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ABSTRACT

We propose a novel dynamic topological data analysis
(TDA) framework that builds persistent homology over a
time series of 3D functional brain images. The proposed
method encodes the time series as a time-ordered sequence
of Vietoris-Rips complexes and their corresponding barcodes
in studying dynamically changing topological patterns. The
method is applied to the resting-state functional magnetic res-
onance imaging (fMRI) of the human brain. We demonstrate
that the dynamic-TDA can capture the topological patterns
that are consistently observed across different time points in
the resting-state fMRI.

Index Terms— Topological data analysis, persistent ho-
mology, barcodes, time series, resting-state fMRI

1. INTRODUCTION

Topological Data Analysis (TDA) [1, 2, 3] provides a general
framework to analyze high-dimensional and noisy data using
techniques from topology. Persistent homology, a branch of
the TDA, is a method for measuring topological features in-
ferred from a simplicial complex at different spatial resolu-
tions. The general principle underlying the persistent homol-
ogy is based on the persistence of k-dimensional holes. For
instance, a 0-dimensional hole is a connected component and
a 1-dimensional hole is a circular loop. The persistence of
such topological features is quantified using a barcode [2].

The persistent homology has been widely used for various
medical imaging applications. It is mainly applied to capture
the static summary of dynamically changing images includ-
ing functional magnetic resonance imaging (fMRI) data [4, 5]
and electroencephalography data [6]. Nonetheless, there are
a few notable studies from the growing literature that begin
to apply the TDA to capture the dynamic patterns of time se-
ries including the application to financial data [7] and gene
expression data [8]. Motivated by these studies, we leverage
the application of the TDA to dynamically changing resting-
state fMRI data and investigate whether this could lead to new
topological characterization of the brain.
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The main contributions of the paper are as follows. 1)
We present a new dynamic-TDA framework that builds the
persistent homology over a multivariate time series. 2) The
method is applied to the resting-state fMRI of more than 400
human subjects in investigating the stationarity and sexual di-
morphism of the resulting topological signals.

2. METHODS

2.1. Dynamic-TDA

Consider a d-dimensional multivariate time series x[t] =
(x1[t], ..., xd[t]) ∈ Rd. For each sliding window of length
w at time t, we have a point cloud consisting of w points
X[t] = {x[t], ..., x[t + w − 1]} in Rd. Given the point cloud
X[t], we then construct a Vietoris-Rips complex Kε whose
k-simplices correspond to unordered (k+ 1)-tuples of points,
which are pairwise within distance ε [3]. For sufficiently
small ε, the complex is a set consisting only nodes; for suffi-
ciently large ε, the complex is a single connected (w − 1)-
dimensional simplex. The Vietoris-Rips complex Kε only
changes at a finite number of increasing filtration values ε al-
lowing efficient computation.

The persistent homology looks for the topological fea-
tures such as the k-dimensional holes that persist for the
whole range of the parameter ε. The persistences of the k-
dimensional holes can be represented using barcodes. The
k-dimensional barcode (kD barcode) corresponding to the
Vietoris-Rips complex Kε is a collection I of intervals
[tstart, tend) such that each interval tabulates the life-time
of a k-dimensional hole that appears at the filtration value
tstart and vanishes at the value tend. Given the kD bar-
code for the sliding window at time t, we calculate the sum∑
i∈I(tend − tstart)i of all the life-times to obtain the time

series B[t], which measures the total life-time of all the
kD holes. Figure 1 displays the schematic of the proposed
dynamic-TDA.

2.2. Trend stationary model on barcodes

We model the time series B[t] using the trend stationary
model [9], which decomposes the time series as a nonstation-
ary trend component and a zero-mean stationary noise. We



Fig. 1. Schematic of the dynamic-TDA.

write the model as

B[t] = µ[t] + z[t]

where µ[t] denotes the unknown signal to be estimated and
z[t] is a stationary noise process. Since the trend is expected
to smoothly vary, we assume the signal µ[t] to be a polyno-
mial of the form

∑p
i=0 cit

i, which is estimated using the least
squares method by solving B = Pc, where
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We assume p + 1 � m. The least squares estimation of c is
then given by ĉ = (P>P )−1P>B.

We subtract the estimated signal µ̂[t] from the time series
B[t] and obtain the residual process

ẑ[t] = B[t]− µ̂[t].

Since the preceding data points effect the current data point
through the overlapping sliding windows, the residual process
ẑ[t] is further modeled as the autoregressive model AR(1):

ẑ[t] = ρẑ[t− 1] + e[t],

where e[t] is a Gaussian white noise process. If |ρ| = 1, the
residual process ẑ[t] is non-stationary. If |ρ| < 1, we can
continue to iterate backward and represent the AR(1) model
as ẑ[t] =

∑t−1
i=0 ρ

ie[t − i], which converges to a stationary
time series as t → ∞. Since the estimated residual pro-
cess is expected to be small, we do not consider the diverging
case |ρ| > 1, which indicates that the signal µ[t] is estimated
poorly from the start.

Subsequently, Dickey-Fuller (DF) test [10] is used to test
for stationarity of the residual process ẑ[t]. The DF test pro-
vides a procedure to test whether the residual process ẑ[t]
is non-stationary (H0 : ρ = 1) as opposed to stationary
(H1 : |ρ| < 1).

2.3. Validation

For validation, two simulation studies with known ground
truth were performed. In each study, we performed 100 sim-
ulations. In each simulation, two blocks of signals were gen-
erated with different underlying topologies. The proposed
dynamic-TDA was applied with the window length w = 15
and a time seriesB[t] was quantified using its mean over time.

In the first study, we simulated pairs of 1D time series

y1[t] = e1[t] 1 ≤ t ≤ 200,

y2[t] =


e2[t] 1 ≤ t ≤ 40, 161 ≤ t ≤ 200

e2[t]− 200 41 ≤ t ≤ 96, 106 ≤ t ≤ 160

e2[t] + 200 97 ≤ t ≤ 105

where e1[t], e2[t] are Gaussian white noises with standard de-
viation 40 (Figure 2a). The jump continuities were added to
y2[t] to introduce different numbers of connected components
(0D holes). The pairs of time series B[t] were constructed
and the paired t-test was performed (Figure 2b). In all sim-
ulations, p-values were less than 0.0001 indicating that the
dynamic-TDA captures the different underlying topologies.

In the second study, we used the Lorenz system [11] to
generate 1D holes (circular loops):

dx1

dt
= 10(x2−x1),

dx2

dt
= x1(28−x3)−x2,

dx3

dt
= x1x2−

8

3
x3,

where (x1, x2, x3) are 3D coordinates with initial value
(1, 1, 1). The solution Φ[t] = (x1[t], x2[t], x3[t]) yields the
well-known strange attractor [12] with two circular loops (1D
holes) (Figure 3a). We simulated pairs of multivariate time
series in R3

y1[t] = e1[t] 1 ≤ t ≤ 100,

y2[t] = Φ[t] + e2[t] 1 ≤ t ≤ 100

where e1[t], e2[t] are 3D noise vectors whose components are
independent and identically distributed Gaussian white noises
with standard deviation of 3 (Figures 3b and 3c). The pairs of
time series B[t] were constructed and the paired t-test was
performed (Figure 3d). In all simulations, p-values were less
than 0.0001 indicating that the dynamic-TDA differentiates
underlying topology differences.

3. APPLICATION

3.1. Resting-state fMRI

We used the resting-state fMRI of n = 412 subjects collected
as part of the Human Connectome Project [13]. fMRI data
had undergone spatial and temporal preprocessing includ-
ing motion and physiological noise removal. We employed
the Automated Anatomical Labeling (AAL) to parcellate the
brain volume into 116 regions [14]. The fMRI were then aver-
aged across voxels in each region, resulting in d = 116 aver-
age fMRI time series with 1200 time points for each subject.



Fig. 2. First simulation. (a) displays an example of a pair of
time series y1[t] (gray) and y2[t] (black). (b) displays the time
series of the life-time of 0D holes corresponding to y1 and y2.

Fig. 3. Second simulation. (a) displays the Lorenz attractor.
(b) and (c) display an example of a pair of time series y2[t] and
y1[t] respectively. (d) displays the time series of the life-time
of 1D holes corresponding to y2 (black) and y1 (gray).

Each of the average fMRI time series was then normalized by
subtracting its sample mean over time [4].

For our study, we used the window length w = 12. We
discarded the first five time points to avoid any artifacts in the
fMRI data including large variance at the beginning of each
scan [15]. We only considered 0D and 1D holes since higher-
dimensional holes are rarely observed resulting in mostly
empty barcodes across the time series. The time serie B[t]
was constructed for each subject. We then fitted the trend
stationary model with p = 1 (linear trend) and performed the
DF test for each subject (Figure 4). For both 0D and 1D holes,
all the subjects show p-values less than 0.001 indicating the
topological patterns are trend stationary.

3.2. Sexual dimorphism on barcodes

Time series B[t] of 0D and 1D holes exhibits the trend sta-
tionarity with an estimated linear signal µ[t] = c0 + c1t for
each subject. We investigated if the estimated linear topologi-
cal pattern can be a biomarker for discriminating 240 females
and 172 males in the data. Figure 5 displays the group level
average time series showing clear group separation. We per-

Fig. 4. (a) and (b) display the average time series of the life-
time of 0D and 1D holes (gray) across n = 412 subjects with
their estimated linear signals (black). The estimated the lin-
ear signals in (a) and (b) are µ0D[t] = 0.11t + 4932.71 and
µ1D[t] = 0.0002t+ 39.5289, respectively.

Fig. 5. The average time series of the life-time of 0D and
1D holes for 240 females (gray) and 172 males (black). The
time series display separation clear group separation between
female and male groups.

formed the two-sample t-test on c0 and c1 (Table 1). The re-
sults for both 0D and 1D holes indicate that 1) the clear sepa-
ration of the topological pattern is statistically significant and
2) the separation between female and male groups appears to
be consistent over time.

We further checked the proposed pipeline is not detecting
false positives by generating 10000 null datasets by randomly
mixing the half of males and the half of females to create two
new groups with no signal. The average p-values for 0D and
1D holes are all 0.5 ± 0.28 and 0.5 ± 0.29 respectively indi-
cating that the pipeline is not detecting signals as expected.

4. DISCUSSION

Using the proposed dynamic-TDA, we demonstrated that the
resting-state fMRI has stationary topological patterns. Our
study also reveals that sexually dimorphic topological pat-
terns exhibit clear and consistent difference in the life-time of
0D and 1D holes across the scan durations while maintaining
stable topological patterns over time. We believe that the pro-



c0 c1
0D 1D 0D 1D

F 4845.37 38.94 0.11 -0.0002Mean M 5054.57 40.35 0.10 0.0008
F 397.04 5.81 0.13 0.0064SD M 392.92 5.57 0.14 0.0075

p-value 1.92× 10−7 0.014 0.54 0.13

Table 1. t-test results comparing males and female.

posed method will yield the new direction of the TDA applied
to other dynamically changing medical images. By applying
the proposed pipeline to each brain region separately, it may
be further possible to localize brain regions. This is left as a
future study.

There is a notable end-to-end TDA processing pipeline
based on the conventional time-delay embedding [16]. While
our method decomposes a d-dimensional multivariate time se-
ries x[t] into a dynamic sequence of point clouds X[t], [16]
converts d individual univariate time series into d separate
point clouds, discarding the dynamic aspect. Further, the di-
mension d in which the point clouds X[t] reside is provided
by the dataset in our method. On the other hand, the time-
delay embedding procedure requires an extra fine-tuning of
dimension estimation.
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