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Abstract: There is a lack of unified statistical modeling framework for cerebral

shape asymmetry analysis in literature. Most previous approaches start with flip-

ping the 3D magnetic resonance images (MRI). The anatomical correspondence

across the hemispheres is then established by registering the original image to the

flipped image. A difference of an anatomical index between these two images is used

as a measure of cerebral asymmetry. We present a radically different asymmetry

analysis that utilizes a novel weighted spherical harmonic representation of cortical

surfaces. The weighted spherical harmonic representation is a surface smoothing

technique given explicitly as a weighted linear combination of spherical harmon-

ics. This new representation is used to parameterize cortical surfaces, establish the

hemispheric correspondence, and normalize cortical surfaces in a unified mathemat-

ical framework. The methodology has been applied in characterizing the cortical

asymmetry of a group of autistic subjects.

Key words and phrases: Spherical Harmonics, Asymmetry Analysis, SPHARM,

Cortical Surface, Heat Kernel

1. Introduction

Previous neuroanatomical studies have shown left occipital and rigtht frontal lobe

asymmetry, and left planum temporal asymmetry in normal controls (Barrick

et al., 2005; Kennedy et al., 1999). These studies mainly flip the whole brain

3D MRI to obtain the mirror reflected MRI with respect to the mid-saggital

cross-section. Then the anatomical correspondence across the hemispheres is

established and a subsequent statistical analysis is performed at each voxel in the

3D MRI. Although this approach is sufficient for the voxel-based morphometry

(Ashburner and Friston, 2000), where we only need an approximate alignment of
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corresponding brain substructures, it may fail to properly align highly convoluted

sulcal and gyral foldings of gray matter. In order to address this shortcoming

inherent in 3D whole brain volume asymmetry analysis, we need a new 2D cortical

surface based framework.

The human cerebral cortex has the topology of a 2D highly convoluted grey

matter shell of average thickness of 3mm. The outer boundary of the shell is

called the outer cortical surface while the inner boundary is called the inner cor-

tical surface. Cortical surfaces are segmented from magnetic resonance images

(MRI) using a deformable surface algorithm and represented as a triangle mesh

consisting of more than 40,000 vertices and 80,000 triangle elements (MacDon-

ald et al., 2000; Chung et al., 2003) (Figure 1). We assume cortical surfaces to

be smooth 2D Riemannian manifolds topologically equivalent to a unit sphere

(Davatzikos and Bryan, 1995). A sample outer surface can be downloaded from

http://www.stat.wisc.edu/∼mchung/softwares/hk/hk.html. The detailed expla-

nation on data loading, visualization and simple manipulation in MATLAB are

given in the web link. The triangle mesh format contains information about ver-

tex indices, the Cartesian coordinates of the vertices and the connectivity that

tells which three vertices form a triangle. For any type of cortical surface mesh,

if V is the number of vertices and E is the number of edges and F is the number

of faces or triangles in the mesh, the Euler characteristic χ of the mesh should

be constant, i.e. χ = V − E + F = 2. Note that for each triangle, there are

3 edges. Since two adjacent triangles share the same edge, the total number of

edges is E = 3F/2. Hence, the relationship between the number of vertices and

the triangles is F = 2V − 4. In the sample surface, we have 40,962 vertices and

81,920 triangles.

Once we obtain the both outer and inner cortical surfaces of a subject, cor-

tical thickness, which is the distance between the outer and inner surfaces, is

computed at each vertices of the outer surface (MacDonald et al., 2000). Since

different clinical populations are expected to show different patterns of corti-

cal thickness variations, cortical thickness has been used as a quantitative index

for characterizing a clinical population (Chung et al., 2005). Cortical thickness

varies locally by region and is likely to be influenced by aging, development and

disease (Barta et al., 2005). By analyzing how cortical thickness differ locally
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Figure 1. Left: The triangle mesh representation of the part of an outer cortical surface.

The cortical thickness is measured at the vertices of the mesh. Right: Parameterization

of cortical surface using the spherical coordinate system. The north and south poles are

chosen in the plane, i.e. u2 = 0, that separates the left and the right hemispheres.

in a clinical population with respect to a normal population, neuroscientists can

locate the regions of abnormal anatomical differences in the clinical population.

Cortical thickness serves as a metric of interest in performing 2D cortical asym-

metry analysis. However, there are various methodological issues associated with

using triangle mesh data. Our novel 2D surface modeling framework called the

weighted spherical harmonic representation (Chung et al., 2007) can address these

issues in a unified mathematical framework.

Cortical surface mesh construction and cortical thickness computation are

are expected to introduce noise. To counteract this, surface-based data smooth-

ing is necessary. For 3D whole brain volume-based method, Gaussian kernel

smoothing, which weights neighboring observations according to their 3D Eu-

clidean distance, has been used. However, for data that lie on a 2D surface,

smoothing must be weighted according to the geodesic distance along the surface

(Andrade et al., 2001; Chung et al., 2003). It will be shown that the weighted

spherical harmonic representation is a 2D surface-based smoothing technique,
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where the explicit basis function expansion is used to smooth out noisy corti-

cal surface data. The basis function expansion corresponds to the solution of

isotropic heat diffusion. Unlike the previous surface based smoothing that solves

the heat equation nonparametrically (Andrade et al., 2001; Cachia et al., 2003;

Chung et al., 2003; Chung et al., 2005), the result of the weighted spherical har-

monic representation is explicitly given as a weighted linear combination of spher-

ical harmonics. This provides a more natural statistical modeling framework. A

validation study showing the improved performance of the weighted spherical

harmonic representation over heat kernel smoothing (Chung et al., 2005) will be

given in the paper.

Comparing measurements defined at mesh vertices across different cortical

surfaces is not a trivial task due to the fact no two cortical surfaces are identically

shaped. In comparing measurements across different 3D whole brain images, 3D

volume-based image registration is needed. However, 3D image registration tech-

niques tend to misalign sulcal and gyral folding patterns of the cortex. Hence, 2D

surface-based registration is needed in order to compare measurements across dif-

ferent cortical surfaces. Various surface registration methods have been proposed

before (Thompson and Toga, 1996; Davatzikos, 1997; Miller et al., 1997; Fischl

et al., 1999; Chung et al., 2005). These methods solve a complicated optimiza-

tion problem of minimizing the measure of discrepancy between two surfaces.

Unlike the previous computationally intensive methods, the weighted spherical

harmonic representation provides a simple way of establishing surface correspon-

dence between two surfaces in reducing the improper alignment of sulcal folding

patterns without time consuming numerical optimization.

Once we establish surface correspondence between two surfaces, we also need

to establish hemispheric correspondence within a subject for asymmetry anal-

ysis. However, it is not straightforward how to establish a 2D surface-based

hemispheric correspondence. Although there are many 3D voluem-based brain

hemisphere asymmetry analysis (Barrick et al., 2005; Kennedy et al., 1999), due

to this simple reason, there is a lack of 2D surface-based asymmetry analysis

in literature. This will be the first systematic study on 2D cortical asymmetry.

The inherent angular symmetry presented in the weighted spherical harmonic

representation can be used to establish the inter-hemispheric correspondence. It
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turns out that the usual asymmetry index of (L-R)/(L+R) is expressed as the

ratio between the sum of positive and negative order harmonics.

The novelty of our proposed method is that surface parameterization, surface-

based smoothing, within- and between- subject surface registration can be per-

formed within a single unified mathematical framework providing a more con-

sistent modeling framework than previously available for cortical analysis. This

paper extend the five page conference paper (Chung et al., 2007) presented dur-

ing the IEEE statistical signal processing workshop in 2007 with the detailed

exposition of our methodology.

2. Methods

Cortical thickness is measured at each vertex and used as a measure for charac-

terizing cortical shape variation. There exists a bijective mapping between the

cortical surface M and a unit sphere S2, which is obtained via the deformable

surface algorithm. Consider following parameterization of unit sphere S2:

(u1, u2, u3) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

with (θ, ϕ) ∈ [0, π) ⊗ [0, 2π). The polar angle θ is the angle from the north

pole and the azimuthal angle ϕ is the angle along the horizontal cross-section.

Then using the bijective mapping, we can parameterize the Cartesian coordinates

v = (v1, v2, v3) of each cortical mesh vertex in the cortical surface M with the

spherical angles (θ, ϕ), i.e. v = v(θ, ϕ) (Figure 1). This enables us to represent

cortical thickness measurements f with respect to the spherical coordinates, i.e.

f = f(θ, ϕ). Each component of surface coordinates will be modeled indepen-

dently as

vi(θ, ϕ) = hi(θ, ϕ) + ǫi(θ, ϕ), (1)

where hi is the unknown smooth coordinate function and ǫi is zero mean random

fields, possibly Gaussian. We also model cortical thickness f similarly as

f(θ, ϕ) = g(θ, ϕ) + e(θ, ϕ),

where g is the unknown mean cortical thickness and e is a zero mean random

field. We will further assume vi, f ∈ L2(S2), the space of square integrable

functions on unit sphere S2. The unknown signals hi and g are then estimated
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in the finite subspace of L2(S2) spanned by harmonic basis functions in the least

squares fashion.

2.1 Spherical Harmonics

The spherical harmonic Ylm of degree l and order m is defined as

Ylm =





clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
P

|m|
l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pm

l is the associated Legendre polynomial of

order m (Courant and Hilbert, 1953; Wahba, 1990). The associated Legendre

polynomial is given by

Pm
l (x) =

(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l, x ∈ [−1, 1].

The first few terms of the spherical harmonics are

Y00 =
1√
4π

, Y1,−1 =

√
3

4π
sin θ sin ϕ,

Y1,0 =

√
3

4π
cos θ, Y1,1 =

√
3

4π
sin θ cos ϕ.

The spherical harmonics are orthonormal with respect to the inner product

〈f1, f2〉 =

∫

S2

f1(Ω)f2(Ω) dµ(Ω),

where Ω = (θ, ϕ) and the Lebesgue measure dµ(Ω) = sin θdθdϕ. The norm is

then defined as

||f1|| = 〈f1, f1〉1/2. (2)

Consider subspace Il spanned by the l-th degree spherical harmonics:

Il = {
l∑

m=−l

βlmYlm(Ω) : βlm ∈ R}.

Then the subspace Hk spanned by up to the k-th degree spherical harmonics is

decomposed as the direct sum of I0, · · · ,Ik:

Hk = I0 ⊕ I1 · · · ⊕ Ik.

= {
k∑

l=0

l∑

m=−l

βlmYlm(Ω) : βlm ∈ R}.

6



Traditionally, the coordinate functions hi are estimated by minimizing the inte-

gral of the squared residual within Hk:

ĥi(Ω) = arg min
h∈Hk

∫

S2

∣∣∣vi(Ω) − h(Ω)
∣∣∣
2

dµ(Ω). (3)

It can be shown that the minimization is obtained when

ĥi(Ω) =
k∑

l=0

l∑

m=−l

〈vi, Ylm〉Ylm(Ω). (4)

Previously, representing anatomical boundary via the series expansion (4) is

referred to as the spherical harmonic representation (Gerig et al., 2001; Gu et al.,

2004; Shen et al., 2004; Shen and Chung, 2006). This technique has been used

in representing hippocampus (Shen et al., 2004), ventricles (Gerig et al., 2001)

and cortex (Gu et al., 2004; Shen and Chung, 2006).

2.2 Weighted Spherical Harmonic Representation

The weakness of the traditional spherical harmonic representation is that it

produces the Gibbs phenomenon (ringing artifacts) (Gelb, 1997; Chung et al.,

2007) for discontinuous and rapidly changing continuous measurements. The

Gibbs phenomenon can be effectively removed if the spherical harmonic rep-

resentation converges faster as the degree goes to infinity. By weighting the

spherical harmonic coefficients exponentially smaller, we can make the repre-

sentation converges faster. This can be achieved by additionally weighting the

squared residuals in equation (3) with the heat kernel. Figure 2 demonstrate the

severe Gibbs phenomenon in the traditional spherical harmonic representation

(top row) on a hat shaped 2D surface. The hat shaped step function is simulated

as z = 1 for x2 + y2 < 1 and z = 0 for 1 ≤ x2 + y2 ≤ 2. On the other hand the

weighted spherical harmonic representation shows substantially reduced ringing

artifacts. In both representations, we have used degree k = 42. For the weighted

spherical harmonic representation, the bandwidth σ = 0.001 is used. This is

the bandwidth we have used through the paper. Due to very complex folding

patterns, sulcal regions of the brain exhibit more abrupt directional change than

the simulated hat surface(upward of 180 degree compared to 90 degree in the hat

surface) so there is a need for reducing the Gibbs phenomenon in the traditional

spherical harmonic representation.
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Figure 2. The Gibbs phenomenon on a hat shaped simulated surface showing the severe

ringing effect on the traditional spherical harmonic representation (top) and reduced

ringing effect on the weighted spherical harmonic representation (bottom). The degree

k = 42 is used for the both cases and bandwidth σ = 0.001 is used for the weighted

spherical harmonic representation.

The heat kernel is the generalization of the Gaussian kernel defined in the

Euclidean space to an arbitary Riemannian manifold (Rosenberg, 1997; Chung

et al., 2005). On a unit sphere, the heat kernel is written as

Kσ(Ω,Ω′) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(Ω)Ylm(Ω′), (5)

where Ω = (θ, ϕ) and Ω′ = (θ′, ϕ′). The heat kernel is symmetric and positive

definite, and a probability distribution so that
∫

S2

Kσ(Ω,Ω′) dµ(Ω) = 1.

The parameter σ controls the dispersion of the kernel so we will simply call it as

the bandwidth. The heat kernel has the following asymptotic properties

lim
σ→∞

Kσ(Ω,Ω′) =
1

4π

and

lim
σ→0

Kσ(Ω,Ω′) = δ(Ω − Ω′),
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the Dirac-delta function. The heat kernel can be further simplified using the

harmonic addition theorem (Wahba, 1990) as

Kσ(Ω,Ω′) =

∞∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (Ω · Ω′), (6)

where · is the Cartesian inner product.

Let us define heat kernel smoothing (Chung et al., 2005) as

Kσ ∗ f(Ω) =

∫

S2

K(Ω,Ω′)f(Ω′) dµ(Ω′). (7)

Then the heat kernel smoothing has the following spectral representation, which

can be easily seen by substituting (5) into equation (7) and rearranging the

integral with the summation.

Kσ ∗ f(Ω) =

∞∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(Ω), (8)

The k-th degree finite series approximation of heat kernel smoothing will

be referred to as the k-th degree weighted spherical harmonic representation.

The unknown mean coordinates hi are estimated using the weighted spherical

harmonic representation, which is the minimizer of the of the weighted squared

distance between measurements vi and a function h in Hk space. The unknown

mean cortical thickness g is also estimated similarly.

Theorem. 1

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm

= arg min
h∈Hk

∫

S2

∫

S2

Kσ(Ω,Ω′)|vi(Ω
′) − h(Ω)|2 dµ(Ω′) dµ(Ω)

Proof. Let vi =
∑k

l=0

∑l
m=−l βlmYlm. Let the inner integral be

I =

∫

M
Kσ(Ω,Ω′)

∣∣∣vi(Ω
′) −

k∑

l=0

l∑

m=−l

βlmYlm(Ω)
∣∣∣
2

dµ(Ω′).
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Simplifying the expression, we obtain,

I =

k∑

l=0

l∑

m=−l

k∑

l′=0

l∑

m′=−l′

′Ylm(Ω)Yl′m′(Ω)βlmβl′m′

−2Kσ ∗ vi(Ω)

k∑

l=0

l∑

m=−l

Ylm(Ω)βlm + K ∗ v2
i (Ω).

Since I is an unconstrained positive semidefinite qudratic program (QP) in βlm,

there is no unique global minimizer of I without the additional linear constrains.

Integrating I further with respect to µ(Ω), we collapses the QP to a positive

definite QP, which yields a unique global minimizer.

∫

S2

I dµ(Ω) =

k∑

l=0

l∑

m=−l

β2
lm − 2

k∑

i=0

e−l(l+1)σ〈vi, Ylm〉βlm +

∞∑

i=0

e−l(l+1)σ〈v2
i , Ylm〉

The minimum of the above integral is obtained when all the partial derivatives

with respect to βj vanishes.

∫

S2

∂I

∂βlm
dµ(Ω) = 2βlm − 2e−l(l+1)σ〈vi, Ylm〉 = 0.

Hence
∑k

l=0

∑l
m=−l e

−l(l+1)σ〈vi, Ylm〉Ylm is the unique minimizer in Hk.

We can also show that the weighted spherical harmonic representation is re-

lated to previous available surface-based isotropic diffusion smoothing (Andrade

et al., 2001; Cachia et al., 2003; Chung et al., 2003; Chung et al., 2005) via the

following theorem.

Theorem. 2.

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm(Ω) = arg min
h∈Hk

‖h − h0‖,

where h0 satisfies isotropic heat diffusion

∂h0

∂σ
= ∆h0 =

1

sin θ

∂

∂θ

(
sin θ

∂h0

∂θ

)
+

1

sin2 θ

∂2h0

∂2ϕ
, (9)

with the initial value condition h0(Ω, σ = 0) = vi(Ω).
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Proof. We first prove that heat kernel smoothing (7) and its spectral representa-

tion (8) are the solution of the heat equation (9). At each fixed σ, which serves as

the physical time of the heat equation, the solution h0(Ω, σ) belongs to L2(S2).

So we can write the solution as

h0(Ω, σ) =

∞∑

l=0

l∑

m=−l

clm(σ)Ylm(Ω). (10)

Since the spherical harmonics are the eigenfunctions of the spherical Laplacian

(Wahba, 1990), we have

∆Ylm(Ω) = −l(l + 1)Ylm(Ω). (11)

Substituting equation (10) into equation (9) and using the relation (11), we obtain

∂clm(σ)

∂σ
= −l(l + 1)clm(σ). (12)

The solution of the ordinary differential equation (12) is given by clm(σ) =

blme−l(l+1)σ for some constant blm. Hence, we obtain the solution of the form

h0(Ω, σ) =
∞∑

l=0

l∑

m=−l

blme−l(l+1)σYlm(Ω).

When σ = 0, we have the initial condition

h0(Ω, 0) =

∞∑

l=0

l∑

m=−l

blmYlm(Ω) = vi(Ω).

The coefficients blm must be the spherical harmonic coefficients, i.e. blm =

〈vi, Ylm〉. Then from the property of the generalized Fourier series (Rudin, 1991),

the finite expansion is the closest to the infinite series in Hk:

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm(Ω) = arg min
h∈Hk

∣∣∣
∣∣∣h − h0(Ω, σ)

∣∣∣
∣∣∣.

This proves the statement of the theorem.

2.3 Estimating Spherical Harmonic Coefficients

The spherical harmonic coefficients are estimated based on an iterative pro-

cedure that utilizes the orthonormality of spherical harmonics. We assume that
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coordinate functions are measured at n points Ω1, · · · ,Ωn. Then we have the

normal equations

vi(Ωj) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm(Ωj), j = 1, · · · , n. (13)

The normal equations (13) can be written in the matrix form as

V = [Y0, e
−1(1+1)σY1, · · · , e−k(k+1)σYk]︸ ︷︷ ︸

Y

β, (14)

where the column vectors are V = [vi(Ω1), · · · , vi(Ωn)]
′

and β′ = (β′
0, β

′
1, · · · , β′

k)

with β′
l = (〈vi, Yl,−l〉, · · · , 〈vi, Yl,l〉). The length of the vector β is

1 + (2 · 1 + 1) + · · · (2 · k + 1) = (k + 1)2.

Each submatrix Yl is given by

Yl =




Yl,−l(Ω1), · · · , Yl,l(Ω1)
...

. . .
...

Yl,−l(Ωn), · · · , Yl,l(Ωn)


 .

We may tempted to directly estimate β in the least squares fashion as

β̂ = (Y′Y)−1Y′V.

However, for more than 40,000 mesh vertices we use in the study, the dimension

of the design matrix is 40, 000 × (k + 1)2, which can easily reach the physical

RAM memory limit of the most personal computers for large k. Instead of

directly solving the huge normal equations, we project the normal equations into

a smaller subspace Il and estimate 2l + 1 coefficients in an iterative fashion.

At degree 0, we write observations V as

V = Y0β0 + r0,

where r0 is the residual vector of estimating V in subspace I0. Note that the

residual vector r0 consists of residual r0(Ωj) at each point Ωj. Then we estimate

β0 by minimizing the residual vector in a least squares fashion, i.e.

β̂0 = (Y′
0Y0)

−1Y′
0V =

∑n
j=1 vi(Ωj)Y00(Ωj)∑n

j=1 Y 2
00(Ωj)

.
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At degree l, we have

rl−1 = e−l(l+1)σYlβl + rl, (15)

where the residual vector rl−1 is obtained from the previous estimation

rl−1 = V −Y0β̂0 · · · − e−(l−1)lσYl−1β̂l−1.

The least squares estimation of minimizing rl is then given by

β̂l = el(l+1)σ(Y′
lYl)

−1Y′
lrl−1.

The correctness of the algorithm can be easily seen from the statement

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm = arg min
h∈Il

∫

S2

Kσ(Ω,Ω′)
∣∣∣rl−1(Ω

′) − h(Ω)
∣∣∣
2

dµ(Ω′),

where the residual is given by

rl(Ω
′) = vi(Ω

′) −
l∑

l′=0

l′∑

m=−l′

e−l(l+1)σ〈vi, Ylm〉Ylm(Ω′).

This iterative algorithm is refereed to as the iterative residual fitting (IRF)

algorithm (Chung et al., 2007) since we are iteratively fitting a linear equation to

the residuals obtained from the previous iteration. The IRF algorithm is similar

to the matching pursuit method (Mallat and Zhang, 1993) although the IRF has

been developed independently from the matching pursuit method. While the

IRF algorithm was developed to avoid the computational burden of inverting

a huge linear problem, the matching pursuit method was originally developed

to compactly decompose a time frequency signal into a linear combination of

pre-selected pool of basis functions. In the IRF algorithm, we minimize the

residual component rl in the least squares fashion, i.e. minimizing the sum of

squared residuals
∑n

j=1 r2
l (Ωj) over all mesh vertices. On the other hand, in the

marching pursuit method, the norm ‖Ylβl‖2 is maximized. Due to orthonormal-

ity, maximizing the norm is equivalent to minimizing the norm of the residual

‖rl‖2 =
∫
S2 r2

l (Ω) dµ(Ω). So there is a slight difference in how the residual is

minimized. Although there is no limitation not to estimate multiple coefficients

simultaneously in the matching pursuit method, Mallat and Zhang (1993) only
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deals with the problem of estimating one coefficient at a time rather than multiple

coefficients as in the IRF algorithm.

Although increasing the degree of the representation increases the goodness-

of-fit, it also increases the number of estimated coefficients quadratically. So it is

necessary to stop the iteration at the specific degree k, where the goodness-of-fit

and the number of coefficients balance out. From equation (1), we can see that

the k-th degree weighted spherical harmonic representation can be modeled as a

linear model setting:

vi(Ωj) =

k∑

l=0

l∑

m=−l

e−l(l+1)σβi
lmYlm(Ωj) + ǫi(Ωj),

where the least squares estimation of βi
lm is β̂i

lm = 〈vi, Ylm〉. Then we stop the

iteration at degree k by testing if the 2k + 3 coefficients at the next iteration

vanishes:

H0 : βi
k+1,−(k+1) = βi

k+1,−k = · · · = βi
k+1,k+1 = 0.

If we assume ǫi to be a Gaussian random field, the usual F test at the significant

level α = 0.01 can be used to determine the stopping degree. In our study, at

bandwidth σ = 0.001, we stop the iteration at degree k = 42.

2.4 Validation Against Heat Kernel Smoothing

The weighted spherical harmonic representation is validated against heat

kernel smoothing as formulated in Chung et al. (2005). It is necessary to briefly

explain how heat kernel smoothing is implemented in Chung et al. (2005). It was

implemented as an iterated weighted averaging technique where the weights are

spatially adapted to follow the shape of heat kernel in discrete fashion along a

surface mesh. The algorithm has been implemented in MATLAB and it is freely

available at http://www.stat.wisc.edu/∼mchung/softwares/hk/hk.html. Since

the introduction in 2005, the method has been used in smoothing various cor-

tical surface data: cortical curvature (Luders et al., 2006; Gaser et al., 2006),

cortical thickness (Luders et al., 2006), hippocampus (Shen et al., 2006; Zhu

et al., 2007), magnetoencephalography (MEG) (Han et al., 2007) and functional-

MRI (Hagler Jr., 2006; Jo et al., 2007).
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Let us define the n-th iterated heat kernel smoothing of signal f ∈ L2(S2) as

K(n)
σ ∗ f(Ω) = Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

n times

∗f(Ω).

Then we have the following theorem

Theorem. 3

Kσ ∗ f(Ω) = K
(n)
σ/n ∗ f(Ω). (16)

Proof. By letting f = Yl′m′ in equation (8) and using the orthonormality of

spherical harmonics, we obtain

Kσ ∗ Yl′m′(Ω) =

∫

S2

Kσ(Ω,Ω′)Yl′m′(Ω′) dµ(Ω′) = e−(l′+1)l′σYl′m′(Ω).

This is the restatement of the fact that e−l(l+1)σ and Yl′m′ are eigenvalues and

eigenfunctions of the above integral equation with heat kernel. By reapplying

heat kernel smoothing to equation (8), we obtain

K(2)
σ ∗ f(Ω) =

∞∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Kσ ∗ Ylm(Ω) (17)

=
∞∑

l=0

l∑

m=−l

e−l(l+1)2σ〈f, Ylm〉Ylm(Ω). (18)

Then arguing inductively we see obtain the spectral representation of the n-th

iterated heat kernel smoothing

K(n)
σ ∗ f(Ω) =

∞∑

l=0

l∑

m=−l

e−l(l+1)nσ〈f, Ylm〉Ylm(Ω).

The right hand side is the spectral representation of heat kernel smoothing with

bandwidth nσ. This proves

K(n)
σ ∗ f(Ω) = Knσ ∗ f(Ω).

By rescaling the bandwidth, we obtain the result.

Theorem 3 shows that heat kernel smoothing with large bandwidth σ can be

decomposed into n repeated application of heat kernel smoothing with smaller

15



Figure 3. Cortical thickness is simulated from the sample cortical thickness. The ground

truth is analytically constructed from the simulation. Then the weighted spherical har-

monic representation and heat kernel smoothing of the simulated cortical thickness are

compared against the ground truth. The plot is the relative error over the number of

iterations for heat kernel smoothing against the ground truth.

bandwidth σ/n. When the bandwidth is small, heat kernel behaves like the Dirac-

delta function and using the parametrix expansion (Rosenberg, 1997; Wang,

1997), we can approximate it locally using Gaussian kernel:

Kσ(Ω,Ω′) =
1√
4πσ

exp
[
− d2(Ω,Ω′)

4σ

]
[1 + O(σ2)

]
, (19)

where d(p, q) is the geodesic distance between p and q. For small bandwidth,

all the kernel weights are concentrated near the center so we only need to worry

about the first neighbors of a given vertex in a surface mesh.

Let Ω1, · · · ,Ωm be m neighboring vertices of vertex Ω = Ω0 in the mesh.

The geodesic distance between Ω and its adjacent vertex Ωi is the length of edge

between these two vertices in the mesh. Then the discretized and normalized

heat kernel is given by

Wσ(Ω,Ωi) =
exp

(
− d(Ω,Ωi)2

4σ

)
∑m

j=0 exp
(
− d(Ω−Ωj)2

4σ

) .
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Note that
∑m

i=0 Wσ(Ω,Ωi) = 1. The discrete version of heat kernel smoothing

on a triangle mesh is then defined as

Wσ ∗ f(Ω) =

m∑

i=0

Wσ(Ω,Ωi)f(Ωi).

The discrete kernel smoothing should converges to heat kernel smoothing (7) as

the mesh resolution increases. This is the form of Nadaraya-Watson estimator

(Chaudhuri and Marron, 2000) applied to surface data. Instead of performing a

single kernel smoothing with large bandwidth nσ, we perform n iterated kernel

smoothing with small bandwidth σ as follows W
(n)
σ ∗ f(Ω).

For comparison between the weighted spherical harmonic representation and

heat kernel smoothing, we have used the sample cortical thickness data in con-

structing the analytical ground truth. Consider a surface measurement of the

form

f(Ω) =

k∑

l=0

l∑

m=−l

βlmYlm(Ω) (20)

for some given βlm. Heat kernel smoothing of f is given as an exact analytic

form, which serves as the ground truth for validation:

Kσ ∗ f(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σβlmYlm(Ω). (21)

Using the sample cortical thickness data, we simulated the measurement of the

form (20) by estimating βlm = 〈f, Ylm〉 (Figure 3 top left). Then we have com-

pared the weighted spherical harmonic representation of f and the discrete ver-

sion of heat kernel smoothing W
(n)
σ/n ∗ f against the the analytical ground truth

(21) (Figure 3 top right) along the surface mesh.

For the weighted spherical harmonic representation, we have used σ = 0.001

and the corresponding optimal degree k = 42 (Figure 3 bottom left). The relative

error for the weighted spherical harmonic representation is up to 0.013 at a

certain vertex and the mean relative error over all mesh vertices is 0.0012. For

heat kernel smoothing, we have used varying number of iterations 1 ≤ n ≤ 70

and the corresponding bandwidth σ = 0.001/n. The performance of heat kernel

smoothing depends on the number of iterations as shown in the plot of relative
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error over the number of iterations in Figure 3. The minimum relative error

is obtained when 21 iterations are used (Figure 3 bottom right). The relative

error is up to 0.055 and the mean relative error is 0.0067. Our simulation result

demonstrates the weighted spherical harmonic representation performs better

than heat kernel smoothing. The main problem with heat kernel smoothing

is that the number of iterations need to be predetermined possibly using the

proposed simulation technique. Even at the optimal iteration of 21, the weighted

spherical harmonic representation provides a better performance.

2.5 Encoding Surface Asymmetry Information

Given the weighted spherical harmonic representation, we need to establish

surface correspondence between hemispheres and between subjects. This requires

establishing anatomical correspondence using surface registration. The main mo-

tivation for the surface registration is to establish proper alignment for cortical

thickness to be compared across subjects and between hemispheres. Previously,

the cortical surface registration was performed by minimizing an objective func-

tion that measures the global fit of two surfaces while maximizing the smoothness

of the deformation in such a way that the sulcal and gyral folding patterns are

matched smoothly (Thompson and Toga, 1996; Robbins, 2003; Chung et al.,

2005). In the weighted spherical harmonic representation, surface registration is

straightforward and does not require any sort of time consuming optimization

explicitly. Consider a surface ĥi obtained from coordinate functions vi measured

at points Ω1, · · · ,Ωn:

ĥi(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉(Ω).

Consider the other surface ĵi obtained from coordinate functions wi measured at

points Ω′
1, · · · ,Ω′

m:

ĵi(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈wi, Ylm〉(Ω).

Suppose the surface ĥi is deformed to ĥi + di(ĥi) under the influence of the

displacement vector field di. We wish to find di that minimizes the discrepancy

between ĥi + di(ĥi) and ĵi in the finite subspace Hk. This can be easily done by

noting that
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Figure 4. The point ĥi(θ0, ϕ0) (left) corresponds to ĥ∗
i
(θ, 2π−ϕ0) (middle) after mirror

reflection with respect to the midsaggital cross section u2 = 0. From the spherical

harmonic correspondence, ĥ∗
i
(θ, 2π − ϕ0) corresponds to ĥi(θ, 2π − ϕ0) (right). This

establish the mapping from the left hemisphere to the right hemisphere in the least

squares fashion.

k∑

l=0

l∑

m=−l

e−l(l+1)σ(wi
lm − vi

lm)Ylm(Ω) = arg min
di∈Hk

∣∣∣
∣∣∣ĥi + di(ĥi) − ĵi

∣∣∣
∣∣∣. (22)

The proof of this statement is given in Chung et al. (2007). This implies that the

optimal displacement in the least squares sense is obtained by simply taking the

difference between two weighted spherical harmonic representation and matching

coefficients of the same degree and order. Then a specific point ĥi(Ω0) in one

surface corresponds to ĵi(Ω0) in the other surface. We will refer this point-to-

point surface correspondence as the spherical harmonic correspondence.

The spherical harmonic correspondence can be further used to establish the

inter-hemispheric correspondence by letting ĵi to be the mirror reflection of ĥi.

The mirror reflection of ĥi with respect to the midsaggital cross section u2 = 0

is simply given by

ĵi(θ, ϕ) = ĥi
∗
(θ, ϕ) = ĥi(θ, 2π − ϕ),

where ∗ denotes the mirror reflection operation (Figure 4). The specific point

ĥi(θ0, ϕ0) in the left hemisphere will be mirror reflected to ĵi(θ0, 2π − ϕ0) in the
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right hemisphere. The spherical harmonic correspondence of ĵi(θ0, 2π − ϕ0) is

ĥi(θ0, 2π − ϕ0). Hence, the point ĥi(θ0, ϕ0) in the left hemisphere corresponds

to the point ĥi(θ0, 2π − ϕ0) in the right hemisphere. This establishes the inter-

hemispheric anatomical correspondence. The schematics of obtaining this inter-

hemispheric correspondence is given in Figure 4. This inter-hemispheric cor-

respondence is used to compare cortical thickness measurements f across the

hemispheres. The weighted spherical harmonic representation of cortical thick-

ness f is given by

ĝ(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ).

At a given position hi(θ0, ϕ0), the corresponding cortical thickness is ĝ(θ0, ϕ0),

which should be compared with the thickness ĝ(θ0, 2π−ϕ0) at position ĥi(θ0, 2π−
ϕ0):

ĝ(θ0, 2π − ϕ0) =
k∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, 2π − ϕ). (23)

The equation (23) can be rewritten using the property of spherical harmonics:

Ylm(θ, 2π − ϕ) =

{
−Ylm(θ, ϕ), −l ≤ m ≤ −1,

Ylm(θ, ϕ), 0 ≤ m ≤ l.

ĝ(θ0, 2π − ϕ0) =

k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0)

−
k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).

Comparing with the expansion for ĝ(θ0, ϕ0), we see that the negative order terms

are invariant while the positive order terms change the sign. Hence we define the

symmetry index as

S(θ, ϕ) =
1

2

[
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

]
=

k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0)

while the asymmetry index as

A(θ, ϕ) =
1

2

[
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)

]
=

k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).
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Figure 5. Three representive subjects showing cortical thickness (f), its weighted-

SPHARM representation (ĝ), asymmetry index (A), symmetry index (S) and normalized

asymmetry index (N). The Cortical thickness is projected onto the original brain surfaces

while all other measurements are projected onto the 42-th degree weighed spherical

harmonic representation
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We normalize the asymmetry index by diving the asymmetry index by the sym-

metry index as

N(θ, ϕ) =
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)

ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)
=

∑k
l=1

∑−1
m=−l e

−1(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)
∑k

l=0

∑l
m=0 e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)

.

We will refer this index to as the normalized asymmetry index. The numerator

is the sum of all negative orders while the denominator is the sum of all positive

and the 0-th orders. Note that N(θ, 0) = N(θ, π) = 0. This index is intuitively

interpreted as the normalized difference between cortical thickness in the left

and the right hemispheres. Note that the larger the value of the index, the larger

the amount of asymmetry. The index is invariant under the affine scaling of the

human brain so it is not necessary to control for the global brain size difference in

the later statistical analysis. Figure 5 shows the asymmetry index for 3 selective

subjects.

3. Application to Autism Study

3.1 Description of Data Set

Three Tesla T1-weighted MR scans were acquired for 16 high functioning

autistic and 12 control right handed males. The autistic subjects were diagnosed

by a trained and certified psychologist at the Waisman center at the University

of Wisconsin-Madison (Dalton et al., 2005). The average ages are 17.1± 2.8 and

16.1 ± 4.5 for control and autistic groups respectively. Image intensity nonuni-

formity was corrected using a nonparametric nonuniform intensity normalization

method (Sled et al., 1988) and then the image was spatially normalized into

the Montreal neurological institute stereotaxic space using a global affine trans-

formation (Collins et al., 1994). Afterwards, an automatic tissue-segmentation

algorithm based on a supervised artificial neural network classifier was used to

segment gray and white matters (Kollakian, 1996). Triangle meshes for outer cor-

tical surfaces were obtained by a deformable surface algorithm (MacDonald et al.,

2000) and the mesh vertex coordinates vi are obtained. At each vertex, cortical

thickness f is also measured. Once we obtained the outer cortical surfaces of 28

subjects, the weighted spherical harmonic representations ĥi are constructed. We

have used bandwidth σ = 0.001 corresponding to k = 42 degrees. The weighted

spherical harmonic representation for three representative subjects are given in
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Figure 6. The statistically significant regions of cortical asymmetry thresholded at the

corrected P-value of 0.1. The P-value has been corrected for multiple comparisons.

Figure 5. The symmetry (S), asymmetry (A) and normalized asymmetry (N)

indices are computed. The normalized asymmetry index is used in localizing the

regions of cortical asymmetry difference between two groups. These indices are

projected on the average cortical surface (Figure 5). The average cortical surface

is constructed by averaging the Fourier coefficients of all subjects within the same

spherical harmonics basis following the spherical harmonic correspondence. The

average surface serves as an anatomical landmark for displaying these indices as

well as projecting the final statistical analysis results in the next section.

3.2 Statistical Inference on Surface Asymmetry

For each subject, its normalized asymmetry index A(θ, ϕ) is computed and

modeled as a Gaussian random field. The null hypothesis is that A(θ, ϕ) is iden-

tical to the both groups for all (θ, ϕ) while the alternate hypothesis is that there

is a specific point (θ0, ϕ0), at which the normalized asymmetry index is different

for the both groups. The group difference on the normalized asymmetry index
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is tested using the T random field, denoted as T (θ, ϕ). Since we need to perform

the test on every points on the cortical surface, it becomes a multiple compari-

son problem. We used the random field theory based t statistic thresholding to

determine the statistical significance (Worsley et al., 1996). The probability of

obtaining false positives for the one sided alternate hypothesis is given from the

following formula:

P
[

sup
(θ,ϕ)∈S2

T (θ, ϕ) > h
]
≈

2∑

d=0

Rd(S
2)µd(h), (24)

where Rd is the d-dimensional Resels of S2 and ρd is the d-dimensional Euler

characteristic (EC) density of T -field (Worsley et al., 1996; Worsley et al., 2004).

The Resels are

R0(S
2) = 2, R1(S

2) = 0, R2(S
2) =

4π

FWHM2 ,

where FWHM is the full width at the half maximum of smoothing kernel. The

FWHM of heat kernel used in the weighted spherical harmonic representation is

not given in a close form, so it is computed numerically. From equation (6), the

maximum of the heat kernel is obtained when Ω · Ω′ = 1. Then we numerically

solve for Ω · Ω′:

1

2

k∑

l=0

2l + 1

4π
e−l(l+1)σ =

k∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (Ω · Ω′).

In previous surface data smoothing techniques (Chung et al., 2003; Chung et al.,

2005), FWHM of between 20 to 30 mm is used for smoothing data directly along

the brain surface. In our study, we use substantially smaller FWHM since the

analysis is performed on the unit sphere which has smaller surface area. The

compatible Resels of the unit sphere can be obtained by using the bandwidth

of σ = 0.001, which corresponds to the FWHM of 0.0968 mm. Then based

on the formula (24), we computed the multiple comparison corrected P-value

and thresholded at α = 0.1 (Figure 6). We found that the central sulci and

the prefrontal cortex exhibits abnormal cortical asymmetry pattern in autistic

subjects. The larger positive t statistic value indicates thicker cortical thickness

with respect to the corresponding thickness at the opposite hemisphere.
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4. Conclusions

We have presented a novel cortical asymmetry technique called the weighted

spherical harmonic representation that unifies surface representation, parameter-

ization, smoothing and registration in a unified mathematical framework. The

weighed spherical representation is formulated as the least squares approximation

to an isotropic heat diffusion on a unit sphere in such a way that the physical

time of heat diffusion controls the amount of smoothing in the weighted spherical

harmonic representation. The methodology is used in modeling cortical surface

shape asymmetry. Within this framework, the asymmetry index that measures

the amount of asymmetry presented in the cortical surface, was constructed as

the ratio of the weighted spherical harmonic representation of negative and pos-

itive orders. The regions of statistically different asymmetry index was localized

using the random field theory. As an illustration, the methodology was applied

quantifying the abnormal cortical asymmetry pattern of autistic subjects. The

weighted spherical harmonic representation is a very general surface shape repre-

sentation so it can be used for any type of surface objects that are topologically

equivalent to a unit sphere.
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surface into gyri using geodesic voronöı diagrams. Image Analysis 7, 403–416.

Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation.

The Annals of Statistics 28, 408–428.

Chung, M., Dalton, K. and Davidson, R. (2007). Encoding neuroanatomical

information using weighted spherical harmonic representation. In IEEE Signal

Processing Workshop.

Chung, M., Dalton, K.M., S. L., Evans, A. and Davidson, R. (2007). Weighted

fourier representation and its application to quantifying the amount of gray

matter. IEEE transactions on medical imaging 26, 566–581.

Chung, M., Robbins, S., Dalton, K.M., D. R. A. A. and Evans, A. (2005). Cortical

thickness analysis in autism with heat kernel smoothing. NeuroImage 25,

1256–1265.

Chung, M., Worsley, K., Robbins, S., Paus, T., Taylor, J., Giedd, J., Rapoport,

J. and Evans, A. (2003). Deformation-based surface morphometry applied to

gray matter deformation. NeuroImage 18, 198–213.

Collins, D., Neelin, P., Peters, T. and Evans, A. (1994). Automatic 3d inter-

subject registration of mr volumetric data in standardized talairach space. J.

Comput. Assisted Tomogr. 18, 192–205.

Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics: Volume

II. Interscience, New York, english edition.

Dalton, K., Nacewicz, B., Johnstone, T., Schaefer, H., Gernsbacher, M., Gold-

smith, H., Alexander, A. and Davidson, R. (2005). Gaze fixation and the

neural circuitry of face processing in autism. Nature Neuroscience 8, 519–526.

Davatzikos, C. (1997). Spatial transformation and registration of brain images

using elastically deformable models. Comput. Vis. Image Underst. 66, 207–

222.

Davatzikos, C. and Bryan, R. (1995). Using a deformable surface model to obtain

a shape representation of the cortex. Proceedings of the IEEE International

Conference on Computer Vision 9, 2122–2127.

Fischl, B., Sereno, M., Tootell, R. and Dale, A. (1999). High-resolution intersub-

ject averaging and a coordinate system for the cortical surface. Hum. Brain

Mapping 8, 272–284.

26



Gaser, C., Luders, E., Thompson, P., Lee, A., Dutton, R., Geaga, J., Hayashi, K.,

Bellugi, U., Galaburda, A., Korenberg, J., Mills, D., Toga, A. and Reiss, A.

(2006). Increased local gyrification mapped in williams syndrome. NeuroImage

33, 46–54.

Gelb, A. (1997). The resolution of the gibbs phenomenon for spherical harmonics.

Mathematics of Computation 66, 699–717.

Gerig, G., Styner, M., Jones, D., Weinberger, D. and Lieberman, J. (2001). Shape

analysis of brain ventricles using spharm. In MMBIA, pages 171–178.

Gu, X., Wang, Y., Chan, T., Thompson, T. and S.T., Y. (2004). Genus zero

surface conformal mapping and its application to brain surface mapping. IEEE

Transactions on Medical Imaging 23, 1–10.

Hagler Jr., D.J., S. A. S. M. (2006). Smoothing and cluster thresholding for

cortical surface-based group analysis of fmri data. NeuroImage 33, 1093–1103.

Han, J., Kim, J., Chung, C. and Park, K. (2007). Evaluation of smoothing in an

iterative lp-norm minimization algorithm for surface-based source localization

of meg. Physics in Medicine and Biology 52, 4791–4803.

Jo, H., Lee, J.-M., Kim, J.-H., Shin, Y.-W., Kim, I.-Y., Kwon, J. and Kim, S.

(2007). Spatial accuracy of fmri activation influenced by volume- and surface-

based spatial smoothing techniques. NeuroImage 34, 550–564.

Kennedy, D., O’Craven, K., Ticho, B., Goldstein, A., Makris, N. and Henson, J.

(1999). Structural and functional brain asymmetries in human situs inversus

totalis. Neurology 53, 1260–1265.

Kollakian, K. (1996). Performance analysis of automatic techniques for tissue

classification in magnetic resonance images of the human brain. Technical

Report Master’s thesis, Concordia University, Montreal, Quebec, Canada.

Luders, E., Narr, K., Thompson, P., Rex, D., Woods, R. and DeLuca, H., J. L.

a. A. (2006). Gender effects on cortical thickness and the influence of scaling.

Human Brain Mapping 27, 314–324.

Luders, E., Thompson, P.M., Narr, K., Toga, A., Jancke, L. and Gaser, C. (2006).

A curvature-based approach to estimate local gyrification on the cortical sur-

face. NeuroImage 29, 1224–1230.

MacDonald, J., Kabani, N., Avis, D. and Evans, A. (2000). Automated 3-d

extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage

27



12, 340–356.

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictio-

naries. IEEE Transactions on Signal Processing 41, 3397–3415.

Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander,

U. and Matejic, L. (1997). Statistical methods in computational anatomy.

Statistical Methods in Medical Research 6, 267–299.

Robbins, S. (2003). Anatomical standardization of the human brain in euclidean

3-space and on the cortical 2-manifold. Technical Report PhD thesis, School

of Computer Science, McGill University, Montreal, Quebec, Canada.

Rosenberg, S. (1997). The Laplacian on a Riemannian Manifold. Cambridge

University Press.

Rudin, W. (1991). Functional Analysis. McGraw-Hill.

Shen, L. and Chung, M. (2006). Large-scale modeling of parametric surfaces

using spherical harmonics. In Third International Symposium on 3D Data

Processing, Visualization and Transmission (3DPVT).

Shen, L., Ford, J., Makedon, F. and Saykin, A. (2004). surface-based approach

for classification of 3d neuroanatomical structures. Intelligent Data Analysis

8, 519–542.

Shen, L., Saykin, A., Chung, M., Huang, H., Ford, J., Makedon, F., McHugh,

T. and Rhodes, C. (2006). Morphometric analysis of genetic variation in

hippocampal shape in mild cognitive impairment: Role of an il-6 promoter

polymorphism. In Life Science Society Computational Systems Bioinformatics

Conference.

Sled, J., Zijdenbos, A. and Evans, A. (1988). A nonparametric method for auto-

matic correction of intensity nonuniformity in mri data. IEEE Transactions

on Medical Imaging 17, 87–97.

Thompson, P. and Toga, A. (1996). A surface-based technique for warping 3-

dimensional images of the brain. IEEE Transactions on Medical Imaging 15.

Wahba, G. (1990). Spline models for observational data. SIAM.

Wang, F.-Y. (1997). Sharp explict lower bounds of heat kernels. Annals of

Probability 24, 1995–2006.

Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K. and Evans, A. (1996).

A unified statistical approach for determining significant signals in images of

28



cerebral activation. Human Brain Mapping 4, 58–73.

Worsley, K., Taylor, J., Tomaiuolo, F. and Lerch, J. (2004). Unified univariate

and multivariate random field theory. NeuroImage 23, S189–195.

Zhu, H., Ibrahim, J., Tang, N., Rowe, D., Hao, X., Bansal, R. and Peterson, B.

(2007). A statistical analysis of brain morphology using wild bootstrapping.

IEEE Transactions on Medical Imaging 26, 954–966.

29


