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We propose a new analysis framework to utilize the full information of brain functional networks for
computing the mean of a set of brain functional networks and embedding brain functional networks into
a low-dimensional space in which traditional regression and classification analyses can be easily
employed. For this, we first represent the brain functional network by a symmetric positive matrix com-
puted using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold
structure on brain functional networks whose norm gives a convenient and practical way to define a
mean. Finally, based on the fact that the computation of linear operations can be done in the tangent
space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean
Riemannian manifold space in order to embed the brain functional networks into a low-dimensional
space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient
and succinct representation of the functional network and facilitates regression analysis, such as ridge
regression, on the brain functional network to more accurately predict age when compared to that of
the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis
framework, we demonstrate the integration and segregation of cortical–subcortical networks as well
as among the salience, executive, and emotional networks across lifespan.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The brain at rest is not idle but shows continuous, spontaneous
fluctuations in activity among spatially distributed but functionally
connected regions. Resting state functional magnetic resonance
imaging (rs-fMRI) has been recognized as a useful technique to
investigate complex patterns of brain functional organization at
rest. It has been increasingly used in studies of normal aging and
neurodegenerative diseases (Venkataraman et al., 2013;
Deligianni et al., 2011; Bluhm et al., 2008; Wang et al., 2010;
Tomasi and Volkow, 2012) as it is unbiased to confounds associ-
ated with task-based fMRI, such as task difficulty and performance.

A large body of rs-fMRI aging studies have employed graph the-
ory to characterize ‘‘small-world’’ properties of the brain across
lifespan, meaning that many networks have both local clustering
of connections and a short path length between any two brain
regions (Achard and Bullmore, 2007; Bullmore and Sporns, 2012;
Meunier et al., 2009). However, a decrease of both global and local
network efficiency was shown in older adults in comparison to
young adults (Achard and Bullmore, 2007). Using graph theory,
Newman’s modularity metric can be defined to measure the
strength of division of the brain functional network into modules.
Previous studies (e.g., (Meunier et al., 2009)) revealed that normal
brain aging was associated with changes in modularity of sparse
functional networks. In particular, both young and older brain net-
works demonstrated significantly non-random modularity but the
older brain showed a reduced number of intermodular connections
to frontal modular regions and an increased number of connector
nodes in posterior and central modules (Meunier et al., 2009). In
addition to the aforementioned metrics that characterize the topol-
ogy of the brain functional network, researchers also investigated
age-related effects on the connectivity of individual structures
and showed the age decline of major functional connectivity hubs
in the ‘default-mode’ network (DMN) (Damoiseaux et al., 2008a;
Bluhm et al., 2008; Wang et al., 2010; Tomasi and Volkow, 2012).
A reduction of the connectivity between the anterior cingulate
cortex and bilateral insular in salience network in older adults
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Fig. 1. Age distribution among 178 subjects.
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suggested an age-related deficits in decision-making and sensory
integration (Onoda et al., 2012; Seeley et al., 2007). Decreased
functional connectivity in the left premotor area and right cingu-
late motor cortex was found in older adults in comparison to young
adults (Wu et al., 2007).

Recently, support vector machine (SVM) has been employed on
rs-fMRI for the prediction of individual brain maturity, in which a
subset of elements in the functional connectivity matrix derived
from rs-fMRI were used as features (Dosenbach et al., 2010).
Wang et al. (2012) assumed that variations of the functional net-
works are driven by variations in a small subset of unknown
parameters. A supervised locality preserving projection (LPP) algo-
rithm (He et al., 2005) was employed to learn a low-dimensional
representation of brain development from many individuals at dif-
ferent ages and support vector regression (SVR) models were
designed in this low-dimensional space for making continuously
valued predictions about the functional development levels of indi-
vidual brains. However, arithmetic operations on the matrices of
brain functional networks, such as non-convex Euclidean opera-
tions, could result in undesirable properties of the matrices as dis-
cussed below.

Brain function network modeling has thus far largely based on
(partial) correlation analysis of rs-fMRI time series data among
brain regions, suggesting that the brain functional network can
be fully characterized by a symmetric positive semi-definite
matrix. Ideally, if the brain parcellated regions, served as network
nodes, are functionally distinct from each other, then the func-
tional network can be represented by a symmetric positive definite
(SPD) matrix. When considering a SPD matrix as an element in a
finite-dimensional Euclidean space, arithmetic operations, such
as mean, does not satisfy certain desirable properties. For example,
the linear average of SPD matrices is not the inverse of the linear
average of the inverses of the SPD matrices. There have been great
efforts on carrying out computations with SPD matrices in a curved
space, called a manifold, in medical image analysis (Fillard et al.,
2007; Arsigny et al., 2006; Pennec et al., 2006). In the manifold set-
ting, a SPD matrix can be represented as an element in a vector
space in which the mean and variance of SPD matrices can be eas-
ily computed with certain desirable properties. For instance,
Arsigny et al. (2007) proposed a Riemannian framework on SPD
matrices, which leads to the computation of the mean of SPD
matrices while preserving the aforementioned desirable proper-
ties. It has been widely used to study the mean and variation of dif-
fusion tensor imaging of the brain (Fillard et al., 2007). This
manifold setting of SPD has been recently employed to investigate
brain functional-connectivity difference in post-stroke patients
(Varoquaux et al., 2010), which demonstrates an increase in statis-
tical power in detecting functional disconnections in the patients
when compared to the Euclidean setting of SPD. Manifold learning
analysis was also widely used for studying anatomical shapes (e.g.
(Aljabar et al., 2011)).

Here, we adopt the Riemannian framework of SPD matrices
introduced by Arsigny et al. (2007) and propose a new analysis
framework to utilize the full information of brain functional net-
works for computing the mean of a set of brain functional net-
works and embedding brain functional networks into a low-
dimensional space in which regression and classification analyses
can be easily employed. For this, we first represent the brain func-
tional network by a SPD matrix computed using sparse inverse
covariance estimation (Huang et al., 2010). Huang et al. (2010)
employed the sparse inverse covariance estimation approach to
compute functional connectivity matrices at different sparsity
levels and detected differences of functional connectivity among
mild cognitive impairment patients, Alzheimer’s patients and nor-
mal controls. We then impose a Log-Euclidean Riemannian mani-
fold structure on brain functional networks whose norm gives a
convenient and practical way to define a mean. The metric in the
Log-Euclidean Riemannian manifold leads to easy and efficient
computation of the mean of SPD matrices. This is different from
the work in Varoquaux et al. (2010), where affine-invariant metric
in the Riemannian manifold of SPD matrices is used and involves
intensive computation of matrix inverses, square roots, logarithms,
and exponentials. Varoquaux et al. (2010) proposed a matrix vari-
ate probabilistic model suitable for inter-subject comparison of
functional connectivity matrices on the affine-invariant manifold
of SPD matrices, leading to a new algorithm for principled compar-
ison of connectivity coefficients between pairs of regions. Finally,
based on the fact that the computation of linear operations can
be done in the tangent space of this Riemannian manifold, we
adopt Locally Linear Embedding (LLE) (Roweis and Saul, 2000) to
the Log-Euclidean Riemannian manifold space for embedding the
brain functional networks into a low-dimensional space. Using this
framework, we show the evolution of the brain functional network
across lifespan and the comparison between the Log-Euclidean and
Euclidean spaces of brain functional networks in terms of the pre-
diction accuracy of biological age.

2. Methods

2.1. Subjects

This study was approved by the National University of Singa-
pore Institutional Review Board. All participants provided written
informed consent prior to the participation. Two-hundreds and
fourteen healthy Singaporean Chinese volunteers aged 21–80 years
old were recruited (males: 93; females: 121) for this study. The
participants were recruited via advertisements and screened for
eligibility through a phone interview prior to an onsite visit. Volun-
teers with the following conditions were excluded: (1) major ill-
nesses/surgery (heart, brain, kidney, lung surgery); (2)
neurological or psychiatric disorders; (3) learning disability or
attention deficit; (4) head injury with loss of consciousness; (5)
non-removable metal objects on/in the body such as cardiac pace-
maker; (8) diabetes or obesity; (9) a Mini-Mental State Examina-
tion (MMSE) score of less than 24 (Ng et al., 2007). This study
only included 178 right-handed subjects (age: 22–79 years; males:
71; females: 107) who completed structural and function MRI. The
distribution of age among these subjects is shown in Fig. 1.

2.2. MRI acquisition and analysis

MRI was performed on a 3T Siemens Magnetom Trio Tim scan-
ner using a 32-channel head coil at Clinical Imaging Research Cen-
tre of the National University of Singapore. The image protocols
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were: (i) high-resolution isotropic T1-weighted Magnetization Pre-
pared Rapid Gradient Recalled Echo (MPRAGE; 192 slices, 1 mm
thickness, in-plane resolution 1 mm, no inter-slice gap, sagittal
acquisition, field of view 256� 256 mm, matrix = 256� 256, repe-
tition time = 2300 ms, echo time = 1.90 ms, inversion
time = 900 ms, flip angle = 9�); (ii) isotropic axial rs-fMRI imaging
protocol (single-shot echo-planar imaging; 48 slices with 3 mm
slice thickness, no inter-slice gaps, matrix = 64� 64, field of
view = 192 � 192 mm, repetition time = 2300 ms, echo
time = 25 ms, flip angle = 90�, scanning time = 8.01 min); The sub-
jects were asked to close their eyes during the rs-fMRI scan. The
image quality was verified immediately after the acquisition
through visual inspection when adults were still in the scanner.
If the motion artifact was large, a repeated scan was conducted.
The image was removed from the study if no acceptable image
was acquired after three repetitions.

For the T1-weighted image, FreeSurfer was used to segment the
cortical and subcortical regions and the cortical parcellation.
Briefly, a Markov random field (MRF) model was used to label each
voxel in the T1-weighted image as gray matter (GM), or white mat-
ter (WM), or CSF, or subcortical structures (hippocampus, amyg-
dala, caudate, putamen, globus pallidus, and thalamus) (Fischl
et al., 2002). Cortical inner surface was constructed at the bound-
ary between GM and WM and then propagated to its outer surface
at the boundary between GM and CSF. The cortical surface of each
hemisphere was parcellated in 34 cortical regions (see panel of the
cortical parcellation in Fig. 2) (Fischl et al., 2004) that will be used
along with the 6 subcortical regions as ROIs in the resting-state
fMRI analyses below.

The resting-state fMRI data were first processed with slice tim-
ing, motion correction, skull stripping, band-pass filtering (0.01–
0.08 Hz) and grand mean scaling of the data (to whole brain modal
value of 100). To quantify the quality of rs-fMRI data in terms of head
motion, displacement due to motion averaged over the image vol-
ume was calculated for individual subjects. Its mean and standard
deviation were respectively 0.05 mm and 0.04 mm among all the
subjects used in this study. The resting-state fMRI signals due to
effects of nuisance variables, including six parameters obtained by
motion correction, ventricular and white matter signals were
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Fig. 2. Schematic of functio
removed. Subsequently, the fMRI data were transferred to the corre-
sponding T1-weighted image via affine transformation and were
finally represented on the cortical surface (see details in (Qiu et al.,
2006)). For the functional network analysis, the functional time
series in the ROIs defined above were first computed by averaging
the signal of all voxels within individual ROIs. The functional con-
nectivity of each subject was then characterized using an 80� 80
symmetric matrix whose element ij was computed using Pearson
correlation analysis on the time series of regions i and j.

2.3. Positive definite matrices for the representation of brain functional
networks

As described above, the brain functional network is represented
by a correlation matrix, R, where the ijth element of R is computed
as the Pearson correlation coefficient of functional time series data,
f iðtÞ and f jðtÞ, over different time points in the ith and jth regions of
interest (ROIs). From this construction, R is a symmetric matrix but
is not necessarily a positive definite matrix partially due to
unknown parcellation that divides the brain into distinct func-
tional regions. More importantly, the estimation of R is in general
achieved by maximum likelihood estimation (MLE) of the covari-
ance matrix when f iðtÞ is mean centered and normalized with stan-
dard deviation of one. The log-likelihood can be written as

LðR�1Þ ¼ log det R�1 � 1
n

Xn

i¼1

fðtjÞ>R�1fðtjÞ

¼ log det R�1 � traceðR�1SÞ; ð1Þ

where S ¼ 1
n

Pn
j¼1fðtjÞfðtjÞ> is the covariance matrix of

fðtjÞ ¼ ½f 1ðtjÞ; . . . ; f iðtjÞ; . . . ; f pðtjÞ�>;

a vector containing functional values at time tj for individual brain
regions, i. n is the number of time points in the functional data.
Based on our image acquisition protocol, n ¼ 206. p denotes the
number of brain regions. In our case, p ¼ 80. Here, the log-likeli-
hood is characterized as a function of R�1 to simply emphasize
the estimation of the inverse covariance matrix. A limitation of
MLE is that the estimated covariance matrix is positive definite only
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when the sample size of the data (e.g., time points in the resting
state fMRI data) is substantially larger than the number of brain
regions modeled, i.e., n� p. To resolve this singularity problem of
the covariance matrix, the above log-likelihood can be regularized
with L1-norm penalty. Hence, Eq. (1) can be extended as

LðR�1Þ ¼ log det R�1 � traceðR�1SÞ � kkR�1k1; ð2Þ

where k � k1 is the sum of the absolute values of the elements of R�1.
k > 0 controls the sparsity of the off-diagonal elements of R�1. This
penalized log-likelihood is maximized over the space of all possible
symmetric positive definite (SPD) matrices. It has been shown that
Eq. (2) is a convex problem and is usually solved using the graphical
LASSO (GLASSO) algorithm (Ng et al., 2013; Banerjee et al., 2006,
2008; Friedman et al., 2008; Huang et al., 2010; Mazumder and
Hastie, 2012).

2.4. Log-Euclidean Riemannian manifold of brain functional networks

Denote the functional networks as Ri; i ¼ 1;2; . . . ;N, where N is
the number of subjects. It is important to compute the mean
among them, denoted as �R, and study the variation of Ri deviated
from �R for understanding the representation of the functional net-
work among the population and individual differences in func-
tional connectivity. From the construction described in
Section 2.3, Ri is a SPD matrix. Computing �R is not trivial. For
instance, the arithmetic mean of Ri; i ¼ 1;2; . . . ;N, where �R does
not satisfy certain desirable properties. The mean of
R�1

i ; i ¼ 1;2; . . . ;N is not necessary to coincide with �R�1. Moreover,
any non-convex Euclidean operations on Ri could result in
symmetric matrices with null or negative eigenvalues. As a conse-
quence, there have been great efforts on carrying out computations
with SPD matrices in a Riemannian manifold. In this study, we
adopt the Log-Euclidean Riemannian structure on SPD matrices
introduced by Arsigny et al. (2007) to compute the mean and inter-
polation of the functional networks because of its fast and efficient
computation. It has been shown that there is a one-to-one and onto
mapping between this SPD Riemannian space and a vector space of
symmetric matrices. SPD matrices can be mapped to the vector
space of symmetric matrices through the matrix logarithm
operation, while symmetric matrices can be mapped to the SPD
Riemannian space via the operation of the matrix exponential.
Under this construction, SPD matrices are transformed into their
matrix logarithms and the Riemannian computations can be
converted into Euclidean ones for symmetric matrices. Hence, the
distance between Ri and Rj can be computed via a Euclidean norm
of symmetric matrices, that is,

distðRi;RjÞ ¼ k logðRiÞ � logðRjÞk;

where k � k represents matrix norm. This distance is called as
Log-Euclidean metric. In this work, we use the similarity-invariant
Log-Euclidean metric, which is given by

distðRi;RjÞ ¼ k logðRiÞ � logðRjÞkF

¼ traceflogðRiÞ � logðRjÞg2
� �1

2
: ð3Þ

k � kF is the Frobenius norm of a matrix. With this metric, the SPD
Riemannian space is isomorphic and isometric to the corresponding
Euclidean space of symmetric matrices. Hence, one can easily com-
pute the Frèchet mean of SPD matrices by minimizing

f ð�RÞ ¼
XN

i¼1

distðRi; �RÞ
2
; ð4Þ

where

�R ¼ exp
1
N

XN

i¼1

logðRiÞ
 !

: ð5Þ
2.5. Locally linear embedding of brain functional networks

The functional organization of the brain is not random. We thus
assume that variations of the functional networks are driven by
variations in a small subset of unknown parameters. We present
a nonlinear dimensionality reduction algorithm specifically for
the purpose of approximating the SPD Riemannian space of the
brain functional networks by a low-dimensional space where
the relationship of neighborhood brain functional networks in
the SPD Riemannian space can be preserved. We shall call this
algorithm as Locally Linear Embedding-SPD (LLE-SPD) and it is an
extension of the Locally Linear Embedding (LLE) algorithm
(Tenenbaum et al., 2000; Roweis and Saul, 2000; Saul and
Roweis, 2003), which assumes that the local neighborhood of a
point on the manifold can be well approximated by the affine sub-
space spanned by the K-nearest neighbors (KNN) of the point and
finds a low-dimensional embedding of the data based on these
affine approximations. We make the assumption that the brain
functional network of the ith subject and its neighbors (subjects
whose metric distance to the ith subject is smaller than a certain
threshold) to lie on or close to a locally linear patch of the
low-dimensional manifold. Just as in LLE, we assume that every
subject’s brain functional network can be reconstructed from its
K closest neighbors. While LLE has been applied to a variety of
imaging problems, it uses (at least locally) the Euclidean metric
or a variation of it to perform dimensionality reduction. While this
may be appropriate in some cases, there are several problems
where it is more natural to consider features that live in a non-
Euclidean space. Goh and Vidal (2007, 2008) extends LLE to
Riemannian manifolds, by making use of the Riemannian opera-
tions such as the exponential and logarithm maps. Yang et al.
(2011) extends LLE to a diffeomorphic shape space for anatomical
shape classification. Here, we employ the similar idea to reduce the
dimensionality of the brain functional networks as those in Goh
and Vidal (2007), Yang et al. (2011) and Tenenbaum et al. (2000).
We will detail each step below.

The first step of LLE-SPD is the computation of the KNN associ-
ated with each functional network. Instead of using the Euclidean
distance, we define the set of the ith subject’s KNN, N i, as the K
networks Rj that have the shortest metric distance to Ri computed
based on Eq. (3). The second step of LLE-SPD is to find a matrix of
weights W 2 RN�N , which characterize the each functional network
as a linear combination of its neighbors. This is made possible by
the linearity property of symmetric matrices. The coefficients Wij

can be estimated by minimizing reconstruction errors quantified
in terms of the similarity-invariant Log-Euclidean metric as given
in Eq. (3),

�ðWÞ ¼
XN

i¼1

k logðRiÞ �
X
j2N i

Wij logðRjÞk2
F ; ð6Þ

subject to
P

jWij ¼ 1 and Wij ¼ 0 when j R N i, and Ri is a SPD
matrix representing the brain functional network. The coefficients
Wij summarize the contribution of the jth subject’s functional net-
work to that of the ith subject. Notice that the cost function
becomes the same form of the cost function of the LLE algorithm
first proposed in (Roweis and Saul, 2000) but in the vector space
of symmetric matrices. Therefore, the optimal coefficients Wij can
be found by solving the least-squares problem given in (Roweis
and Saul, 2000). More precisely, for each functional network Ri,
the nonzero entries corresponding to the ith row of W are given by

Wi ¼
1>C�1

i

1>C�1
i 1

; ð7Þ

where Ci 2 RK�K is the local Gram matrix at Ri, i.e.,
Ciðj; lÞ ¼ ðRj � RiÞ>ðRl � RiÞ, and 1 2 RK is the vector of all ones. Just
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as in LLE and its extension for the Log-Euclidean Riemannian man-
ifold, the weights Wij in LLE-SPD reflect intrinsic geometric proper-
ties of the functional networks that are invariant to rotation,
translation, and rescaling. Therefore, their characterization of local
geometry in the original SPD Riemannian manifold is equally valid
for that of the low-dimensional space. The last step of LLE-SPD is to
find a low-dimensional representation of the data points. We
assume that the same coefficients Wij that reconstruct the ith sub-
ject functional network in the Log-Euclidean space can also be used
to model its coordinates in the manifold with d dimensions. Assume
that there is the mapping of Ri to a low-dimensional vector yi such
that yi minimizes this embedding cost function

Jð½y1; y2; . . . ; yN�Þ ¼
XN

i¼1

kyi �
X
j2N i

Wijyjk
2
; ð8Þ

subject to
PN

i¼1yi ¼ 0, 1
N

PN
i¼1yiy>i ¼ IdN�N , IdN�N is an N � N identity

matrix. The two constraints ensure that the center of embedding is
the origin, and yi has a unit length. It has been proved (Roweis and
Saul, 2000) that the embedding cost function is equivalent to

JðYÞ ¼ traceðY>MYÞ;

where Y ¼ ½y1; y2; . . . ; yN� and M ¼ ðIdN�N �WÞ>ðIdN�N �WÞ. This
can be solved through a sparse N � N eigenvalue problem whose
bottom d nonzero eigenvectors of M provide an ordered set of
orthogonal coordinates centered on the origin.

Note that there are two free parameters in the LLE-SPD algo-
rithm which are the number of neighbors K and the intrinsic
dimension of a set of functional networks d. In general, d is less
than K. By nature, the LLE-SPD approach embeds the samples in
the low-dimensional Euclidean space such that the relationship
of the samples in the Riemannian manifold can be best preserved
in the embedded Euclidean space. Hence, we optimize these two
parameters via quantifying the similarity between the neighbor-
hood relations in the Log-Euclidean Riemannian space of SPD and
in the d-dimensional space at a fixed K and d, by qðD;DKÞ, where
qðx; yÞ is the absolute correlation between variables x and y. D is
the pair-wise metric distance matrix among Ri, while DK is the
pair-wise Euclidean distance matrix among the embeddings of Ri

in the d-dimensional space when the K neighbors are used in
LLE-SPD. We maximize q to determine the values of K and d using
exhaustive search in this paper.

2.6. Explicit mapping of functional networks

In the previous section, we present how to use LLE-SPD to pro-
vide an embedding for a training set with N brain networks, fRigN

i¼1,
to a d-dimensional space. For this, we adopted the procedure sim-
ilar to that in Saul and Roweis (2003). If we are given a previously
unseen functional network RNþ1, we want to compute a new
embedding yNþ1 that represents RNþ1 in the d-dimensional space.
It is obvious that one can incorporate RNþ1 into the training set
and find the low-dimensional embedding by running LLE-SPD on
fRigNþ1

i¼1 . However, such a strategy is computationally costly when
the training set is large scale. Therefore, an efficient algorithm is
needed to derive an explicit mapping between the SPD Log-Euclid-
ean space and the d-dimensional space obtained from the previous
run of the LLE-SPD algorithm on fRigN

i¼1. In this section, we show
how to extend LLE-SPD to a new data point RNþ1, without having
to rerun LLE-SPD on the entire dataset. We introduce the following
non-parametric solution to compute the low-dimensional embed-
ding yNþ1 for a new functional network RNþ1. We first calculate the
metric distance between RNþ1 and Ri; i ¼ 1;2; . . . ;N and identify
the KNN of RNþ1 from Ri. Having obtained the KNN, it is then
possible to find the coefficients cW j and reconstruct yNþ1 fromcW j and the existing embedding fyig

N
i¼1 by minimizing the
reconstruction error given in Eq. (6). The low-dimensional embed-
ding is given by yNþ1 ¼

P
j2N Nþ1

cW jyj.

2.7. Prediction analysis

Ridge regression, which is sometimes known as linear least
square regression with Tikhonov regularization, was used to
predict biological age from the embedding of brain functional
networks. Leave-one-out cross-validation was employed to esti-
mate the prediction accuracy in age. We summarize the leave-
one-out cross-validation procedure in Algorithm 1.

Algorithm 1. (Leave-one-out cross-validation)

1. compute the correlation matrix based on rs-fMRI time
series data for each subject to construct matrix, S, in Eq. (2).

2. estimate a SPD matrix, R, from Eq. (2) using GLASSO
algorithm. for i ¼ 1; . . . ;N,

3. obtain the low-dimensional embedding of SPD matrices of
N � 1 subjects using LLE-SPD described in Section 2.5.

4. estimate the ridge regression model with the low-
dimensional embedding data of N � 1 subjects as
independent variables and age as dependent variable. The
parameter in the ridge regression model was 0.5 in our
experiment.

5. project the SPD matrix of the Nth subject to the low-
dimensional embedding using the explicit mapping
described in Section 2.6.

6. predict the biological age of the Nth subject using ridge
regression.

end.
3. Results and discussion

3.1. Prediction of biological age

In our experiment, we analyzed rs-fMRI data of 178 subjects by
following the flow chart shown in Fig. 2. We first estimated the
parameters, including the sparsity of the brain network in Eq. (2)
and the neighbors and dimension in LLE-SPD, by maximizing the
similarity between the neighborhood relations in the Log-Euclid-
ean space of SPD and in the low-dimensional embedding space.
The maximal similarity was achieved when the sparsity level of
the brain network was 0.25, the number of neighbors in the LLE-
SPD algorithm was 33, and the dimensionality for the LLE-SPD
algorithm was 6. Fig. 3A shows the first three embedding dimen-
sions of the brain functional networks. If the variation of brain
functional networks is mainly because of age, we expect that the
LLE-SPD algorithm is able to project the functional network into
the dimension that is correlated with age. Indeed, the second
row of Table 1 shows significant correlation of the first three
embedded dimensions with age (p < 0:001). The ridge regression
with the leave-one-out cross-validation was used to predict the
biological age of each functional network. The predicted biological
age was correlated with the subjects’ actual age (Pearson correla-
tion: r ¼ 0:591; p < 0:001). The root mean square error (RMSE)
between the two was 12.97.

In contrast, we applied the similar technique when considering
the SPD is an element in the finite dimensional vector space where
the norm of SPDs is the Frobenius norm of two SPDs. In this setting,
the optimal embedding was achieved when the sparsity level of
the brain network was 0.2. The number of neighbors in the LLE
algorithm was 36, and the dimensionality of the LLE algorithm
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Fig. 3. The first three dimensions of embeddings of the brain functional networks. Panel (A) shows the embedding of the brain functional networks using LLE-SPD in the Log-
Euclidean manifold space, while panel (B) illustrates the embedding of the brain functional networks using LLE in the Euclidean space.

Table 1
Correlation coefficients between age and the first three embedding dimensions of the
brain functional networks. The second row lists the results obtained from locally
linear embedding for symmetric positive definite matrices in the Log-Euclidean space
(LLE-SPD). The third row lists the results obtained from locally linear embedding for
symmetric positive definite matrices in the Euclidean space (LLE).

Pearson correlation r 1st 2nd 3rd

LLE-SPD 0:403 0:308 0:273
ðp < 0:001Þ ðp < 0:001Þ ðp < 0:001Þ

LLE 0:380 0:246 0:218
ðp < 0:001Þ ðp < 0:001Þ ðp ¼ 0:003Þ
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was 8. Fig. 3B shows the first three embedding dimensions of the
brain functional networks obtained from LLE. The third row of
Table 1 shows the correlation coefficients of these three dimen-
sions with age. The predicted biological age was correlated with
the subjects’ actual age (Pearson correlation: r ¼ 0:457;
p < 0:001). The root mean square error (RMSE) between the two
was 14.35.

Our results suggest that the Log-Euclidean manifold framework
can provide more efficient and succinct representation of the
functional network than the Euclidean framework does. This is indi-
cated by a fewer dimension extracted by LLE-SPD in the Log-Euclid-
ean manifold framework (6 dimensions in the Log-Euclidean
framework vs 8 dimensions in the Euclidean framework). We fur-
ther employed bootstrapping to estimate the empirical distribution
of RMSE for both Log-Euclidean and Euclidean frameworks. Rank
sum test showed that the integration of the Log-Euclidean manifold
with LLE-SPD statistically significantly improved the age prediction
when compared to the Euclidean framework (p < 0:001).
3.2. Evolution of brain functional networks across lifespan

We employed Eq. (5) and computed the SPD matrices averaged
across subjects in each decade to represent the evolution of the
brain function network across lifespan. The first column of Fig. 4
shows the mean of the brain functional networks among the 20-
to 30-year olds, the 30- to 50-year olds, the 50- to 60-year olds,
and the 60- to 79-year olds from the top to the bottom, respec-
tively. For the purpose of visualization, we demonstrate the mean
of the brain functional network in the sparse matrix form (see the
second column of Fig. 4) and in the network graph (see the third
and fourth columns of Fig. 4), where the sparse matrix was gener-
ated by first computing p-value of the correlation coefficients of
functional signals between two brain regions and then controlling
for multiple comparisons using False Discovery Rate (FDR). The
mean of the functional network for 20- to 30-year olds is com-
posed of six functional subnetworks, including visual, sensory,
default mode network (DMN), salience, amygdala-hippocampus
complex, and executive networks. The second column of Table 2
lists the structures in each of these functional subnetworks, which
can also be visualized in Fig. 4A. For example, the sensory network
consists of bilateral precentral, postcentral, and paracentral corti-
ces as well as superior temporal and Heschl’s gyri. Largely consis-
tent with findings in previous studies (Buckner et al., 2008; Biswal
et al., 2010; Damoiseaux et al., 2008b; Greicius et al., 2003), our
study shows that DMN consists of bilateral precuneus, isthmuscin-
gulate, middle temporal gyrus, inferior temporal and parietal cor-
tices. The salience network is composed of the anterior cingulate,
insular, posterior cingulate, basal ganglia, and thalamus. In partic-
ular, the anterior cingulate, insular, and thalamus have been iden-
tified as key structures of the salience network (Seeley et al., 2007).
The mean of the functional network for the 30- to 50-year olds is
similar to that seen for the 20s olds. However, the salience network
is partially merging with the frontal structures in the executive
network in the 20- to 30-year olds (see Fig. 4 A, B). Moreover,
the temporal structures, such as superior, middle and inferior cor-
tices, form a new temporal network in the 30- to 50-year olds (see
Table 2). The mean of the functional network for the 50- to 60-year
olds has the similar functional organization as that for the 30- to
50-year olds. However, the salience network only consists of the
anterior and posterior cingulate as well as insular without involve-
ment of subcortical structures and frontal structures. The func-
tional reorganization was seen among the salience, executive,
and emotional networks. Fig. 4C clearly shows reductions in func-
tional connections across the whole brain as well as between sub-
cortical and cortical regions. Fig. 4D shows less integration of the
functional network in the 60- to 79-year olds, which is consistent
with age-related reductions in global and local communication
efficiencies in the brain (Bullmore and Sporns, 2012). Overall, the
visual, sensory, and amygdala-hippocampus networks remain rel-
atively stable in aging in terms of regional connections. Neverthe-
less, we observe the important evolution of functional networks
across the lifespan. First, we observe the relatively stable organiza-
tion of DMN based on the functional connections as precuneus,
isthmuscingulate, and inferior parietal cortices are identified as
the key structures in DMN across the lifespan. However, the
strength of the DMN connectivity is reduced due to aging (see
the first two columns of Fig. 4), which is in agreement with the
findings shown in previous rs-fMRI studies (Damoiseaux et al.,
2008a; Bluhm et al., 2008; Wang et al., 2010; Tomasi and
Volkow, 2012). Second, our result suggests age-related functional
disconnection between the subcortical and cortical structures,
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especially disconnection between subcortical and frontal struc-
tures, which is in line with converging data from positron emission
tomography (PET), diffusion tensor imaging (DTI), and neurocogni-
tion in aging. Garraux et al. (1999) show subcortical-frontal meta-
bolic impairment in normal aging. Westlye et al. (2010) suggest
age-related disruptions in major fiber bundles connecting subcor-
tical and cortical structures. Ystad et al. (2011) employ DTI and
rs-fMRI and show that unique cortico-subcortical fiber bundles
can be identified for a range of cortical resting state networks,
and indicate that these structural connections play an important
role in subcortical–cortical resting state network communication.
Hence, it is not surprising that pathways between the subcortical
and cortical regions critically influence various aspects of cogni-
tion, motor control, and affect in aging (Bonelli and Cummings,
2007). Third, the salience, executive, and emotional networks are
dynamically integrated and/or segregated across the lifespan. He
et al. (2013) show that the connection of the salience network with
the executive network and DMN is degraded even in middle-aged
adults. Our study extends this result and shows that the insular is
emerging with the dorsolateral prefrontal structures in 30- to 50-
year olds, then separated in 50- to 60-olds, and finally emerging
again in 60- to 79-year olds. This may influence the role of the sal-
ience in effectively switching between the executive network and
DMN and may further affect cognitive function in aging population
(Menon and Uddin, 2010).

4. Further consideration and limitations

Even though our paper only focused on the LLE manifold learn-
ing approach, other manifold learning approaches, such as ISOMAP
and Laplacian Eigenmaps, can be employed for the purpose of the
dimensionality reduction of the brain functional organization for
the prediction of biological age. Nevertheless, the integration of
LLE with the Log-Euclidean manifold of brain functional networks
provides a natural framework where linear operations can be
applied for the embedding and explicit mapping of the brain func-
tional networks into a low-dimensional space. Therefore, this paper
mainly extends the LLE algorithm to the Log-Euclidean manifold.

In addition to functional networks, our approach can also be
applied to structural networks, such as structural networks derived
from cortical thickness. More broadly, the Log-Euclidean Riemann-
ian manifold and its associated metric provide easy and efficient
computation of linear operations on SPD matrices. Hence, the pre-
sented framework can be easily incorporated with linear classifier
for classification problems when SPD matrices are considered as
features.



Table 2
Brain functional subnetworks across the lifespan.

Network 20–30 years 30–50 years 50–60 years 60–79 years

Visual Cuneus Cuneus Cuneus Cuneus
Lingual Lingual Lingual Lingual
Lateral occipital cortex Lateral occipital cortex Lateral occipital cortex Lateral occipital cortex
Pericalcarine Pericalcarine Pericalcarine Pericalcarine
Fusiform Fusiform Fusiform
Parahippocampus Parahippocampus Parahippocampus

Entorhinal Entorhinal
Temporal pole Temporal pole
Globus pallidus Globus pallidus

Sensory Precentral Precentral Precentral Precentral
Postcentral Postcentral Postcentral Postcentral
Paracentral Paracentral Paracentral
Superior temporal gyrus
Heschl’s gyrus Heschl’s gyrus

Default mode network Precunes Precunes Precunes Precunes
Isthmuscingulate Isthmuscingulate Isthmuscingulate Isthmuscingulate
Middle temporal Middle temporal
Inferior parietal Inferior parietal Inferior parietal Inferior parietal
Inferior temporal Inferior temporal

Salience and executive Caudal anterior cingulate Caudal anterior cingulate Caudal anterior cingulate
Rostral anterior cingulate Rostral anterior cingulate
Posterior cingulate Posterior cingulate Posterior cingulate Posterior cingulate
Insular Insular Insular Insular
Caudate Caudate Caudate
Putamen Putamen Putamen
Globus pallidus Globus pallidus Globus pallidus
Thalamus Thalamus Thalamus

Superior frontal
Caudal middle frontal
Rostral middle frontal Rostral middle frontal
Parsopercularis Parsopercularis
Parstriangularis

Frontal pole
Supramaginal
Parahippocampus

Amygdala-hippocampus Amygdala Amygdala Amygdala Amygdala
Hippocampus Hippocampus Hippocampus Hippocampus

Temporal Superior temporal Superior temporal Superior temporal
Middle temporal Heschl’s gyrus Middle temporal
Inferior temporal Inferior temporal

Executive Caudal middle frontal Caudal middle frontal Caudal middle frontal
Rostral middle frontal Rostral middle frontal Rostral middle frontal
Superior frontal Superior frontal Superior frontal
Parsopercularis Parsopercularis
Parsorbitalis Parsorbitalis
Parstriangularis Parstriangularis
Lateral orbitofrontal Lateral orbitofrontal
Medial orbitofrontal Medial orbitofrontal
Supramarginal Supramarginal

Emotion Lateral orbitofrontal Lateral orbitofrontal
Medial orbitofrontal Medial orbitofrontal
Rostral anterior cingulate
Parsopercularis
Parsorbitalis Parsorbitalis
Parstriangularis

Note. The structures that are not included in this table were not classified into any functional module.
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We noticed that our study employed the cortical parcellation
based on the gyral and sulcal pattern (Fischl et al., 2004). Even
though the findings on the evolution of brain functional networks
across lifespan are meaningful, the cortical parcellation based on
brain functional units may improve the accuracy for predicting
age. Nevertheless, the Log-Euclidean representation of the brain
functional network can be employed for any cortical parcellation.
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