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Abstract

This paper presents a streamlined image analysis framework for cor-
relating behavioral measures to anatomical measures on the cortex and
detecting the regions of abnormal brain-behavior correlates. We correlated
a facial emotion discrimination task score and its response time to cortical
thickness measurements in a group of high functioning autistic subjects.
Many previous correlation studies in brain imaging neglect to account
for unwanted age effect and other variables and the subsequent statisti-
cal parametric maps may report spurious results. We demonstrate that
the partial correlation mapping strategy proposed here can remove the
effect of age and global cortical area difference effectively while localizing
the regions of high correlation difference. The advantage of the proposed
correlation mapping strategy over the general linear model framework is
that we can directly visualize more intuitive correlation measures across
the cortex in each group.

1 Introduction

Pearson’s product-moment correlation (Fisher, 1915), in short simple correla-
tion, has widely been used as a simple index for measuring dependency and the
linear relationship between two variables. In human brain mapping research, it
has been mainly used to map out functional or anatomical connectivity (Friston
et al., 1993; Horwitz et al., 1996; Friston et al., 1996; Cao and Worsley, 1998;
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Worsley et al., 2005). In this framework, correlations between pairs of voxels are
computed and thresholded via the random field theory to reveal the statistically
significant regions of connectivity by testing the existence of correlation ρ on
the template cortex ∂Ω:

H0 : ρ(p) = 0 for all p ∈ ∂Ω vs. H1 : ρ(p) 6= 0 for some p ∈ ∂Ω. (1)

In a different setting, Thompson et al. (2001) used the correlation between
genetic factors and the amount of gray matter on the cortex via a linear model
in mapping out the regions of genetic influence. Our use of correlation is some-
what similar to Thompson et al. (2001) in that we correlate anatomical index to
non-anatomical index on the cortex. In this study, we map out the dependency
of behavioral measures to an anatomical measure spatially over the cortex and
localize the regions of abnormal correlation difference between groups. To re-
move unwanted covariates like age and total brain size difference, we introduce
the concept of partial correlation coefficient, in short partial correlation. Chung
et al. (2004; 2005) has already demonstrated the need for removing the effect
of age and global brain size difference in morphometric analyses so it is cru-
cial to use partial correlation rather than the usual simple correlation in our
study. Although our correlation mapping strategy can be formulated in terms
of a general linear model (GLM) as in the case of Thompson et al. (2001),
our unified approach will provide a more intuitive alternative that is visually
comprehensive.

As an application, we applied our method in characterizing abnormal brain-
behavior correlation in autism. We correlated two behavioral measures with
the anatomical measure, cortical thickness. The cortical thickness measures the
thickness of the gray matter shell bounded by the both outer and inner cortical
surfaces (MacDonald et al., 2000; Chung et al., 2003; Chung et al., 2005). The
first behavioral measure is the emotional face recognition task score. The task
score counts the number of correct responses when judging whether a subject
is viewing an emotional (happy, fear and anger) or neutral face (Dalton et
al., 2005). The second behavioral measure is the time required to produce a
response. The response time is measured in ms. Each behaviorial measure
was correlated with the cortical thickness measure at each point on the cortex
for the both autistic and control groups, and a statistical test was performed
to determine the regions of differing correlation pattern between groups. This
study is a continuation of the series of multifaceted studies in the Waisman
laboratory for brain imaging and behavior characterizing the autistic, structural,
functional, and behavioral phenotypes (Chung et al., 2004; Chung et al.,2005;
Dalton et al., 2005).

2 Prelimary

Let Y = (Y1, Y2) be two variables of interests and X = (X1, · · · , Xp) be a row
vector of variables that should be removed in a data analysis. For instance, we
may let Y1 be the cortical thickness, Y2 be the response time, and X1 and X2
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be the age and total surface area respectively. The covariance matrix of (Y,X)′

is denoted by

V(Y, X)′ =
(

ΣY Y ΣY X

ΣXY ΣXX

)
(2)

Note ΣXY is the cross-covariance matrix of X and Y . ΣY X and ΣXX are defined
similarly. Then the partial covariance of Y given X is

ΣY Y − ΣY XΣ−1
XXΣXY = (σij).

The partial correlation ρYi,Yj |X is the correlation between variables Yi and Yj

while removing the effect of variables X and it is defined as

ρYi,Yj |X =
σij√
σiiσjj

.

The conditional notation | is used in defining the partial correlation since the
partial correlation is equivalent to conditional correlation if E(Y |X) = a + BX
for some vector a and matrix B, which is true under the normality of data.
This is the formulation we used to compute the partial correlation. If vector X
consists of a single measurement, i.e. X = X1, the partial correlation can be
computed from the simple correlation via

ρY1,Y2|X =
ρY1,Y2 − ρY1,XrY2,X√
(1− ρ2

Y1,X)(1− ρ2
Y2,X)

.

The sample partial correlation rY1,Y2|x is defined similarly by replacing the co-
variance with the sample covariance in (2). The MATLAB code for computing the
partial correlation can be found in the Appendix.

If we let ρk be the partial correlation for group k ( autism = 1, control = 2),
for each fixed p ∈ ∂Ω, one may test

HA
0 : ρk(p) = 0 vs. HA

1 : ρk(p) 6= 0. (3)

Inference type (3) is useful if only one sample is available or determining high
correlation regions within a group. Assuming the normality of measurements X
and Y , the partial correlation r = rYi,Yj |X can be transformed to be distributed
as:

T =
r
√

n− 2√
1− r2

∼ tn−2,

the t distribution with n− 2 degrees of freedom. This test statistic can be used
for testing a one-sample inference type (3).

3 Surface-based Data Smoothing

To increase the signal-to-noise ratio, we applied a surface based smoothing
method called heat kernel smoothing to the cortical thickness measures. The
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implementation detail and its statistical properties can be found in Chung et al.
(2005). This is an improved formulation over the previously developed diffusion
smoothing (Andrade et al., 2001; Chung et al., 2003; Cachia et al., 2003). In
Andrade et al. (2001) and Cachia et al. (2003), smoothing is done by solving
an isotropic heat equation via the combination of the least squares estimation
of the Laplace-Beltrami operator and the finite difference method (FDM). In
Chung et al. (2003), the heat equation is solved using the finite element method
(FEM) and a similar FDM. The problem with these approaches to data smooth-
ing is the complexity of setting up the FEM and making the FDM converge.
Our heat kernel smoothing avoids all these problems.

We assume the following linear model on thickness measure Y :

Y (p) = θ(p) + ε(p),

where θ(p) is the unknown mean thickness function and ε(p) is a zero-mean
random field, possibly a Gaussian white noise process. Heat kernel smoothing
of cortical thickness Y is then defined as the convolution:

Kσ ∗ Y (p) =
∫

∂Ω

Kσ(p, q)Y (q) dq, (4)

where Kσ is the heat kernel that generalizes the Gaussian kernel in a Euclidan
space to a curved manifold. The bandwidth σ controls the amount of smoothing.
Given the Laplace-Beltrami operator ∆ψ = λψ on ∂Ω, we can order eigenvalues
0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and corresponding eigenfunctions ψ0, ψ1, · · · . It can be
written in terms of basis function expansion:

Kσ ∗ Y (p) =
∞∑

j=0

φj(p)e−λjσ

∫

∂Ω

φj(q)Y (q) dq.

The heat kernel estimator of unknown signal θ(p) is then θ̂σ(p) = Kσ∗Y (p). The
heat kernel estimator becomes unbiased as σ → 0, i.e. limσ→0 Eθ̂σ(p) = θ(p).
As σ gets larger, the bias increases. However the total bias over all cortex is
always zero, i.e.

∫
∂Ω

[θ(p)− Eθ̂σ(p)] dp = 0. Further

lim
σ→∞

θ̂σ(p) =

∫
∂Ω

Y (q) dq∫
∂Ω

dq
,

the sample mean over the whole cortex ∂Ω. Other properties of the heat
kernel smoothing can be found in Chung et al. (2005). The heat kernel
smoothing has been implemented in MATLAB and it can be found in the web
www.stat.wisc.edu/∼mchung/softwares/hk/hk.html. The relationship be-
tween the full width at half maximum (FWHM) and the bandwidth is

FWHM =
√

8 ln 2σ.

In this study, the thickness measurements were smoothed with 30 mm FWHM.
This is the same amount of smoothing previously used in Chung et al. (2005)
for detecting cortical thinning in autism.
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4 Statistical Inference

In our study, the main interest is testing the equality of correlations between
groups. So at each fixed point p ∈ ∂Ω, we are interested in testing

HB
0 : ρ1(p) = ρ2(p) vs. HB

1 : ρ1(p) 6= ρ2(p). (5)

For two sample inference type (5), one approach is based on the Fisher transform
(Fisher, 1915; Hawkins, 1989; Bond and Richardson, 2004), which shows the
asymptotic normality:

rk → arctanh(rk) =
1
2

ln
(1 + rk

1− rk

)
∼ N

(1
2

ln
(1 + ρk

1− ρk

)
,

1
nk − 3

)
.

The transform can be viewed as a variance stabilizing normalization process.
Based on the Fisher transform, the test statistic under HB

0 is then given by:

W (p) =
ln

(
1+r1
1−r1

· 1−r2
1+r2

)

2
√

1
n1−3 + 1

n2−3

∼ N(0, 1). (6)

A slightly different formulation for testing the equality of correlations can be
found in Crawford et al. (2003). We further normalized the field W (p) with
mean µ(p) = EW (p) and variance S2(p) = EW 2(p)− µ2(p) by

Z(p) =
W (p)− µ(p)

S(p)
.

µ and S2 are estimated from random permutations. We can take the field Z to be
Gaussian with zero mean and unit variance. To determine the null distribution
of the test statistic, we permute two samples across the groups. For n1 subjects
for group 1 and n2 subjects for group 2, we combine them together, do a random
permutation, and partition the result into two groups with the same number of
subjects. For this study, we generated 200 random permutations out of (n1+n2)!
possible permutations. Then for each permutation, we computed the statistic
and based on the empirical distribution of the statistic, we estimated µ and S2.

Using Z as the test statistic, we tested:

H0 : ρ1(p) = ρ2(p) for all p ∈ ∂Ω vs.
H1 : ρ1(p) 6= ρ2(p) for some p ∈ ∂Ω.

The null hypothesis H0 is the intersection of collection of hypotheses

H0 =
⋂

p∈∂Ω

HB
0 (p),

where HB
0 is the null hypothesis given in (5). The type I error α for testing one

sided test is then given by:

α = P
( ⋃

p∈∂Ω

{Z(p) > h}
)

= 1− P
( ⋂

p∈∂Ω

Z(p) ≤ h}
)

= 1− P
(

sup
p∈∂Ω

Z(p) ≤ h
)

= P
(

sup
p∈∂Ω

Z(p) > h
)

6



for some h. The distribution of supp∈∂Ω Z(p) is asymptotically given as:

P ( sup
p∈∂Ω

Z(p) > h) ≈
2∑

d=0

φd(∂Ω)ρd(h), (7)

where φd are the d-dimensional Minkowski functionals of ∂Ω and ρd are the
d-dimensional Euler characteristic (EC) density of correlation field (Worsley et
al., 1995). The Minkowski functionals are φ0 = 2, φ1 = 0, φ2 = area(∂Ω)/2 =
49, 616mm2, the half area of the template cortex ∂Ω. The EC densities are:

ρ0(h) =
∫ ∞

h

1√
2π

e−u2/2 du

and
ρ2(h) =

1
(8π)3/2σ2

he−h2/2 =
4 ln 2

(2π)3/2FWHM2 he−h2/2.

The resulting P-value maps are found in Figure 1 and 2.

5 Application

We applied our methodology to detect the regions of abnormal brain-behavior
correlates in autistic cortical regions.

Subjects. 14 high functioning autistic (HFA) and 12 normal control (NC)
subjects used in this study were screened to be right-handed males. Age distri-
butions for HFA and NC are 15.93± 4.71 and 17.08± 2.78 respectively. This is
the same data set used in previous studies Chung, et al. (2004), Chung, et al.
(2005) and Dalton, et al. (2005).

Magnetic resonance images. High resolution anatomical magnetic resonance
images (MRI) were obtained using a 3-Tesla GE SIGNA (General Electric Med-
ical Systems, Waukesha, WI) scanner with a quadrature head RF coil. A three-
dimensional, spoiled gradient-echo (SPGR) pulse sequence was used to generate
T1-weighted images. The imaging parameters were TR/TE = 21/8 ms, flip
angle = 30◦, 240 mm field of view, 256x192 in-plane acquisition matrix (inter-
polated on the scanner to 256x256), and 128 axial slices (1.2 mm thick) covering
the whole brain.

Cortical thickness. Following image processing steps described in Chung,
et al. (2004) and Chung, et al. (2005) both the outer and inner cortical sur-
faces were extracted for each subject via deformable surface algorithm (Mac-
Donald et al., 2000). Surface normalization is performed by minimizing an
objective function that measures the global fit of two surfaces while maximiz-
ing the smoothness of the deformation in such a way that the pattern of gyral
ridges are matched smoothly (Robbins, 2003; Chung et al., 2005). Afterward
cortical thickness was computed for each subject (Chung et al., 2003; Chung et
al., 2005). Heat kernel smoothing was applied to the cortical thickness measures
with a relatively large 30mm FWHM as described in a previous section.
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Figure 1: Map of facial emotion discrimination task score correlated with thick-
ness. The first raw is the simple correlation. The second and third rows are the
partial correlation. The partial correlation increased the maximum correlation
upto 0.9 from 0.7. The fourth row is the partial correlation difference between
the two groups (autism − control). The last row shows the final Z-statistic map
showing statistically significant correlation difference (P-value 0.03 for z = 3.8,
and 0.002 for z = −4.5).
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Facial emotion discrimination task. The subjects were asked to decide
whether a picture of a human face was either emotional (happiness, fear or
anger) or neutral (showing no obvious emotion) by pressing one of two buttons.
The faces were black and white photographs taken from the Karolinska Directed
Emotional Faces set (Lundqvist, et al., 1988; Dalton, et al., 2005). The task
scores (maximum 40) for HFA and NC are 27.14 ± 15.34 and 39.42 ± 0.79 re-
spectively, and the response time (ms) for HFA and NC are 1329.8± 206.7 and
1110.9±182.3 and respectively. A more detailed description about the task can
be found in Dalton et al. (2005).

Partial correlation maps. The simple correlations between cortical thick-
ness and both task score and response time were computed for each group and
mapped onto the template cortex (Figure 1 and 2, first rows). The partial
correlations were also computed while removing the effect of age and global
area difference. (Figure 1 and 2, second and third rows). Comparing the par-
tial correlation maps to the simple correlation maps, we see different patterns
indicating that it is necessary to account for the age and the area terms for
proper correlation analysis. The partial correlation difference maps (autism −
control) show the regions of maximum correlation difference (Figure 1 and 2,
fourth rows). To access the statistical significance of the correlation difference,
the Fisher transformation and the normalization steps were used resulting in
the Z-statistic maps (Figure 1 and 2, last rows).

Group difference between the autistic and control subjects were identified us-
ing brain-behavior correlations of task score and response time. Brain-behavior
partial correlations of task score and cortical thickness identified group differ-
ences in mainly two cortical regions: right angular gyrus (area 39) and the left
Broca’s area (area 44). The area 39 shows the positive correlation for the control
subjects while it shows the negative correlation for the autistic subjects (cor-
rected P-value 0.002, z-value -4.5). The area 44 shows the negative correlation
for the control subjects while it shows the positive correlation for the autistic
subjects (corrected P-value of 0.03, z-value 3.8).

For time-thickness correlation, we found more statistically significant regions
of difference that are consistent with previous studies. In general, the spatial
patterns of behavioral response time and thickness correlation shows more nega-
tive correlation (blue) than positive correlation (red) in the control subjects and
the pattern is opposite for the autistic subjects (Figure 2 second row). Faster
response time in the control subject are related to a thicker right ventral and
dorsal prefrontal cortex while they are related to thinning in the same area in
the autistic subject (corrected P-value 0.001, z-value 4.6). We found correlation
difference in the left superior temporal gyrus and superior temporal sulcus (cor-
rected P-value 0.04, z-value -3.7) (Figure 2 last row). The autistic subjects show
an aberrant spatial pattern of behavioral-thickness correlation in the right fron-
topolar region (BA10), which shows a direct correlation between response time
duration and cortical thickness not seen in the control subjects. We also found
that slower responses in controls are related to a thinner right inferior orbital
frontal cortex but slower responses in the autistic subject are independent of
right orbital prefrontal cortical thickness (corrected P-value 0.001, z-value 4.6).
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Figure 2: Map of response time correlated with thickness. The first row shows
the simple correlation. The second and third rows are the partial correlation
removing the effect of age and cortical area differences. The fourth row shows
the partial correlation difference. We are interested in testing the significance of
this difference. The last row shows the final Z-statistic map showing statistically
significant correlation difference (corrected P-value 0.04 for z = −3.7 and 0.001
for z = 4.6).
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6 Discussions

In this study, group difference between the autistic and the control subjects were
identified using brain-behavior correlations between cortical thickness and both
task score and response time. The partial correlation mapping strategy is shown
to be an effective way of visualizing and localizing the cortical regions of high
correlation while removing the effect of unwanted covariates such as age, gender
and global brain size differences. Our approach would be a very useful analysis
framework for many other types of future brain-behavior correlate studies.

Our findings are consistent with previous functional and anatomical studies.
The score-thickness correlation difference found in the left area 44 is interesting
since this is the area shown to have reduced bilateral connectivity in autism
(Villalobos et al., 2005). Since area 44 is thought to contain mirror neurons
considered part of the dorsal stream, altered brain-behavior correlations reflect
the influence of cortical thickness on perception-action function (Rizzolatti et
al., 2002; Villalobos et al., 2005).

The ventral prefrontal plays a role in the learning of tasks in which subjects
must learn to associate visual cues and responses (Passingham et al., 2000;
Passingham and Toni, 2001). So our finding of abnormal correlation between
the response time and thickness in the right ventral prefrontal cortex is not
surprising.

Our previous study identified reduced cortical thickness in the right inferior
orbital prefrontal cortex, the left superior temporal sulcus and the left occipito-
temporal gyrus in the autistic subjects relative to the control group (Chung et
al., 2005). When paired with results from our current study, areas in which cor-
tical thickness is reduced in autism predict differences in task response. Thicker
cortex in the left superior temporal gyrus and the superior temporal sulcus pre-
dict faster response times in the control subjects, whereas thicker cortex in the
autistic subject are associated with prolonged response times in these regions.
This result may be related to autistic dysfunction in the superior temporal gyrus
and superior temporal sulcus, regions known to be involved in social processing
(Baron-Cohen et al., 1999; Allison et al., 2000) and eye gaze perception (Hooker
et al., 2003). Slower responses in controls are related to a thinner right inferior
orbital frontal cortex but slower responses in the autistic subject are indepen-
dent of right orbital prefrontal cortical thickness. This may suggest a floor effect
in which autistic cortical thickness is too thin to predict changes in behavioral
response time.

The general spatial patterns of behavioral response time-thickness correla-
tions distributed across the dorsal surface are positive in the autistic subjects,
whereas negative correlations are shown for the control subjects in these regions.
Autistics also show an aberrant spatial pattern of behavioral-thickness correla-
tion in the right frontopolar region (BA10), which shows a direct correlation
between response time duration and cortical thickness not seen in controls. One
possible mechanism for these results is that increased cortical thickness may
produce alterations in intra cortical connectivity resulting in a mis-allocation
of cortical functional resources. A recent study suggesting that alterations are

11



noted along the thickness of autistic cortex further complicates the impact that
alterations in autistic cortical anatomy may have on behavior. Based on cellu-
lar studies, autistic subjects have an increased number of smaller mini-columns,
the basic functional unit of cortex (Buxhoeveden and Casanova, 2002), that
are less compact relative to control subjects in prefrontal cortex and in tem-
poral regions. This anatomy may increase intracortical signalling, reduce lat-
eral inhibition, and cause terminal fields of subcortical afferents to synapse on
multiple mini-columns unintentionally enhancing cortical noise in these regions
(Casanova et al., 2002). Our results add to this literature by identifying regions
in which cortical thickness alterations predict certain autistic behaviors.

References

Andrade, A., Kherif, F., Mangin, J., Worsley, K.J., Paradis, A., Simon, O.,
Dehaene, S., Le Bihan, D., and Poline, J-B. 2001. Detection of FMRI activation
using cortical surface mapping, Human Brain Mapping 12, 79-93.

Allison, T., Puce, A., McCarthy, G. 2000. Social perception from visual cues:
role of the STS region.

Baron-Cohen,S., Ring, H.A., Wheelwright, S., Bullmore, E.T., Brammer, M.J.,
Simmons, A., Williams, S. C. R. 1999. Social intelligence in the normal and
autistic brain: an fMRI study. European Journal of Neuroscience 11, 1891-
1898.

Buxhoeveden, D.P. and Casanova, M.F. 2002. The minicolumn hypothesis in
neuroscience. Brain 125, 935-951.

Bond, C.F., Richardson, K. 2004. Seeing the Fisher Z-transformation. Psy-
chometrika 60, 291-303.

Cachia, A. and Mangin, J.-F. and Riviére, D., Papadopoulos-Orfanos, D. and
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Appendix

Here is the MATHLAB code for computing the sample partial correlation rho
between cortical thickness (thick) and response time (time) while removing
the effect of age (age) and cortical area (area) difference in a group at a single
vertex. For n subjects in the group, all variables are row vectors of size 1 × n.
So x and y are 2× n matrices, and the covariance matrix a is the size 4× 4.

x=[age; area];
y=[thick; time];
a=cov([x;y]’);
b=a(1:2,1:2)-a(1:2,3:4)*inv(a(3:4,3:4))*a(3:4,1:2);
rho=b(1,2)/sqrt(b(1,1)*b(2,2));
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