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ABSTRACT

The second Laplace-Beltrami eigenfunction provides an intrinsic geometric way of establishing natural coordi-
nates for elongated 3D anatomical structures obtained from imaging images. This approach is used to establish
the centerline of the segmented human mandible and provides automated anatomical landmarks across subjects.
These landmarks are then used to quantify the growth pattern of the mandible between ages 0 and 20.

1. INTRODUCTION

The skull consists of the craniofacial complex and the mandible. The craniofacial complex includes the cranium
and the face. Although the cranium and the face are closely located anatomically, they have different growth
patterns.1 The cranium follows a neural growth pattern where it is considered to be very close to its mature size
by about the age of six years. The face, on the other hand, specifically the middle and lower anterior regions of
the face (eyes to chin), follows the general somatic or skeletal growth curve and continues to grow till about age
18 years. The growth of the mandible, a U-shaped bone (superior view) that forms the lower jaw, contributes
to the maturation of the face. It consists of a body and a pair of rami that articulate with the cranium at the
temporomandibular joints. So, while its vertical growth appears to follow a somatic or skeletal growth pattern,
its lateral growth is expected to follow more of a neural growth pattern particularly at the condylar level (level of
temporomandibular joint) but not necessarily at the lingual (tongue) level. The growth of the human mandible
has been characterized to consist of a general increase in size as well as remodeling where there is simultaneous
growth forward and downward,2–4 and also bilateral growth.5 The mandible is a moving bone, and its growth and
remodeling is dependent on the growth and biomechanical forces of all other component structures (bony and soft
tissue structures) in the craniofacial complex. Thus the purpose of this paper is to quantitatively characterize
the 3D growth of the mandible while accounting for the gender difference using an intrinsic geometric approach.

For a 3D growth pattern analysis of the mandible, it is desirable to represent mandibular shape in a concise
form while preserving essential shape properties. As 3D models become common in many disciplines, curve
skeleton or centerline has been developed for a wide range of applications, since it captures the essential topology
as a 1D representation of 3D object.6 Recently, several methods based on the Reeb graph has been developed
to extract the centerline.7,8 The Reeb graph captures the topology of an arbitrary manifold by describing the
connectivity of the level sets of the function defined on the manifold. Since Reeb graph of the second eigenfunction
of Laplace-Beltrami operator captures the global geometry and is pose-invariant, Shi et al.8 proposed to use it
in computing skeleton of a simply connected 2D surface patch.

In this paper, we propose to extract the centerline of mandible using the level sets of second eigenfunction of
the Laplace-Beltrami operator. We then apply the extracted centerline shape to characterize the growth pattern
of the mandible.
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Figure 1. The second eigenfunction ψ1 for different mandibles. ψ1 for a elongated object is a smooth monotonic function
increasing from one part of the symmetry to the other part.

Figure 2. The centerline of a mandible surface with different number of level bands k: 50, 100, 200 and 300. As k increases,
the centerline introduces more noise.

2. IMAGE ACQUISITION AND PREPROCESSING

Our imaging data set was composed of 71 subjects (41 males and 38 females). The age distribution was 11.42±5.54
years for the female group, and 9.69 ± 5.71 years for the male group. The CT images were obtained using GE
multi-slice helical CT scanners. The CT scans were acquired directly in the axial plane with a 1.25 mm slice
thickness, matrix size of 512× 512 and 15–30 cm field of view (FOV), and image resolution in the range of 0.29
to 0.59 mm.

CT scans were converted to DICOM format and Analyze 8.1 software package (AnalyzeDirect, Inc., Overland
Park, KS) was used in segmenting binary mandibular structure by thresholding image intensity. The binary
segmentations were converted to surface meshes via the marching cubes algorithm. To reduce mesh noise,
we applied heat kernel smoothing9 with σ = 0.5 to all 79 mandibular surfaces. The heat kernel was explicitly
constructed as a series expansion of the eigenfunctions of the Laplace-Beltraimi operator. The Fourier coefficients
for the finite expansion of heat kernel smoothing were estimated using the least-squares method. The degree of
expansion was fixed at 230.

3. CENTERLINE OF MANDIBLE

We solved Δf = λf to get the second eigenfunction ψ1 on the smoothed mandible surface M, where Δ is the
Laplace-Beltrami operator on the smoothed surface. Since the closed form expression for the eigenfunctions of
the Laplace-Beltrami operator on an arbitrary surface is unknown, the eigenfunctions were numerically computed
using the Cotan formulation.8,10,11 The MATLAB code is given at http://brainimaging.waisman.wisc.edu/

~chung/lb. As shown in Fig. 1, the second eigenfunction ψ1 is a smooth monotonic function increasing from
one part of the symmetry to the other part.

The mandible centerline was obtained by connecting the centroids of the successive level contours of ψ1.
7,8

The centroids were computed as the average of all points p in the same level contour ψ(p) = c for some fixed
c. Due to discrete nature of data, stable results were difficult to obtain. We therefore opted to average all
points p in the same level band c − ε ≤ ψ(p) ≤ c + ε for small ε. Fig. 2 shows the resulting centerline of a



(a) (b)
Figure 3. (a) From the centerline model, we obtain the angle θc between the tips p1 and pn of Condylar process, which are
the end points of the centerline, and the the center of the symmetry pc, which is obtained as the point with the smallest
z coordinate value. (b) Centerlines of all subjects (female =red, male = blue). Each centerline was extracted from 100
level bands and further smoothed using the 29-th degree cosine series representation.

(a) length (mm) (b) angle (◦)
Figure 4. Linear regression of length lc and angle θc of centerline on age (years). Red ’o’ marks and solid line are the
female group, and blue ’x’ marks and dashed line are the male group.

mandible surface for various number of bands k. We have fixed k to be 100 for all mandibles. A k increases,
the centerline fluctuates more rapidly and introduces noise. To overcome this problem, we used the cosine
series representation.12 By representing the coordinates as linear combinations of smooth basis functions, the
cosine representation enables us to get more smooth centerline reducing the fluctuation noise. The cosine series
representation of all subjects are shown in Fig. 3b. The MATLAB implementation of the cosine series representation
is given at http://brainimaging.waisman.wisc.edu/~chung/tracts.

To quantify mandibular growth, we used two morphometric measures: length lc of the mandible and the
angle θc between the two Condylar processes p1 and pn, and the center of symmetry pc (Fig. 3a). The length lc
is the total length of the centerline between the tips of Condylar processes p1 and pn and it is approximated as

lc =
∑n

i=2 ‖pi − pi−1‖. The angle θc was computed using θc = cos−1 〈p1−pc,pn−pc〉
‖p1−pc‖‖pn−pc‖ and measured in degrees.



4. MANDIBLE GROWTH MODEL

We measured the length and angle from the centerline model. The length distribution was 230.05 ± 24.03 mm
for females and 234.23±27.48 mm for males (Fig. 4a). The angle was 77.32±1.53◦ for females, and 77.72±1.50◦

(Fig. 4b) for males. We fitted a linear growth model of the form

length, angle = β0 + β1 gender+ β2 age+ β3 gender · age
and tested for the significance of the gender or age terms without the higher order interaction term. Fig. 4a and
4b show significant length increase and angle decrease in males relative to females at later age range. We tested
the effect of age term β2 while accounting for gender difference and found highly significant results for mandibular
length and angle (length: p-value = 2.63 × 10−6, F1,76 = 25.80; angle: p-value= 1.34 × 10−6, F1,76 = 27.56).
As noted in Fig. 4a and 4b, the rate of length increase and angle decrease appeared to be different for males
and females. We therefore tested the significance of the interaction term β3 to determine the significance of
the rate difference. Possibly due to smaller sample size relative to intersubject variability, significance is weak
(length: p-value= 0.15; F1,75 = 2.10, angle: p-value= 0.14, F1,75 = 2.25). We also tested the gender effect β1

while accounting for age differences. The length shows weakly significant gender difference while the angle does
not (length: p-value= 0.08, F1,76 = 3.21; angle: p-value= 0.66,F1,76 = 0.20).
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