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ABSTRACT

We represent a shape representation technique using the
eigenfunctions of Laplace-Beltrami operator and compare
the performance with the conventional spherical harmonic
(SPHARM) representation. Cortical manifolds are repre-
sented as a linear combination of the Laplace-Beltrami eigen-
functions, which form orthonormal basis. Since the Laplace-
Beltrami eigenfunctions reflect the intrinsic geometry of the
manifolds, the new representation is supposed to more com-
pactly represent the manifolds and outperform SPHARM
representation. However, this is not demonstrated yet in brain
imaging data. We demonstrate the superior reconstruction ca-
pability of the Laplace-Beltrami eigenfunction representation
using cortical and amygdala surfaces as examples.

Index Terms— Amygdala, cortical surface, Fourier rep-
resentation, Laplace-Beltrami eigenfunctions, spherical har-
monics

1. INTRODUCTION

In medical image analysis, a shape representation is an im-
portant problem to understand morphological changes related
to illness or disease. Anatomical surfaces are frequently real-
ized as triangular meshes. Continuous parametrization of the
surface coordinates helps computing surface measures such
as curvature, local area elements or other geometric features
which characterize shape variations.

Spherical harmonic (SPHARM) representation [1, 2, 3,
4, 5, 6] is probably the most widely used parametric surface
model. Since the spherical harmonics can be easily computed,
SPHARM has been widely used in a various neuroanatomical
surfaces including ventricles [7], hippocampi [2, 4], and cor-
tical surfaces [3, 6, 8].

However, the problem of SPHARM is that it requires to
establish a smooth mapping from the surface to a unit sphere
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via surface flattening [1, 4, 5, 9, 10]. The spherical parame-
terization introduces metric distortion which compounds the
reconstruction error.

On the other hand, the Laplace-Beltrami eigenfunction
method does not require the spherical parameterization and
possibly avoids metric distortion in the reconstruction pro-
cess. We claim that the representation using the Laplace-
Beltrami eigenfunctions has far less between-subject recon-
struction error variability and converges faster to the ground
truth with less number of basis than SPHARM.

2. LAPLACE-BELTRAMI EXPANSION

Consider a closed compact manifoldM ⊂ R3. Let L2(M)
be the space of square integrable functions on M with the
inner product

〈f, g〉M =

∫
M
f(p)g(p) dµ(p),

where µ is the Lebesgue measure such that µ(M) is the total
area ofM. The orthonormal basis in L2(M) is given by the
eigenfunctions of

∆Mψj = −λψj , (1)

where ∆M is the Laplace-Beltrami operator in M [11, 12].
We order the eigenfunctions ψ0, ψ1, ψ2, · · · according to the
corresponding eigenvalues, 0 = λ0 < λ1 ≤ λ2 ≤ · · · .

For surface coordinates p = (p1, p2, p3)′, each coordi-
nate function pi(p) ∈ L2(M) can be represented as a linear
combination of the Laplace-Beltrami eigenfunctions:

pi(p) =

K−1∑
j=0

βi
jψj(p), (2)

where βi
j = 〈pi, ψj〉M are Fourier coefficients, and K is the

number of basis functions. We will refer to this representation
as LB-expansion throughout this paper.
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Fig. 1. Representative Laplace-Beltrami eigenfunctions for a cortical surface.

3. SPHARM REPRESENTATION

Let S2 be a unit sphere. As a special case of the Laplace-
Beltrami eigenfunctions, we have spherical harmonics Ylm of
degree l and order m on the unit sphere S2. There are 2l +
1 eigenfunctions Yl,−l, · · · , Yl,l corresponding to the eigen-
value λl = l(l + 1) [13, 14].

Consider parameterization u ∈ S2:

u = (u1, u2, u3)′ = (sin θ cosϕ, sin θ sinϕ, cos θ)′,

where (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π). The polar angle θ is
the angle from the north pole and the azimutal angle ϕ is the
angle along the horizontal cross-section. Assuming the man-
ifold M is topologically equivalent to S2, we can establish
a smooth one-to-one mapping ζ : p ∈ M → u ∈ S2, and
parameterize the surface coordinate pi with (θ, ϕ). Conse-
quently, the surface coordinate can be expressed as

pi(θ, ϕ) =

L∑
l=0

l∑
m=−l

βi
lmYlm(θ, ϕ), (3)

where βi
lm = 〈pi, Ylm〉S2 are Fourier coefficients.

4. EXPERIMENTAL RESULTS

4.1. Numerical Implementation

We have compared the LB-expansion with the SPHARM rep-
resentation on amygdala and cortical surfaces. 3T-MRI data
for 27 cortical surfaces and 41 amygdala surfaces were ob-
tained from a 3-Tesla GE SIGNA scanner. The collected im-
ages went through several image processing, a detailed infor-
mation of which can be found in [6] for cortical surfaces and
in [10] for amydala surfaces. A deformable surface algorithm
[9] was used to obtain the outer cortical surface by deforming
from a spherical mesh with 40,962 vertices. The algorithm
provides the same spherical parameterization for all cortical
surfaces. Boundary of amygdala was extracted as a triangle
mesh with approximately 2000-3000 vertices using a march-
ing cubes algorithm. Then, the amygdala surface is mapped
onto a sphere using a flattening algorithm proposed in [10].

The eigenfunctions of the Laplace-Beltrami operators
are computed numerically using the Cotan formulation [12,

15]. The MATLAB code is freely available at http://
brainimaging.waisman.wisc.edu/˜chung/lb.

The coefficients βi
j and βi

lm were estimated in the least
squares fashion. For the LB-expansion, the eigenfunctions
are computed for every surfaces, and representation for each
subject is constructed with its own eigenfunctions. Fig. 1
shows the few representative eigenfunctions for a sample cor-
tical surface. For the SPHARM, we simply obtain the ba-
sis from unit sphere by discretizing exact spherical harmonics
with a given mesh parameterization.

For comparison, we matched the number of basis func-
tions used in each representation: K = (L + 1)2. We used
up to degree L = 80 for the SPHARM which corresponds to
K = 6561 number of basis in the LB-expansion for cortical
surfaces, and used up to degree L = 30 and corresponding
K = 961 for amygdala surfaces.

4.2. Comparison

We compared both representations in terms of the mean and
the variance of the reconstruction error for multiple subjects.
The reconstruction error is defined as the average of the Eu-
clidean distance between the original and the corresponding
reconstructed surface coordinates:

E =
1

n

n∑
i=1

‖pi − p̂i‖,

where n is the number of mesh vertices and p̂ is the recon-
structed surface. Fig. 2 shows the result of reconstruction for
varying number of basis functions. For every subjects, then
we computed the sample mean and the sample variance of E
as shown in Fig. 3, Table 1 and Table 2. The LB-expansion
(red) shows smaller reconstruction errors than SPHARM
(blue) at all degrees and converges faster. This implies that
the LB-expansion requires smaller number of basis compared
to SPHARM. The LB-expansion further shows less between-
subject variability compared to the SPHARM as shown in the
size of error bars. These clearly demonstrates LB-expansion
outperforms SPHARM in reconstruction accuracy.

5. CONCLUSION

We have presented LB-expansion for representing cortical
manifolds. The representation is analytically constructed
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Fig. 2. Comparison of LB-expansion and SPHARM representation of cortical surface (1st and 2nd rows) and amygdala (3rd
and 4th rows) with increasing degree l (Black colored numbers), which corresponds to K = (L + 1)2 number of basis. Blue
colored numbers are the average Euclidean distance between two representations in mm.

Table 1. Average Euclidean Distance (Cortical surface)
K L LB SPHARM

121 10 5.3821 ± 0.0575 6.3234 ± 0.1628

441 20 3.1113 ± 0.0062 4.0239 ± 0.1161

961 30 2.0498 ± 0.0006 2.7677 ± 0.1175

1681 40 1.5138 ± 0.0149 2.0877 ± 0.0962

2601 50 1.2185 ± 0.0294 1.6722 ± 0.0877

3721 60 1.0284 ± 0.0311 1.3971 ± 0.0821

5041 70 0.8953 ± 0.0300 1.2068 ± 0.0743

6561 80 0.7992 ± 0.0264 1.0686 ± 0.0685

using Lapalce-Beltrami eigenfunctions avoiding spherical
parameterization. This drastically improves the reconstruc-
tion errors and make LB-expansion converges faster than
SPHARM. Application to cortical surfaces and amygdala
shows that the LB-expansion outperforms the traditional
SPHARM representation in terms of reconstruction errors.

Table 2. Average Euclidean Distance (Amygdala surface)
K L LB SPHARM

36 5 0.2925 ± 0.0293 0.4261 ± 0.0432

121 10 0.1781 ± 0.0191 0.3012 ± 0.0305

256 15 0.1311 ± 0.0103 0.2491 ± 0.0217

441 20 0.0918 ± 0.0073 0.2065 ± 0.0165

676 25 0.0556 ± 0.0070 0.1609 ± 0.0149

961 30 0.0257 ± 0.0064 0.1004 ± 0.0184
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Fig. 3. Comparison of reconstruction accuracy over varying degree L and corresponding K = (L+ 1)2 number of basis. The
accuracy is measured in terms of average Euclidean distance between corresponding mesh vertices. Red shows the Laplace-
Beltrami (LB) expansion with K number of basis, and blue SPHARM representation of degree L. Each node and bar indicates
the mean and the standard deviation of average Euclidean distance for the population of surfaces.
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