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Abstract: There is a lack of unified statistical modeling framework for cerebral
shape asymmetry analysis in literature. Most previous approaches start with flip-
ping the 3D magnetic resonance images (MRI). The anatomical correspondence
across the hemispheres is then established by registering the original image to the
flipped image. A difference of an anatomical index between these two images is used
as a measure of cerebral asymmetry. We present a radically different asymmetry
analysis that utilizes a novel weighted spherical harmonic representation of cortical
surfaces. The weighted spherical harmonic representation is a surface smoothing
technique given explicitly as a weighted linear combination of spherical harmon-
ics. This new representation is used to parameterize cortical surfaces, establish the
hemispheric correspondence, and normalize cortical surfaces in a unified mathemat-
ical framework. The methodology has been applied in characterizing the cortical

asymmetry of a group of autistic subjects.
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1. Introduction

Previous neuroanatomical studies have shown left occipital and rigtht frontal lobe
asymmetry, and left planum temporal asymmetry in normal controls (Barrick
et al., 2005; Kennedy et al., 1999). These studies mainly flip the whole brain
3D MRI to obtain the mirror reflected MRI with respect to the mid-saggital
cross-section. Then the anatomical correspondence across the hemispheres is
established and a subsequent statistical analysis is performed at each voxel in the
3D MRI. Although this approach is sufficient for the voxel-based morphometry

(Ashburner and Friston, 2000), where we only need an approximate alignment of



corresponding brain substructures, it may fail to properly align highly convoluted
sulcal and gyral foldings of gray matter. In order to address this shortcoming
inherent in 3D whole brain volume asymmetry analysis, we need a new 2D cortical
surface based framework.

The human cerebral cortex has the topology of a 2D highly convoluted grey
matter shell of average thickness of 3mm. The outer boundary of the shell is
called the outer cortical surface while the inner boundary is called the inner cor-
tical surface. Cortical surfaces are segmented from magnetic resonance images
(MRI) using a deformable surface algorithm and represented as a triangle mesh
consisting of more than 40,000 vertices and 80,000 triangle elements (MacDon-
ald et al., 2000; Chung et al., 2003) (Figure 1). We assume cortical surfaces to
be smooth 2D Riemannian manifolds topologically equivalent to a unit sphere
(Davatzikos and Bryan, 1995). A sample outer surface can be downloaded from
http://www.stat.wisc.edu/~mchung/softwares/hk /hk.html. The detailed expla-
nation on data loading, visualization and simple manipulation in MATLAB are
given in the web link. The triangle mesh format contains information about ver-
tex indices, the Cartesian coordinates of the vertices and the connectivity that
tells which three vertices form a triangle. For any type of cortical surface mesh,
if V' is the number of vertices and F is the number of edges and F' is the number
of faces or triangles in the mesh, the Euler characteristic xy of the mesh should
be constant, i.e. x =V — E + F = 2. Note that for each triangle, there are
3 edges. Since two adjacent triangles share the same edge, the total number of
edges is E = 3F/2. Hence, the relationship between the number of vertices and
the triangles is F' = 2V — 4. In the sample surface, we have 40,962 vertices and
81,920 triangles.

Once we obtain the both outer and inner cortical surfaces of a subject, cor-
tical thickness, which is the distance between the outer and inner surfaces, is
computed at each vertices of the outer surface (MacDonald et al., 2000). Since
different clinical populations are expected to show different patterns of corti-
cal thickness variations, cortical thickness has been used as a quantitative index
for characterizing a clinical population (Chung et al., 2005). Cortical thickness
varies locally by region and is likely to be influenced by aging, development and

disease (Barta et al., 2005). By analyzing how cortical thickness differ locally



.-G

Mo

Figure 1. Left: The triangle mesh representation of the part of an outer cortical surface.
The cortical thickness is measured at the vertices of the mesh. Right: Parameterization
of cortical surface using the spherical coordinate system. The north and south poles are
chosen in the plane, i.e. ug = 0, that separates the left and the right hemispheres.

in a clinical population with respect to a normal population, neuroscientists can
locate the regions of abnormal anatomical differences in the clinical population.
Cortical thickness serves as a metric of interest in performing 2D cortical asym-
metry analysis. However, there are various methodological issues associated with
using triangle mesh data. Our novel 2D surface modeling framework called the
weighted spherical harmonic representation (Chung et al., 2007) can address these
issues in a unified mathematical framework.

Cortical surface mesh construction and cortical thickness computation are
are expected to introduce noise. To counteract this, surface-based data smooth-
ing is necessary. For 3D whole brain volume-based method, Gaussian kernel
smoothing, which weights neighboring observations according to their 3D Eu-
clidean distance, has been used. However, for data that lie on a 2D surface,
smoothing must be weighted according to the geodesic distance along the surface
(Andrade et al., 2001; Chung et al., 2003). It will be shown that the weighted

spherical harmonic representation is a 2D surface-based smoothing technique,



where the explicit basis function expansion is used to smooth out noisy corti-
cal surface data. The basis function expansion corresponds to the solution of
isotropic heat diffusion. Unlike the previous surface based smoothing that solves
the heat equation nonparametrically (Andrade et al., 2001; Cachia et al., 2003;
Chung et al., 2003; Chung et al., 2005), the result of the weighted spherical har-
monic representation is explicitly given as a weighted linear combination of spher-
ical harmonics. This provides a more natural statistical modeling framework. A
validation study showing the improved performance of the weighted spherical
harmonic representation over heat kernel smoothing (Chung et al., 2005) will be
given in the paper.

Comparing measurements defined at mesh vertices across different cortical
surfaces is not a trivial task due to the fact no two cortical surfaces are identically
shaped. In comparing measurements across different 3D whole brain images, 3D
volume-based image registration is needed. However, 3D image registration tech-
niques tend to misalign sulcal and gyral folding patterns of the cortex. Hence, 2D
surface-based registration is needed in order to compare measurements across dif-
ferent cortical surfaces. Various surface registration methods have been proposed
before (Thompson and Toga, 1996; Davatzikos, 1997; Miller et al., 1997; Fischl
et al., 1999; Chung et al., 2005). These methods solve a complicated optimiza-
tion problem of minimizing the measure of discrepancy between two surfaces.
Unlike the previous computationally intensive methods, the weighted spherical
harmonic representation provides a simple way of establishing surface correspon-
dence between two surfaces in reducing the improper alignment of sulcal folding
patterns without time consuming numerical optimization.

Once we establish surface correspondence between two surfaces, we also need
to establish hemispheric correspondence within a subject for asymmetry anal-
ysis. However, it is not straightforward how to establish a 2D surface-based
hemispheric correspondence. Although there are many 3D voluem-based brain
hemisphere asymmetry analysis (Barrick et al., 2005; Kennedy et al., 1999), due
to this simple reason, there is a lack of 2D surface-based asymmetry analysis
in literature. This will be the first systematic study on 2D cortical asymmetry.
The inherent angular symmetry presented in the weighted spherical harmonic

representation can be used to establish the inter-hemispheric correspondence. It



turns out that the usual asymmetry index of (L-R)/(L+R) is expressed as the
ratio between the sum of positive and negative order harmonics.

The novelty of our proposed method is that surface parameterization, surface-
based smoothing, within- and between- subject surface registration can be per-
formed within a single unified mathematical framework providing a more con-
sistent modeling framework than previously available for cortical analysis. This
paper extend the five page conference paper (Chung et al., 2007) presented dur-
ing the IEEE statistical signal processing workshop in 2007 with the detailed

exposition of our methodology.

2. Methods

Cortical thickness is measured at each vertex and used as a measure for charac-
terizing cortical shape variation. There exists a bijective mapping between the
cortical surface M and a unit sphere S?, which is obtained via the deformable

surface algorithm. Consider following parameterization of unit sphere S2:
(u1,ug,us) = (sinf cos @, sin sin ¢, cos §)

with (0,¢) € [0,7) ® [0,27). The polar angle 6 is the angle from the north
pole and the azimuthal angle ¢ is the angle along the horizontal cross-section.
Then using the bijective mapping, we can parameterize the Cartesian coordinates
v = (v1,v9,v3) of each cortical mesh vertex in the cortical surface M with the
spherical angles (6, ), i.e. v = v(0,¢) (Figure 1). This enables us to represent
cortical thickness measurements f with respect to the spherical coordinates, i.e.
f = f(6,¢). Each component of surface coordinates will be modeled indepen-

dently as

'Ui(e’ (10) = hl(e’ (10) + Ei(e’ (10)’ (1)

where h; is the unknown smooth coordinate function and ¢; is zero mean random

fields, possibly Gaussian. We also model cortical thickness f similarly as

f(0,0) =g(0,p) +e(0,p),

where ¢ is the unknown mean cortical thickness and e is a zero mean random
field. We will further assume v;, f € £2(S?), the space of square integrable

functions on unit sphere S?. The unknown signals h; and g are then estimated



in the finite subspace of £2(S?) spanned by harmonic basis functions in the least
squares fashion.
2.1 Spherical Harmonics
The spherical harmonic Y}, of degree [ and order m is defined as
clmPl‘m‘(cos 0)sin(|m|p), —I1<m < -1,
Yim = Cl—’”PI‘m‘(cos 0), m =0,

V2
clmPl|m|(cos 0) cos(mlp), 1<m <,

where ¢, = 2;;1 8 +IZB, and P/™ is the associated Legendre polynomial of

order m (Courant and Hilbert, 1953; Wahba, 1990). The associated Legendre

polynomial is given by

(1 _ $2)m/2 Ji+m
200 dzxltm

The first few terms of the spherical harmonics are

1 /
Yoo = \/—_,Y17_1 = ism@smcp,

Ylo—\/—cosﬁ Yi1= \/—SIDHCOS(,D

The spherical harmonics are orthonormal with respect to the inner product

(f1, f2) /fl ) f2(82) du(€2),

where Q = (0, ) and the Lebesgue measure du(2) = sinfdfdp. The norm is
then defined as

P (z) = (2 - 1)z e [-1,1].

11l = (fr, V2. (2)
Consider subspace Z; spanned by the [-th degree spherical harmonics:

Zl - { Z ﬂlm}/lm ﬁlm € R}

m=—1
Then the subspace Hj spanned by up to the k-th degree spherical harmonics is

decomposed as the direct sum of Zy,--- ,Zp:

H, = 106911 - B Iy,

- {Z Z ﬂleZm ﬂlm ER}

=0 m=-—1



Traditionally, the coordinate functions h; are estimated by minimizing the inte-

gral of the squared residual within Hj:

N 2
hi(2) = arg min / 0; () — h(Q)| du(2). (3)

heH,

It can be shown that the minimization is obtained when

k l
=> Z (03, Vi) Yim (). (4)

1=0 m=—

Previously, representing anatomical boundary via the series expansion (4) is
referred to as the spherical harmonic representation (Gerig et al., 2001; Gu et al.,
2004; Shen et al., 2004; Shen and Chung, 2006). This technique has been used
in representing hippocampus (Shen et al., 2004), ventricles (Gerig et al., 2001)
and cortex (Gu et al., 2004; Shen and Chung, 2006).

2.2 Weighted Spherical Harmonic Representation

The weakness of the traditional spherical harmonic representation is that it
produces the Gibbs phenomenon (ringing artifacts) (Gelb, 1997; Chung et al.,
2007) for discontinuous and rapidly changing continuous measurements. The
Gibbs phenomenon can be effectively removed if the spherical harmonic rep-
resentation converges faster as the degree goes to infinity. By weighting the
spherical harmonic coefficients exponentially smaller, we can make the repre-
sentation converges faster. This can be achieved by additionally weighting the
squared residuals in equation (3) with the heat kernel. Figure 2 demonstrate the
severe Gibbs phenomenon in the traditional spherical harmonic representation
(top row) on a hat shaped 2D surface. The hat shaped step function is simulated
as z =1 for 22 + y?> < 1 and z = 0 for 1 < 22 + y? < 2. On the other hand the
weighted spherical harmonic representation shows substantially reduced ringing
artifacts. In both representations, we have used degree k = 42. For the weighted
spherical harmonic representation, the bandwidth ¢ = 0.001 is used. This is
the bandwidth we have used through the paper. Due to very complex folding
patterns, sulcal regions of the brain exhibit more abrupt directional change than
the simulated hat surface(upward of 180 degree compared to 90 degree in the hat
surface) so there is a need for reducing the Gibbs phenomenon in the traditional

spherical harmonic representation.



Figure 2. The Gibbs phenomenon on a hat shaped simulated surface showing the severe
ringing effect on the traditional spherical harmonic representation (top) and reduced
ringing effect on the weighted spherical harmonic representation (bottom). The degree
k = 42 is used for the both cases and bandwidth ¢ = 0.001 is used for the weighted

spherical harmonic representation.

The heat kernel is the generalization of the Gaussian kernel defined in the
Euclidean space to an arbitary Riemannian manifold (Rosenberg, 1997; Chung

et al., 2005). On a unit sphere, the heat kernel is written as

00 l

Ko(2,2) =3 3 e oy, (2)Yim (@), (5)
=0 m=-1
where Q = (0,¢) and Q' = (0',¢'). The heat kernel is symmetric and positive
definite, and a probability distribution so that
Ko (9,9) du(Q) = 1.
SZ
The parameter o controls the dispersion of the kernel so we will simply call it as
the bandwidth. The heat kernel has the following asymptotic properties
1
lim K,(Q,Q) = —
Jm Ko (. 0) = 72

and
lin% Ky (9,9)=6(02-9Q),



the Dirac-delta function. The heat kernel can be further simplified using the
harmonic addition theorem (Wahba, 1990) as

V-3 2

=0

e (0 1Y), (6)

where - is the Cartesian inner product.
Let us define heat kernel smoothing (Chung et al., 2005) as

Ko+ f(Q) = o K(Q,9)f() du(€). (7)

Then the heat kernel smoothing has the following spectral representation, which
can be easily seen by substituting (5) into equation (7) and rearranging the

integral with the summation.

K, % f(Q Z Z e D Y ) i (), (8)

1=0 m=-1

The k-th degree finite series approximation of heat kernel smoothing will
be referred to as the k-th degree weighted spherical harmonic representation.
The unknown mean coordinates h; are estimated using the weighted spherical
harmonic representation, which is the minimizer of the of the weighted squared
distance between measurements v; and a function h in Hj space. The unknown

mean cortical thickness g is also estimated similarly.

Theorem. 1

k

!
YooY e 0, Vi) Yim

=0 m=—1

= arg min / K (Q, )| vi () — h(Q)? du(€Y) du(€2)
heHy, Jg2 Jg2

Proof. Let v; = Zf:o Zlm:—z BimYim. Let the inner integral be

/KQQ

k l

Uz Z Z ﬂleZm ‘ d:u(Q,)

=0 m=-—1




Simplifying the expression, we obtain,

k l k l
T=30 30 ST 3 Vi)Yo () o

k
—2K, *UZ(Q)Z Yirn(Q) B + K+ v2(9).

Since I is an unconstrained positive semidefinite qudratic program (QP) in Sy,
there is no unique global minimizer of I without the additional linear constrains.
Integrating I further with respect to u(f2), we collapses the QP to a positive

definite QP, which yields a unique global minimizer.

/S2Id'u Z Z ﬁlm_ Z D)o <’U17 lm ﬁlm_‘_ze (1o <z27YYlm>

1=0 m=-1 =0 =0

The minimum of the above integral is obtained when all the partial derivatives

with respect to 3; vanishes.

ol
S2 aﬁlm

Hence Zf:o an:_l e‘l(l“)"(vi, Yim)Yim is the unique minimizer in Hy,.

d:u( ) = 2ﬁlm - 2e_l(l+1)0 <Ui7 lem> = 0.

We can also show that the weighted spherical harmonic representation is re-
lated to previous available surface-based isotropic diffusion smoothing (Andrade
et al., 2001; Cachia et al., 2003; Chung et al., 2003; Chung et al., 2005) via the

following theorem.

Theorem. 2.

Z Z ~I(l+1)o (03, Vi) Y1 () = arg min ||h — hy||,
Lo La heHy,

where hg satisfies isotropic heat diffusion

Ohg 1 0 Ohg 1 02%hg
8—U_Ah0 81n989< >

nH—2 - 79
S8 ) T e 2

with the initial value condition ho(€2, 0 = 0) = v;(Q2).

10



Proof. We first prove that heat kernel smoothing (7) and its spectral representa-
tion (8) are the solution of the heat equation (9). At each fixed o, which serves as
the physical time of the heat equation, the solution ho(£2, o) belongs to £2(S5?).

So we can write the solution as
3 i) (10)
=0 m=-1
Since the spherical harmonics are the eigenfunctions of the spherical Laplacian
(Wahba, 1990), we have
AY;n () = =11+ 1)Y(2). (11)

Substituting equation (10) into equation (9) and using the relation (11), we obtain

aClm (0) _
do

The solution of the ordinary differential equation (12) is given by ¢y, (o) =

11+ Ve (o). (12)

bime 17 for some constant by,,. Hence, we obtain the solution of the form

Z Z bim l(l+1 7y, (Q)

=0 m=—1

When o = 0, we have the initial condition

[S) l
= D binYim() = vi(Q).

=0 m=—1

The coefficients b;,, must be the spherical harmonic coefficients, i.e. by, =
(vi, Yim). Then from the property of the generalized Fourier series (Rudin, 1991),

the finite expansion is the closest to the infinite series in Hy:

k l
Z Z e_l(l+1)o<via Yimﬂflm(g) = arg min

heH
1=0 m=—1 €tk

h—ho(Q,o—)H.

This proves the statement of the theorem.

2.3 Estimating Spherical Harmonic Coefficients

The spherical harmonic coefficients are estimated based on an iterative pro-

cedure that utilizes the orthonormality of spherical harmonics. We assume that

11



coordinate functions are measured at n points 1,---,€,. Then we have the
normal equations

k

l
vl @) =Y ) e, Vi ) i (), 5 = 1,y (13)
l

=0 m=—
The normal equations (13) can be written in the matrix form as
V = [Y076_1(1+1)0Y17”' , € -k k+1 UY ]/87 (14)
Y

where the column vectors are V = [v;(Q1), -+ ,v;(Q,)] and #' = (85,8}, - . B
with 3] = ((vi,Y1,—1),- -+, (vi, ¥21)). The length of the vector 3 is

1+©2 1414+ (2-k+1)=(k+1)%
Each submatrix Y; is given by

Y (1), - L Y(0)
Y, = : .. :
Yz,—l(Qn)v to 7Y2,l(Qn)

We may tempted to directly estimate § in the least squares fashion as
B=(YY)'Y'V.

However, for more than 40,000 mesh vertices we use in the study, the dimension
of the design matrix is 40,000 x (k 4 1)2, which can easily reach the physical
RAM memory limit of the most personal computers for large k. Instead of
directly solving the huge normal equations, we project the normal equations into
a smaller subspace Z; and estimate 2] 4+ 1 coefficients in an iterative fashion.

At degree 0, we write observations V as
V =Y + ro,

where rq is the residual vector of estimating V in subspace Zy. Note that the
residual vector r( consists of residual ro(§2;) at each point ;. Then we estimate

Bo by minimizing the residual vector in a least squares fashion, i.e.

> =1 vi(§25) Yoo (€)

= (Y Y)Y,V =
Bo = (Y6 Y0)™"Yp ST Y3,

12



At degree [, we have
ri_ =e VY8 1y, (15)
where the residual vector r;_q is obtained from the previous estimation
r1 =V =Yob - —e VY By
The least squares estimation of minimizing r; is then given by
Bl IS C(YIY) " Yl

The correctness of the algorithm can be easily seen from the statement

2
Z e DT (s VY = argmln KU(Q,Q')‘rl_l(Q') —h()| du(Q),

m=—I S2

where the residual is given by

(@) Z S D, YY),
=0 m=—1'

This iterative algorithm is refereed to as the iterative residual fitting (IRF)
algorithm (Chung et al., 2007) since we are iteratively fitting a linear equation to
the residuals obtained from the previous iteration. The IRF algorithm is similar
to the matching pursuit method (Mallat and Zhang, 1993) although the IRF has
been developed independently from the matching pursuit method. While the
IRF algorithm was developed to avoid the computational burden of inverting
a huge linear problem, the matching pursuit method was originally developed
to compactly decompose a time frequency signal into a linear combination of
pre-selected pool of basis functions. In the IRF algorithm, we minimize the
residual component r; in the least squares fashion, i.e. minimizing the sum of
squared residuals Z 1 7(€;) over all mesh vertices. On the other hand, in the
marching pursuit method, the norm ||Y;3]|? is maximized. Due to orthonormal-
ity, maximizing the norm is equivalent to minimizing the norm of the residual
ri]? = [q2 r7(Q) du(€2). So there is a slight difference in how the residual is
minimized. Although there is no limitation not to estimate multiple coefficients

simultaneously in the matching pursuit method, Mallat and Zhang (1993) only
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deals with the problem of estimating one coefficient at a time rather than multiple
coefficients as in the IRF algorithm.

Although increasing the degree of the representation increases the goodness-
of-fit, it also increases the number of estimated coefficients quadratically. So it is
necessary to stop the iteration at the specific degree k, where the goodness-of-fit
and the number of coefficients balance out. From equation (1), we can see that
the k-th degree weighted spherical harmonic representation can be modeled as a

linear model setting;:

k l
vi() =Y > e TBL Vi () + (),

=0 m=-—1

where the least squares estimation of ﬁlim is ﬁlim = (vi, Yim). Then we stop the
iteration at degree k by testing if the 2k + 3 coefficients at the next iteration

vanishes:
Hy : ﬁllc-i-l,—(k—i-l) = ﬁllf+1,—k == ﬁlzf+1,k+1 =0.
If we assume ¢; to be a Gaussian random field, the usual F' test at the significant

level a = 0.01 can be used to determine the stopping degree. In our study, at
bandwidth ¢ = 0.001, we stop the iteration at degree k = 42.

2.4 Validation Against Heat Kernel Smoothing

The weighted spherical harmonic representation is validated against heat
kernel smoothing as formulated in Chung et al. (2005). It is necessary to briefly
explain how heat kernel smoothing is implemented in Chung et al. (2005). It was
implemented as an iterated weighted averaging technique where the weights are
spatially adapted to follow the shape of heat kernel in discrete fashion along a
surface mesh. The algorithm has been implemented in MATLAB and it is freely
available at http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html. Since
the introduction in 2005, the method has been used in smoothing various cor-
tical surface data: cortical curvature (Luders et al., 2006; Gaser et al., 2006),
cortical thickness (Luders et al., 2006), hippocampus (Shen et al., 2006; Zhu
et al., 2007), magnetoencephalography (MEG) (Han et al., 2007) and functional-
MRI (Hagler Jr., 2006; Jo et al., 2007).

14



Let us define the n-th iterated heat kernel smoothing of signal f € L?(S?) as

KM 5 f(Q) = Ky % - % Ky +f(Q).

n times
Then we have the following theorem
Theorem. 3
Ky # [(Q) = K)o« F(9). (16)

Proof. By letting f = Yy, in equation (8) and using the orthonormality of
spherical harmonics, we obtain
Ko Yy (Q) = | Ko (Q,Q )Yy () du() = e~ oy, ().
S2
This is the restatement of the fact that e {(+17 and Yy are eigenvalues and
eigenfunctions of the above integral equation with heat kernel. By reapplying

heat kernel smoothing to equation (8), we obtain

[e%S) l
E@P s« f(Q) = > eV Ky % Vi (Q) (17)
=0 m=-1
[%S) l
_ Z Z e_l(l+1)2o<f,Ylm>Y2m(Q). (18)
=0 m=-1

Then arguing inductively we see obtain the spectral representation of the n-th

iterated heat kernel smoothing

00 l
K f@) =30 30 e 0 f Vi) Vi ().

1=0 m=-1

The right hand side is the spectral representation of heat kernel smoothing with

bandwidth no. This proves
KM % £(Q) = Koo % £(Q).
By rescaling the bandwidth, we obtain the result.

Theorem 3 shows that heat kernel smoothing with large bandwidth o can be

decomposed into n repeated application of heat kernel smoothing with smaller

15
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Figure 3. Cortical thickness is simulated from the sample cortical thickness. The ground
truth is analytically constructed from the simulation. Then the weighted spherical har-
monic representation and heat kernel smoothing of the simulated cortical thickness are
compared against the ground truth. The plot is the relative error over the number of

iterations for heat kernel smoothing against the ground truth.

bandwidth o /n. When the bandwidth is small, heat kernel behaves like the Dirac-
delta function and using the parametriz expansion (Rosenberg, 1997; Wang,

1997), we can approximate it locally using Gaussian kernel:

2 /
K (Q,Q) = &exp[_%] 1+ 0(?), (19)

where d(p, q) is the geodesic distance between p and ¢. For small bandwidth,
all the kernel weights are concentrated near the center so we only need to worry
about the first neighbors of a given vertex in a surface mesh.

Let Q4,---,Q,, be m neighboring vertices of vertex {2 = )y in the mesh.
The geodesic distance between €2 and its adjacent vertex €2; is the length of edge
between these two vertices in the mesh. Then the discretized and normalized

heat kernel is given by

_ d(Q,Qi)2
WU(Q, Qz) _ exp ( 40 )

Sioexp (— )
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Note that >.;" W,(€Q,9Q;) = 1. The discrete version of heat kernel smoothing
on a triangle mesh is then defined as

m

Wo s f(Q) =D Wa(9,2) f(%).
i=0

The discrete kernel smoothing should converges to heat kernel smoothing (7) as
the mesh resolution increases. This is the form of Nadaraya- Watson estimator
(Chaudhuri and Marron, 2000) applied to surface data. Instead of performing a
single kernel smoothing with large bandwidth no, we perform n iterated kernel
smoothing with small bandwidth ¢ as follows Wi« f(Q).

For comparison between the weighted spherical harmonic representation and
heat kernel smoothing, we have used the sample cortical thickness data in con-
structing the analytical ground truth. Consider a surface measurement of the

form

k l
FO =" BimYin(®) (20)
=0 m=-1
for some given f;,,. Heat kernel smoothing of f is given as an exact analytic

form, which serves as the ground truth for validation:

ko1
Kox f(Q) =) > e H098,.v,,(Q). (21)

=0 m=-1
Using the sample cortical thickness data, we simulated the measurement of the
form (20) by estimating Gy, = (f, Yim) (Figure 3 top left). Then we have com-
pared the weighted spherical harmonic representation of f and the discrete ver-
sion of heat kernel smoothing Wé% x f against the the analytical ground truth
(21) (Figure 3 top right) along the surface mesh.

For the weighted spherical harmonic representation, we have used o = 0.001
and the corresponding optimal degree k = 42 (Figure 3 bottom left). The relative
error for the weighted spherical harmonic representation is up to 0.013 at a
certain vertex and the mean relative error over all mesh vertices is 0.0012. For
heat kernel smoothing, we have used varying number of iterations 1 < n < 70
and the corresponding bandwidth ¢ = 0.001/n. The performance of heat kernel

smoothing depends on the number of iterations as shown in the plot of relative

17



error over the number of iterations in Figure 3. The minimum relative error
is obtained when 21 iterations are used (Figure 3 bottom right). The relative
error is up to 0.055 and the mean relative error is 0.0067. Our simulation result
demonstrates the weighted spherical harmonic representation performs better
than heat kernel smoothing. The main problem with heat kernel smoothing
is that the number of iterations need to be predetermined possibly using the
proposed simulation technique. Even at the optimal iteration of 21, the weighted

spherical harmonic representation provides a better performance.

2.5  Encoding Surface Asymmetry Information

Given the weighted spherical harmonic representation, we need to establish
surface correspondence between hemispheres and between subjects. This requires
establishing anatomical correspondence using surface registration. The main mo-
tivation for the surface registration is to establish proper alignment for cortical
thickness to be compared across subjects and between hemispheres. Previously,
the cortical surface registration was performed by minimizing an objective func-
tion that measures the global fit of two surfaces while maximizing the smoothness
of the deformation in such a way that the sulcal and gyral folding patterns are
matched smoothly (Thompson and Toga, 1996; Robbins, 2003; Chung et al.,
2005). In the weighted spherical harmonic representation, surface registration is
straightforward and does not require any sort of time consuming optimization
explicitly. Consider a surface ﬁ; obtained from coordinate functions v; measured
at points 1, ,Qy,:

Eoo1

R =33 7 (0, v, (@)

1=0 m=—1
Consider the other surface j; obtained from coordinate functions w; measured at
points Q-+, Q) :

k l

@)=Y e w, Vi) ().

1=0 m=—1
Suppose the surface li is deformed to l?l + dl(ﬁl) under the influence of the
displacement vector field d;. We wish to find d; that minimizes the discrepancy
between i/L\, + dz(}/l\z) and z in the finite subspace Hy. This can be easily done by
noting that
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Figure 4. The point %; (6o, ¢o) (left) corresponds to iALf (0,27 —¢p) (middle) after mirror
reflection with respect to the midsaggital cross section ug = 0. From the spherical
harmonic correspondence, Al (8,2m — ¢g) corresponds to hi(6,2r — ¢q) (right). This
establish the mapping from the left hemisphere to the right hemisphere in the least
squares fashion.

~

>3 ey, — o) V() = avg min ||B+ di(h) 7| (22)

d.
1=0 m=—1 i€H

The proof of this statement is given in Chung et al. (2007). This implies that the
optimal displacement in the least squares sense is obtained by simply taking the
difference between two weighted spherical harmonic representation and matching
coefficients of the same degree and order. Then a specific point l?i(Qo) in one
surface corresponds to j;(Q) in the other surface. We will refer this point-to-
point surface correspondence as the spherical harmonic correspondence.

The spherical harmonic correspondence can be further used to establish the
inter-hemispheric correspondence by letting 3; to be the mirror reflection of li
The mirror reflection of i?z with respect to the midsaggital cross section us = 0
is simply given by
Ji0,0) = hi" (8,) = hi(6,27 — ),
where * denotes the mirror reflection operation (Figure 4). The specific point

/l\zi(ﬂo, ©p) in the left hemisphere will be mirror reflected to %(60, 21 — p) in the
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right hemisphere. The spherical harmonic correspondence of 7; (6, 2 — @p) is
lAli(Go, 2w — ¢p). Hence, the point Ei(ﬁo, ¢0) in the left hemisphere corresponds
to the point 71,-(90, 2w — o) in the right hemisphere. This establishes the inter-
hemispheric anatomical correspondence. The schematics of obtaining this inter-
hemispheric correspondence is given in Figure 4. This inter-hemispheric cor-
respondence is used to compare cortical thickness measurements f across the
hemispheres. The weighted spherical harmonic representation of cortical thick-

ness f is given by

k l
90,0) =Y > e U Vi) Vi (60, ).

1=0 m=-1
At a given position h;(6y, ¢o), the corresponding cortical thickness is g(6o, ¢0),
which should be compared with the thickness g(y, 2m—pq) at position EZ (0o, 2 —

®o):

k l
/g\(e(b 2w — (100) = Z Z e_l(l+l)a<f> lem>YYlm(07 2 — (70) (23)
=0 m=-—1

The equation (23) can be rewritten using the property of spherical harmonics:

—Km(9790)7 _l S m S _17

Yim (0,27 — ) =
im ?) {Ylmw,w), 0<m<l.

k-1
§(60,27 — o) = D> Y e UYL Vi (B0, p0)
=0 m=—1
kool
=0 e V) Yin (60, 00).
=0 m=0

Comparing with the expansion for g(6y, ¢o), we see that the negative order terms
are invariant while the positive order terms change the sign. Hence we define the

symmetry indexr as

k-1
S(6,0) = 5(3(6:0) + 30,27 =) =D 3" VN, Vi) Yim 60, 00)
=0 m=-1

while the asymmetry index as

k 1
Al.9) = 5[0, 0) 300,20 —9)] =33 L Vi) Vi B, 00).



subject 3

Figure 5. Three representive subjects showing cortical thickness (f), its weighted-
SPHARM representation (g), asymmetry index (A), symmetry index (S) and normalized
asymmetry index (N). The Cortical thickness is projected onto the original brain surfaces
while all other measurements are projected onto the 42-th degree weighed spherical

harmonic representation
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We normalize the asymmetry index by diving the asymmetry index by the sym-

metry index as

90,0 90,21 — ) Sy S e V(£ ) Y (0, )
N(07 (10) S /g\ :

We will refer this index to as the normalized asymmetry indexr. The numerator
is the sum of all negative orders while the denominator is the sum of all positive
and the 0-th orders. Note that N(0,0) = N(#,7) = 0. This index is intuitively
interpreted as the normalized difference between cortical thickness in the left
and the right hemispheres. Note that the larger the value of the index, the larger
the amount of asymmetry. The index is invariant under the affine scaling of the
human brain so it is not necessary to control for the global brain size difference in
the later statistical analysis. Figure 5 shows the asymmetry index for 3 selective

subjects.

3. Application to Autism Study
3.1 Description of Data Set

Three Tesla Ti-weighted MR scans were acquired for 16 high functioning
autistic and 12 control right handed males. The autistic subjects were diagnosed
by a trained and certified psychologist at the Waisman center at the University
of Wisconsin-Madison (Dalton et al., 2005). The average ages are 17.1 +2.8 and
16.1 £ 4.5 for control and autistic groups respectively. Image intensity nonuni-
formity was corrected using a nonparametric nonuniform intensity normalization
method (Sled et al., 1988) and then the image was spatially normalized into
the Montreal neurological institute stereotaxic space using a global affine trans-
formation (Collins et al., 1994). Afterwards, an automatic tissue-segmentation
algorithm based on a supervised artificial neural network classifier was used to
segment gray and white matters (Kollakian, 1996). Triangle meshes for outer cor-
tical surfaces were obtained by a deformable surface algorithm (MacDonald et al.,
2000) and the mesh vertex coordinates v; are obtained. At each vertex, cortical
thickness f is also measured. Once we obtained the outer cortical surfaces of 28
subjects, the weighted spherical harmonic representations iAL, are constructed. We
have used bandwidth ¢ = 0.001 corresponding to k& = 42 degrees. The weighted

spherical harmonic representation for three representative subjects are given in
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T-stat P-value

Figure 6. The statistically significant regions of cortical asymmetry thresholded at the
corrected P-value of 0.1. The P-value has been corrected for multiple comparisons.

Figure 5. The symmetry (S), asymmetry (A) and normalized asymmetry (N)
indices are computed. The normalized asymmetry index is used in localizing the
regions of cortical asymmetry difference between two groups. These indices are
projected on the average cortical surface (Figure 5). The average cortical surface
is constructed by averaging the Fourier coefficients of all subjects within the same
spherical harmonics basis following the spherical harmonic correspondence. The
average surface serves as an anatomical landmark for displaying these indices as

well as projecting the final statistical analysis results in the next section.

3.2 Statistical Inference on Surface Asymmetry

For each subject, its normalized asymmetry index A(f,¢) is computed and
modeled as a Gaussian random field. The null hypothesis is that A(6, ¢) is iden-
tical to the both groups for all (0, ¢) while the alternate hypothesis is that there
is a specific point (0, ¢g), at which the normalized asymmetry index is different

for the both groups. The group difference on the normalized asymmetry index
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is tested using the T random field, denoted as T'(, ). Since we need to perform
the test on every points on the cortical surface, it becomes a multiple compari-
son problem. We used the random field theory based ¢ statistic thresholding to
determine the statistical significance (Worsley et al., 1996). The probability of
obtaining false positives for the one sided alternate hypothesis is given from the

following formula:

2
Pl sup T(6.4) > h| =" Ra(S?)pualh). (24)
(6750)6512 d=0

where Ry is the d-dimensional Resels of S? and pg is the d-dimensional Euler
characteristic (EC) density of T-field (Worsley et al., 1996; Worsley et al., 2004).
The Resels are

a7
FWHM?’
where FWHM is the full width at the half mazimum of smoothing kernel. The

FWHM of heat kernel used in the weighted spherical harmonic representation is

Ro(S?) =2, R1(5%) =0, Ry(5?) =

not given in a close form, so it is computed numerically. From equation (6), the
maximum of the heat kernel is obtained when Q- Q' = 1. Then we numerically
solve for Q- Q:

k k
Lo~ 24 L gy, 241 1010 po
>3 =3 PO
21—0 =0 A ( )

In previous surface data smoothing techniques (Chung et al., 2003; Chung et al.,
2005), FWHM of between 20 to 30 mm is used for smoothing data directly along
the brain surface. In our study, we use substantially smaller FWHM since the
analysis is performed on the unit sphere which has smaller surface area. The
compatible Resels of the unit sphere can be obtained by using the bandwidth
of 0 = 0.001, which corresponds to the FWHM of 0.0968 mm. Then based
on the formula (24), we computed the multiple comparison corrected P-value
and thresholded at @ = 0.1 (Figure 6). We found that the central sulci and
the prefrontal cortex exhibits abnormal cortical asymmetry pattern in autistic
subjects. The larger positive ¢ statistic value indicates thicker cortical thickness

with respect to the corresponding thickness at the opposite hemisphere.

24



4. Conclusions

We have presented a novel cortical asymmetry technique called the weighted
spherical harmonic representation that unifies surface representation, parameter-
ization, smoothing and registration in a unified mathematical framework. The
weighed spherical representation is formulated as the least squares approximation
to an isotropic heat diffusion on a unit sphere in such a way that the physical
time of heat diffusion controls the amount of smoothing in the weighted spherical
harmonic representation. The methodology is used in modeling cortical surface
shape asymmetry. Within this framework, the asymmetry index that measures
the amount of asymmetry presented in the cortical surface, was constructed as
the ratio of the weighted spherical harmonic representation of negative and pos-
itive orders. The regions of statistically different asymmetry index was localized
using the random field theory. As an illustration, the methodology was applied
quantifying the abnormal cortical asymmetry pattern of autistic subjects. The
weighted spherical harmonic representation is a very general surface shape repre-
sentation so it can be used for any type of surface objects that are topologically

equivalent to a unit sphere.
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