained from these registration pro-
esses can be considered free of any explicit physical
odel assumption although there might be some in-

ensity-based model assumption, which somehow re-
ates to a physical model.

If US1
j and US2

j are the displacement obtained from
the nonlinear registration of the first and the second
scan of subject j to the atlas brain Vatlas at time tS1

j and
tS2

j , the actual displacement Uj between the first scan
and the second scan is Uj 5 US1

j 2 US2
j and the time

difference is tj 5 tS2
j 2 tS1

j (Fig. 3). It is true that if the
first scan were directly registered to the second scan
without going through the atlas brain, the registration
error would be smaller. However, the displacement
fields obtained by the direct registration method still
must be registered onto the atlas brain in order to form
statistical parametric maps. The reason for such sta-
tistical treatment to analyze the structural data is
obvious considering that the displacement field ob-
tained from image registration algorithms for brain
development contains a fairly large component of error.
The length of the displacement velocity we have ob-
served for the spatially normalized MR scans of 28
normal subjects is usually less than 1 mm/year, i.e.,
m0 5 E(­U/­t) # 1 mm/year in average. Optimistically
assuming that the image registration algorithm is ac-
curate to within one voxel distance (usually 1 or 2 mm),
the registration error seems to be relatively large in
brain development. So one may be skeptical about
whether the deformation-based morphometry can pos-
sibly detect such small changes. Nevertheless it is still
possible to pick out the signal when there are enough
data; Figure 1 illustrates how image smoothing and
the statistical treatments improve the power of detec-
tion. Statistical treatments compensate for some of
such registration errors. Finally the displacement ve-
locity field is smoothed with a 10 mm full width at
half-maximum (FWHM) Gaussian kernel to increase
the signal to noise ratio. Gaussian kernel smoothing
with FWHM 5 4(ln 2)1/2=t of the signal f(x), x [ R3 is

efined as the convolution of the signal f with the
Gaussian kernel:

F~x, t! 5
1

~4pt! 3/2 E
R 3

e 2~x2y! 2/4tf~y!dy.

Without the smoothing, it may have been more difficult
to detect morphological patterns illustrated in Fig. 1.
However, the Gaussian kernel smoothing sometimes
tends to blur the fine details of deformation pattern.

The regions of statistically significant displacement
have been detected (Fig. 4, yellow) by Hotelling’s T2 field
with the corrected threshold (Cao and Worsley, 1999):

P~ max
x[Vatlas

H~x! . 60.0! < 0.05.

Most of the structural movements were observed in the
frontal lobe without any accompanying significant
change in local volume. This may indicate that there
are continued readjustments of the exact position of
brain structures in the frontal lobe without any brain
tissue growth or loss in adolescence. Also note that the
statistically significant displacement occurs evenly and
shows some degree of symmetry between the left and
the right hemispheres. Because the local translation
statistic measures the relative displacement of brain
structure, it does not truly reflect the brain tissue
growth process. However, it does indicate the principal
direction of the brain growth as shown in the purple
box in Fig. 4 and enlarged in Fig. 5. Hence, the local
translation statistic should be used in conjunction with
the local volume change statistic to fully understand
the complex dynamics of temporally changing morpho-
logical pattern.

Previous developmental MRI studies have provided
evidence for age-related increase in total white matter
volume and decrease in total gray matter volume
(Jernigan et al., 1991; Pfefferbaum et al., 1994; Ra-
japakse et al., 1996; Riess et al., 1996; Courchesne et
al., 2000), but the analytic procedures used in these
studies did not allow the investigators to detect local
volume change. The local volume change statistic T(x)
is computed using the formula (5) with tj 5 tS1

j 2 tS2
j .

he t statistic map is thresholded at

P~ max
x[Vatlas

T~x! . 6.5! < 0.025,

P~ min
x[Vatlas

T~x! , 26.5! < 0.025.
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At this threshold, most of the local volume increase
observed around the corpus callosum in Fig. 1 disap-
pears except for very few localized statistically signif-
icantly “peaks” in the isthmus and splenium. There
was no volume change detected in the rostrum and
genu. Figure 4 also shows the localized growth in the
corpus callosum on the coronal section (the single red
dot). Therefore, we observe a highly focused region of
brain tissue growth in the isthmus and splenium of the
corpus callosum. Pujol et al. (1993), Giedd et al. (1996b,
1999), and Thompson et al. (2000) reported similar
results of growth pattern at the corpus callosum.

The growth at the corpus callosum seems relatively
small when compared to the global peaks observed
predominantly in somatosensory and motor cortex (the
largest red cluster in Fig. 4). Localized brain tissue loss
was also detected at the same time as tissue growth.
This tissue loss was highly localized in the subcortical
region of the left hemisphere (Fig. 4, blue). Similar
results were also reported in Thompson et al. (2000),
where the extent of the peak growth was wider and less
localized than our study has found. It seems our sta-
tistical treatments based on the large sample size (n 5
28) tend to remove a lot of intrasubject variabilities
and pick out the common morphological pattern among

FIG. 5. A close-up of part of the outer left hemisphere inside
displacement velocity subsampled every 10 mm and scaled by 50 mm
local volume expansion (red) causes the translational movement of t
arrows are manually enhanced to clearly indicate the direction of th
subjects compared to the smaller sample size (n 5 6)
studied in Thompson et al. (2000). Slightly different
rowth patterns observed between our study and
hompson et al. (2000) may be due to many factors.
ur approach is based on the systematic statistical

reatments of large sample size (n 5 28) with a less
ccurate intensity-based automatic registration algo-
ithm. While the approach taken in Thompson et al.
2000) is based on a sample size of six without any
tatistical approach, a more accurate elastic model
ased registration algorithm with manually matched
ulcal landmarks was used. However, the most impor-
ant difference between the two studies is the age
istribution of the subjects. In Thompson et al. (2000),
he age distribution of the six subjects is in most part
ounger than our mean age of 11.5 years for the first
can and 16.1 years for the second scan. So although
here are similar growth patterns common to both
tudies such as predominant growth at parietal cortex,
ocalized peak growth at the corpus callosum, etc., the
wo studies are detecting morphological changes in
ifferent but nonexclusive age groups.
We have observed very interesting relations between

ocal displacement change and local volume change
tatistics as illustrated in Figs. 4 and 5. Figure 5 is the

e purple box in Fig. 4. Black arrows represent the sample mean
r. The direction of the mean displacement velocity suggests how the

structure (yellow) toward the region of atrophy (blue). The heads of
isplacement.
th
/yea
he
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close-up of the parietal region of the left hemisphere
(the purple box in Fig. 4), showing a large local dis-
placement from the region of local volume increase
(gray matter) to a region of local volume decrease
(white matter), indicating how the structure boundary
(inner cortical surface) has moved from the increasing
volume to the decreasing volume. This phenomenon is
also schematically illustrated in Fig. 1b, where the
square grid is undergoing a horizontal translation from
the region of volume increase of the left to the region of
volume decrease on the right, and Fig. 2d, where the
volume expansion in the middle causes the neighbor-
ing structures to radially translate outward. It seems
that by studying these two statistical parametric maps
simultaneously, the complex dynamic patterns in tem-
porally varying brain morphology can be captured.

CONCLUSIONS

The deformation-based volumetry presented here
can localize the regions where local volume growth or
loss occurs over temporally varying brain morphology
by measuring the rate of local volume changes. By
using the displacement velocity instead of the displace-
ment itself in detecting the anatomical changes, tem-
poral variabilities in MR images for different age
groups and different time intervals can be accounted
for. As an illustration, we have applied the method to
MR scans of 28 normal children and adolescents and
detected regions of tissue growth in the corpus callo-
sum and somatosensory and motor cortex.

Our unified statistical framework based on the de-
formation-based volumetry can be also used as a tool
for future investigations of neurodevelopmental disor-
ders where volumetric analysis would be relevant. It
can also be applied to a general morphological studies,
such as testing for structural shape differences be-
tween two different groups of subjects.
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