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Abstract

We present a unified statistical approach to deformation-based morphometry applied to the

cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As

the brain develops over time, the cortical surface area, thickness, curvature and total gray

matter volume change. It is highly likely that such age-related surface changes are not

uniform. By measuring how such surface metrics change over time, the regions of the most

rapid structural changes can be localized. We avoided using surface flattening, which distorts

the inherent geometry of the cortex in our analysis and it is only used in visualization. To

increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel

smoothing to an arbitrary curved cortical surface, has been developed and applied to surface

data. Afterwards, statistical inference on the cortical surface will be performed via random

fields theory. As an illustration, we demonstrate how this new surface-based morphometry

can be applied in localizing the cortical regions of the gray matter tissue growth and loss in

the brain images longitudinally collected in the group of children and adolescents.

Keywords: Cerebral Cortex, Cortical Surface, Brain Development, Cortical Thickness,

Brain Growth, Brain Atrophy, Deformation, Morphometry
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1 Introduction

The cerebral cortex has the topology of a 2-dimensional convoluted sheet. Most of the

features that distinguish these cortical regions can only be measured relative to that local

orientation of the cortical surface (Dale and Fischl, 1999). As brain develops over time,

cortical surface area as well as cortical thickness and the curvature of the cortical surface

change. As shown in the previous normal brain development studies, the growth pattern in

developing normal children is nonuniform over whole brain volume (Chung et al., 2001; Giedd

et al., 1999; Paus et al., 1999, Thompson et al., 2000). Between ages 12 and 16, the corpus

callosum and the temporal and parietal lobes shows the most rapid brain tissue growth and

some tissue degeneration in the subcortical regions of the left hemisphere (Chung et al. 2001,

Thompson et al., 2000). It is equally likely that such age-related changes with respect to

the cortical surface are not uniform as well. By measuring how geometric metrics such as

the cortical thickness, curvature and local surface area change over time, any statistically

significant brain tissue growth or loss in the cortex can be detected.

The first obstacle in developing surfaced-based morphometry is the automatic segmenta-

tion or extraction of the cortical surfaces from MRI. It requires first correcting RF inhomo-

geneity artifacts. We have used nonparametric nonuniform intensity normalization method

(N3), which elimates the dependence of the field estimate on anatomy (Sled et al., 1998).

The next step is the tissue classification into three types: gray matter, white matter and cere-

brospinal fluid (CSF). An artificial neural network classifier (Ozkan et al., 1993; Vaken, 1996)

or a mixture model cluster analysis (Good et al., 2001) can be used to segment the tissue

types automatically. After the tissue classification, the cortical surface is usually generated

as a smooth triangular mesh. The most widely used method for triangulating the surface

is the marching cubes algorithm (Lorensen and Cline, 1987). Level set method (Sethian,

1996) or deformable surfaces method (Davatzikos, 1995) are also available. In our study, we

have used the anatomic segmentation using proximities (ASP) method (MacDonald et al.,

2000), which is a variant of the deformable surfaces method, to generate cortical triangular

meshes that has the topology of a sphere. Brain substructures such as the brain stem and

the cerebellum were removed. Then an ellipsoidal mesh that already had the topology of
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a sphere was deformed to fit the shape of the cortex guranting the same topology. The

resulting triangular mesh will consist of 40,962 vertices and 81,920 triangles with the aver-

age internodal distance of 3 mm. Partial voluming is a problem with the tissue classifier

but topology constraints used in ASP method were shown to provide some correction by

incorporating many neuroanatomical a priori information (MacDonald, 1997; MacDonald et

al., 2000). The triangular meshes are not constrained to lie on voxel boundaries. Instead

the triangular meshes can cut through a voxel, which can be considered as correcting where

the true boundary ought to be. Once we have a triangular mesh as the realization of the

cortical surface, we can model how the cortical surface deforms over time.

In modeling the surface deformation, a proper mathematical framework might be found

in both differential geometry and fluid dynamics. The concept of the evolution of phase-

boundary in fluid dynamics (Drew, 1991; Gurtin and McFadden, 1991), which describes the

geometric properties of the evolution of boundary layer between two different materials due

to internal growth or external force, can be used to derive the mathematical formula for how

the surface change. It is natural to assume the cortical surfaces to be a smooth 2-dimensional

Riemannian manifold parameterized by u1 and u2:

X(u1, u2) = {x1(u
1, u2), x2(u

1, u2), x3(u
1, u2) : (u1, u2) ∈ D ⊂ � 2}.

A more precise definition of a Riemannian manifold and a parameterized surface can be

found in Boothby (1986), Carmo (1992) and Kreyszig (1959). If D is a unit square in
� 2 and a surface is topologically equivalent to a sphere then at least two different global

parameterizations are required. Surface parameterization of the cortical surface bas been

done previously by Thompson and Toga (1996) and Joshi et al. (1995). From the surface

parameterization, Gaussian and mean curvatures of the brain surface can be computed and

used to characterize its shape (Dale and Fischl, 1999; Griffin, 1994; Joshi et al., 1995). In

particular, S.C. Joshi et al. (1995) used the quadratic surface in estimating the Gaussian

and mean curvature of the cortical surfaces.

By combining the mathematical framework of the evolution of phase-boundary with

the statistical framework developed for 3D whole brain volume deformation (Chung et al.,

2001), anatomical variations associated with the deformation of the cortical surface can be

4



Figure 1: The outer and the inner cortical surfaces of a single subject at age 14 (left) and
at age 19 (right) showing globally similar cortical patterns. The top of the inner cortical
surface has been removed to show predominant ventricle enlargement. The red color is the
region where the mean curvature is greater than 0.01.

statistically quantified. Using the same stochastic assumption on the deformation field used

in Chung et al. (2001), we will localize the region of brain shape changes based on three

surface metrics: area dilatation rate, cortical thickness and curvature changes and show how

these metrics can be used to characterize the brain surface shape changes over time.

As an illustration of our unified approach to deformation-based surface morphometry, we

will demonstrate how the surface-based statistical analysis can be applied in localizing the

cortical regions of tissue growth and loss in brain images longitudinally collected in a group

of children and adolescents.

2 Modeling Surface Deformation

Let U(x, t) = (U1, U2, U3)
t be the 3D displacement vector required to deform the structure

at x = (x1, x2, x3) in gray matter Ω0 to the homologous structure after time t. Whole

gray matter volume Ω0 will deform continuously and smoothly to Ωt via the deformation

x → x + U while the cortical boundary ∂Ω0 will deform to ∂Ωt. The cortical surface ∂Ωt

may be considered as consisting of two parts: the outer cortical surface ∂Ωout
t between the

gray matter and CSF and the inner cortical surface ∂Ωin
t between the gray and white matter

(Figure 2), i.e.

∂Ωt = ∂Ωout
t ∪ ∂Ωin

t .
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Figure 2: Yellow: outer cortical surface, blue: inner cortical surface. Gray matter defor-
mation causes the geometry of the both outer and inner cortical surfaces to change. The
deformation of the surfaces can be written as x → x + U(x, t), where U is the surface
displacement vector field.

Although we will exclusively deal with the deformation of the cortical surfaces, our deformation-

based surface morphometry can be equally applicable to the boundary of any brain substruc-

ture.

We propose the following stochastic model on the displacement velocity V = ∂U/∂t,

which has been used in the analysis of whole brain volume deformation (Chung et al., 2001):

V(x) = µ(x) + Σ1/2(x)ε(x),x ∈ Ω0, (1)

where µ is the mean displacement velocity and Σ1/2 is the 3×3 symmetric positive definite co-

variance matrix, which allows for correlations between components of the displacement fields.

The components of the error vector ε are are assumed to be independent and identically dis-

tributed as smooth stationary Gaussian random fields with zero mean and unit variance. It

can be shown that the normal component of the displacement velocity V = ∂U/∂t restricted

on the boundary ∂Ω0 uniquely determine the evolution of the cortical surface (Chung et al.,

2002).

Estimating the surface displacement fields U and the surface extraction can be performed

at the same time by the ASP algorithm. First, an ellipsoidal mesh placed outside the brain

was shrunk down to the surface ∂Ωin
0 . The vertices of the resulting inner mesh are indexed and
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Figure 3: Individual gyral patterns mapped onto the surface atlas ∂Ωatlas. The gyral patterns
(yellow and red lines) are extracted by computing the bending metric on the inner cortical
surface (left). The middle and right figures show the mapping of the gyral pattern of a
single subject (left) onto the atlas surface. The gyri of the subject matche the gyri of the
atlas illustrating a close homology between the surface of an individual subject and surface
atlas. If there is no homology between the corresponding vertices, we would have complete
misalignment .

the ASP algorithm will deform the inner mesh to fit the outer surface ∂Ωout
0 . by minimizing

a cost function that involves bending, stretch and other topological constraints (MacDonald

et al., 2000). The vertices indexed identically on both meshes will lie within a very close

proximity and these define the automatic linkage in the ASP algorithm. To generate the

outer surface ∂Ωout
t at later time t, we start with the inner surface ∂Ωin

0 , and then deform it to

match the outer surface ∂Ωout
t by minimizing the same cost function. Starting with the same

mesh in two outer surface extractions, each point on ∂Ωin
0 gets mapped to corresponding

points on ∂Ωout
0 and ∂Ωout

t . This method assumes that the shape of the cortical surface

does not appreciably change within subject. This assumption is valid in the case of brain

development for a short period of time as illustrated in Figure 1, where the global sulcal

geometry remains stable for five year interval, although local cortical geometry shows slight

changes. As reported in Chung et al. (2001), the displacement is less than 1 mm/year in

average for the same data set while the average internodal distance in triangular meshes we

are using is 3 mm. So the displacements are relatively small compared to the size of mesh

itself.
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Constructing surface atlas ∂Ωatlas, where the statistical parametric maps (SPM) of sur-

face metrics will be formed, is done by averaging the coordinates of corresponding vertices

that have the same indices. This atlas construction method has been first introduced by

MacDonald et al. (2000), where it is used to create the cortical thickness map for 150

normal subjects. The geometrical constraints such as stretch and bending terms in ASP

algorithm enforces a relatively consistent correspondence on the cortical surface. Figure 3

shows the mapping of gyral pattern (red and yellow lines) of a single subject onto the atlas

surface. The gyri of the subject matche the gyri of the atlas. Note the full anatomical de-

tails still presented in ∂Ωatlas even after the vertex averaging. Major sulci such as the central

sulcus and superior temporal sulcus are clearly identifiable. If there is no homology between

corresponding vertices, one would only expect to see featureless dispersion of points.

3 Surface Parameterization

The ASP method generates triangular meshes consisting of 81,920 triangles evenly dis-

tributed in size. In order to quantify the shape change of the cortical surface, surface

parameterization is an essential part. We model the cortical surface as a smooth 2D Rie-

mannian manifold parameterized by two parameters u1 and u2 such that any point x ∈ ∂Ω0

can be uniquely represented as

x = X(u1, u2)

for some parameter space u = (u1, u2) ∈ D ⊂ � 2 . We will try to avoid global parameter-

ization such as tensor B-splines, which are computationally expensive compared to a local

surface parameterization. Instead, a quadratic polynomial

z(u1, u2) = β1u
1 + β2u

2 + β3(u
1)2 + β4u

1u2 + β5(u
2)2 (2)

will be used as a local parameterization fitted via least-squares estimation. Using the least-

squares method, these coefficients βi can be estimated. The numerical implementation can

be found in Chung (2001). Slightly different quadratic surface parameterizations are also

used in estimating curvatures of a macaque monkey brain surface (Joshi et al., 1995; Khaneja
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et al., 1998). Once βi are estimated, X(u1, u2) =
(
u1, u2, z(u1, u2)

)t
becomes a local surface

parameterization of choice.

4 Surface-Based Morphological Measures

As in the case of local volume change in the whole brain volume (Chung et al., 2001), the

rate of cortical surface area expansion or reduction may not be uniform across the cortical

surface. Extending the idea of volume dilatation, we introduce a new concept of surface

area, curvature, cortical thickness dilatation and their rate of change over time.

Suppose that the cortical surface ∂Ωt at time t can be parameterized by the parameters

u = (u1, u2) such that any point x ∈ ∂Ωt can be written as x = X(u, t). Let Xi = ∂X/

∂ui be a partial derivative vector. The Riemannian metric tensor gij is given by the inner

product between two vectors Xi and Xj, i.e. gij(t) = 〈Xi,Xj〉. The Riemannian metric

tensor gij measures the amount of the deviation of the cortical surface from a flat Euclidean

plane. The Riemannian metric tensor enables us to measure lengths, angles and areas in the

cortical surface. Let g = (gij) be a 2× 2 matrix of metric tensors. From Chung et al, (2002),

the rate of metric tensor change is approximately

∂g

∂t
≈ 2(∇X)t(∇V)∇X, (3)

where V = ∂U/∂t and ∇X = (X1,X2) is a 3 × 2 gradient matrix. We are not directly

interested in the metric tensor change itself but rather functions of g and ∂g/∂t, which will

be used to measure surface area and curvature change.

4.1 Local Surface Area Change

The total surface area of the cortex ∂Ωt is given by

‖∂Ωt‖ =

∫

D

√
det g du,

where D = X−1(∂Ωt) is the parameter space (Kreyszig, 1959). The term
√

det g is called the

infinitesimal surface area element and it measures the transformed area of the unit square in

the parameter space D via the transformation X(·, t) : D → ∂Ωt. The infinitesimal surface
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area element can be considered as a generalization of Jacobian, which has been used in

measuring local volume in whole brain volume (Chung et al., 2001). The local surface area

dilatation rate Λarea or the rate of local surface area change per unit surface area is then

defined as

Λarea =
1√

det g

∂
√

det g

∂t
, (4)

which can be further simplified as Λarea = ∂(ln
√

det g)/∂t. If the whole gray matter Ωt

is parameterized by 3D curvilinear coordinates u = (u1, u2, u3), then the dilatation rate

∂(ln
√

det g)/∂t becomes the local volume dilatation rate Λvolume first introduced in deformation-

based morphometry (Chung et al., 2001). Therefore, the concepts of local area dilatation and

volume dilatation rates are essentially equivalent.

In our study, two MR scans were collected for each subject at different times. Let tj
1 and

tj2 to be the times scans were taken for subject j. Then the local surface area dilatation rate

Λj
area for subject j is estimated as a finite difference:

Λj
area =

√
det g(tj2) −

√
det g(tj1)

(tj2 − tj1)
√

det g(tj1)
,

where g(t) is the matrix evaluated at t. Other dilatation rates that will be introduced later

can be estimated in a similar fashion.

Instead of using metric tensors gij, it is possible to formulate local surface area change in

terms of the areas of the corresponding triangles. However, this formulation assign surface

area change values to each face instead of each vertex and this might cause a problem in

both surface-based smoothing and statistical analysis, where values are defined on vertices.

Defining scalar values on vertices from face values can be done by the weighted average of face

values, which should converge to (4). It is not hard to develop surface-based smoothing and

statistical analysis on values defined on faces but the cortical thickness and the curvature

metric will be defined on vertices so we will end up with two separate approaches: one

for metrics defined on vertices and the other for metrics defined on faces. Therefore, our

metric tensor approach seems to provide a basis of unifying surface metric computations,

surface-based smoothing and statistical analysis together.
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Under the assumption of stochastic model (1), the area dilatation rate can be approxi-

mately distributed as Gaussian:

Λarea(x) = λarea(x) + εarea(x), (5)

where λarea = tr[g−1(∇X)t(∇µ)∇X] is the mean area dilatation rate and εarea is a mean

zero Gaussian random field defined on the cortical surface (Chung et al., 2002). The area

dilatation rate is invariant under parameterization, i.e. the area dilatation rate will always be

the same no matter which parametrization is chosen. λarea can be estimated by the sample

mean Λ̄area = (
∑n

j=1 Λj
area)/n and the significance of the mean will be tested via T statistic.

So far our statistical modeling is centered on localizing regions of rapid morphological

changes on the cortical surface but both local and global morphological measures are im-

portant in the characterization of brain deformation. Global morphometry is relatively easy

compared to local morphometry with respect to modeling and computation. The total sur-

face area ‖∂Ωt‖ can be estimated by the sum of the areas of 81,920 triangles generated by

the ASP algorithm. Then we define the total surface area dilatation rate as

Λtotal area =
∂

∂t
ln ‖∂Ωt‖.

It can be shown that, under assumption (1), the total surface area dilatation rate Λtotal area is

distributed as a Gaussian random variable and hence a statistical inference on total surface

area change will be based on a simple t test (Chung et al., 2002). This measure will be used

in determining the rate of the total surface area decreases in both outer and inner cortical

surfaces between ages 12 and 16.

4.2 Local Gray Matter Volume Change

Local volume dilatation rate Λvolume for whole brain volume is defined in Chung et al. (2001)

using the Jacobian of deformation x → x + U(x) as

Λvolume = tr(∇V) =
∂

∂t
tr(∇U)

and used successfully in detecting the regions of brain tissue growth and loss in the whole

brain volume. Compared to the local surface area change metric, the local volume change
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Figure 4: Outer (left) and inner (middle) triangular meshes. Triangle (p1,p2,p3) ∈ ∂Ωout
t on

the outer surface will have corresponding triangle (q1,q2,q3) ∈ ∂Ωin
t on the inner surface.

A convex-hull from 6 points {p1,p2,p3,q1,q2,q3} will then form a triangular prism and the
collection of 81,920 triangular prisms becomes the whole gray matter.

measurement is more sensitive to small deformation. If a unit cube increases its sides by

one, the surface area will increase by 22 −1 = 3 while the volume will increase by 23−1 = 7.

Therefore, the statistical analysis based on the local volume change will be at least twice

more sensitive compared to that of the local surface area change. So the local volume change

should be able to pick out gray matter tissue growth pattern even when the local surface

area change may not. In result section, the highly sensitive aspect of local volume change in

relation to local surface area change will be demonstrated.

The gray matter Ωt can be considered as a thin shell bounded by two surfaces ∂Ωout
t and

∂Ωin
t with varying cortical thickness. In triangular meshes generated by the ASP algorithm,

each of 81,920 triangles on the outer surface has a corresponding triangle on the inner surface

(Figure 4). Let p1,p2,p3 be the three vertices of a triangle on the outer surface and q1,q2,q3

be the corresponding three vertices on the inner surface such that pi is linked to qi by ASP

algorithm. The triangular prism consists of three tetrahedra with vertices {p1,p2,p3,q1},
{p2,p3,q1,q2} and {p3,q1,q2,q3}. Then the volume of the triangular prism is given by the

sum of the determinants

D(p1,p2,p3,q1) + D(p2,p3,q1,q2) + D(p3,q1,q2,q3),

where D(a,b, c,d) = | det(a − d,b − d, c − d)|/6 is the volume of a tetrahedron whose

vertices are {a,b, c,d}. Afterwards, the total gray matter volume ‖Ωt‖ can be estimated
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Figure 5: Top: Cortical thickness dilatation rate for a single subject mapped onto an atlas.
The red (blue) regions show more than 67% thickness increase (decrease). Note the large
variations across the cortex. Due to such large variations, surface-based smoothing is required
to increase the signal-to-noise ratio. Bottom: t statistical map thresholded at the corrected P
value of 0.05 (t value of 5.1). Both yellow and red regions are statistically significant regions
of thickness increase. There is no region of statistically significant cortical thinning detected.
The blue region shows very small t value of -2.4, which is not statistically significant.

by summing the volumes of all 81,920 triangular prisms. Similar to the total surface area

dilatation rate, we define the total gray matter volume dilatation rate as

Λtotal volume =
∂

∂t
ln ‖Ωt‖.

4.3 Cortical Thickness Change

The average cortical thickness for each individual is about 3mm (Henery and Mayhew, 1989).

Cortical thickness usually varies from 1mm to 4mm depending on the location of the cortex.

In normal brain development, it is highly likely that the change of cortical thickness may not

be uniform across the cortex. We will show how to localize the cortical regions of statistically

significant thickness change in brain development. Our approach introduced here can also

be applied to measuring the rate of cortical thinning, possibly associated with Alzheimer’s

disease. As in the case of the surface area dilatation, we introduce the concept of the cortical
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thickness dilatation, which measures cortical thickness change per unit thickness and unit

time. There are many different computational approaches to measuring cortical thickness

but we will use the Euclidean distance d(x) from a point x on the outer surface ∂Ωout
t to the

corresponding point y on the inner surface ∂Ωin
t , as defined by the automatic linkages used

in the ASP algorithm (MacDonald et al., 2000). The vertices on the inner triangular mesh

are indexed and the ASP algorithm can deform the inner mesh to fit the outer surface by

minimizing a cost function that involves bending, stretch and other topological constraints.

Therefore, both the outer and the inner surfaces should match sulci to sulci and gyri to gyri,

and the vertices indexed identically on both surfaces would lie within a very close proximity.

One advantage of the cortical thickness metric based on this automatic linkage is that it is

less sensitive to fluctuations in surface normals and regions of high curvature (MacDonald

et al., 2000). A validation study for the assessment of the accuracy of the cortical thickness

measure based on the ASP algorithm has been performed and found to be valid for the most

of the cortex (Kanani et al., 2000). There is also an alternate method for automatically

measuring cortical thickness based on the Laplace equation (Jones et al., 2000).

Let d(x) = ‖x − y‖ be the cortical thickness computed as usual Euclidean distance

between x ∈ ∂Ωout and y ∈ ∂Ωin. We define the cortical thickness dilatation rate as the rate

of the change of the thickness per unit thickness and unit time, i.e.

Λthickness =
∂

∂t
ln d(x).

Under the assumption of stochastic model (1), the thickness dilatation rate can be approx-

imately distributed as Gausssian:

Λthickness(x) = λthickness(x) + εthickness(x),

where λthickness is the mean cortical thickness dilatation rate and εthickness is a mean zero

Gaussian random field. Unlike the surface area change metric, cortical thickness can only be

defined locally but we can compute the within average thickness dilatation rate for subject

j:

Λj
avg thickness =

1

‖∂Ω0‖

∫

x∈∂Ω0

Λj
thickness(x) dx. (6)
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Figure 6: Top: Bending metric computed on the inner cortical surface of a 14 year old
subject. It measures the amount of folding or curvature of the cortical surface. This metric
can be also used to extract sulci and gyri in the problem of sulcal segmentation (see Figure
3). Bottom: Corrected t map thresholded at 5.1 showing statistically significant region of
curvature increase. Most of curvature increase occurs on gyri while there is no significant
change of curvature on most of sulci. Also there is no statistically significant curvature
decrease detected indicating that the complexity of the surface convolution may actually
increase between ages 12 and 16.

Then Λ̄avg thickness will measure the between and within average cortical thickness dilatation

rate.

4.4 Curvature Change

When the surface ∂Ω0 deforms to ∂Ωt, curvatures of the surface change as well. The principal

curvatures can characterize the shape and location of the sulci and gyri, which are the valleys

and crests of the cortical surfaces (Bartesaghi et al., 2001; Joshi et al., 1995; Khaneja et al.,

1998; Subsol, 1999). By measuring the curvature changes, rapidly folding and cortical regions
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can be localized. Let κ1 and κ2 be the two principal curvatures as defined in Boothby (1986)

and Kreyszig (1959). The principal curvatures can be represented as functions of βis in

quadratic surface (2) (Chung, 2001). To measure the amount of folding, we define bending

metric K as a function of the principal curvatures:

K =
κ2

1 + κ2
2

2
+ α.

We may arbitraly set α = 0.001. If the cortical surface is flat, bending metric K obtains the

minimum 0.001. The larger the bending metric, the more surface will be crested as shown

in Figure 6.

We define the local curvature dilatation rate as

Λcurvature =
∂

∂t
ln K. (7)

Under the linear model (1), it can be similarly shown that the curvature dilatation is ap-

proximately distributed as a Gaussian random field (Chung et al., 2002):

Λcurvature(x) = λcurvature(x) + εcurvature(x),

where λcurvature is the mean curvature dilatation rate and εcurvature is a mean zero Gaussian

random field. As in the case of the average cortical thickness dilatation rate (6), the average

curvature dilatation rate can be computed and used as a global measure:

Λavg curvature =
1

‖∂Ω0‖

∫

∂Ω0

Λcurvature(x) dx.

A similar integral approach has been taken to measure the amount of bending in the 2D

contour of the corpus callosum (Peterson et al., 2001).

5 Surface-Based Diffusion Smoothing

In order to increase the signal-to-noise ratio (SNR) as defined in Dougherty (1999), Rosenfeld

and Kak (1982) and Worsley et al. (1996b), Gaussian kernel smoothing is desirable in many

statistical analyses . For example, Figure 5 shows fairly large variations in cortical thickness

of a single subject displayed on the average brain atlas Ωatlas. By smoothing the data
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on the cortical surface, the SNR will increase if the signal itself is smooth and in turn,

it will be easier to localize the morphological changes. However, due to the convoluted

nature of the cortex whose geometry is non-Euclidean, we can not directly apply Gaussian

kernel smoothing on the cortical surface. Gaussian kernel smoothing of functional data

f(x),x = (x1, . . . , xn) ∈ � n with FWHM (full width at half maximum) = 4(ln 2)1/2
√

t is

defined as the convolution of the Gaussian kernel with f :

F (x, t) =
1

(4πt)n/2

∫
�

n

e−(x−y)2/4tf(y)dy. (8)

Formulation (8) can not be directly to the cortical surfaces. However, by reformulating

Gaussian kernel smoothing as a solution of a diffusion equation on a Riemannian manifold,

the Gaussian kernel smoothing approach can be generalized to an arbitrary curved surface.

This generalization is called diffusion smoothing and has been used in the analysis of fMRI

data on the cortical surface (Andrade et al., 2001). It can be shown that (8) is the integral

solution of the n-dimensional diffusion equation

∂F

∂t
= ∆F (9)

with the initial condition F (x, 0) = f(x), where ∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n is the Laplacian

in n-dimensional Euclidean space (Egorov and Shubin, 1991). Hence the Gaussian kernel

smoothing is equivalent to the diffusion of the initial data f(x) after time t. When apply-

ing diffusion smoothing on curved surfaces, the smoothing somehow has to incorporate the

geometrical features of the curved surface and the Laplacian ∆ should change accordingly.

The extension of the Euclidean Laplacian to an arbitrary Riemannian manifold is called the

Laplace-Beltrami operator (Arfken, 2000; Kreyszig, 1959). The approach taken in Andrade

et al. (2001) is based on a local flattening of the cortical surface and estimating the pla-

nar Laplacian, which may not be as accurate as our estimation based on the finite element

method (FEM). Further, our direct FEM approach completely avoid any local or global sur-

face flattening. For given Riemannian metric tensor gij, the Laplace-Beltrami operator ∆ is

defined as

∆F =
∑

i,j

1

|g|1/2

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
, (10)
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Figure 7: A typical triangulation in the neighborhood of p = p0. When ASP algorithm
is used, the triangular mesh is constructed in such a way that it is always pentagonal or
hexagonal.

where (gij) = g−1 (Arfken, 2000, pp. 158-167). Note that when g becomes a 2 ×2 identity

matrix, the Laplace-Beltrami operator in (10), simplifies to a standard 2D Laplacian:

∆F =
∂2F

∂(u1)2
+

∂2F

∂(u2)2
.

Using the FEM on the triangular cortical mesh generated by the ASP algorithm, it is pos-

sible to estimate the Laplace-Beltrami operator as the linear weights of neighboring vertices

(Chung, 2001).

Let p1, · · · ,pm be m neighboring vertices around the central vertex p = p0. Then the

estimated Laplace-Beltrami operator is given by

∆̂F (p) =

m∑

i=1

wi

(
F (pi) − F (p)

)

with the weights

wi =
cot θi + cotφi∑m

i=1 ‖Ti‖
,

where θi and φi are the two angles opposite to the edge connecting pi and p, and ‖Ti‖ is the

area of the i-th triangle (Figure 7).
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Figure 8: Diffusion smoothing simulation on a triangular mesh consisting of 1280 triangles.

This smaller mesh is the surface of the brain stem. The artificial signal was generated with

Gaussian noise to illustrate the smoothing process. (a) The initial signal. (b) After 10

iterations with δt = 0.5. (c) After 20 iterations with δt = 0.5.

This is an improved formulation from the previous attempt in diffusion smoothing on

the cortical surface (Andrade et al., 2001), where the Laplacian is simply estimated as the

planar Laplacian after locally flattening the triangular mesh consisting of nodes p0, · · · ,pm

onto a flat plane. In the numerical implementation, we have used formula

cot θi =
〈pi+1 − p,pi+1 − pi〉

2‖Ti‖
, cotφi =

〈pi−1 − p,pi−1 − pi〉
2‖Ti‖

and ‖Ti‖ = ‖(pi+1 − p) × (pi − p)‖/2. Afterwards, the finite difference scheme is used to

iteratively solve the diffusion equation at each vertex p:

F (p, tn+1) − F (p, tn)

tn+1 − tn
= ∆̂F (p, tn),

with the initial condition F (p, 0) = f(p). After N -iterations, the finite difference scheme

gives the diffusion of the initial data f after duration Nδt. If the diffusion were applied to

Euclidean space, it would be equivalent to Gaussian kernel smoothing with

FWHM = 4(ln 2)1/2
√

Nδt.
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Figure 9: Checking Gaussian assumption for the cortical thickness metric. The horizontal
axis displays the qauntiles of a Gaussian distribution while the vertical axis displays the
qauntiles of an empirical distribution. How closely the blue dots lie along the straight
line gives an idea if the underlying empirical distribution follows the theoritical Gaussian
distribution. (a) Computer simulation of a Gaussian distribution. (b) Computer simulation
of a lognormal distribution. This is to illustrate how the qqplot of a non Gaussian distribution
is different. (c) Vertex 40546 is where t value is 10.2. (d) Vertex 14300 gives t = 27. (e)
Lilliefors statistic measures the maximum difference between the empirical and a theoretical
Gaussian distributions. Most of cortex shows value less than the cutoff value 0.19 indicating
that the Gaussian random field assumption is valid.

Computing the linear weights for the Laplace-Beltrami operator takes a fair amount of

time (about 4 minutes in Matlab running on a Pentium III machine), but once the weights

are computed, it is applied through the whole iteration repeatedly and the actual finite

difference scheme takes only two minutes for 100 iterations. Figure 8 illustrates the process of

diffusion smoothing. Unlike Gaussian kernel smoothing, smoothing is an iterative procedure.

However, it should be emphasized that Gaussian kernel smoothing is a special case of diffusion

smoothing restricted to Euclidean space.
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6 Statistical Inference on the Cortical Surface

All of our morphological measures such as surface area, cortical thickness, curvature dilata-

tion rates are modeled as Gaussian random fields on the cortical surface, i.e.

Λ(x) = λ(x) + ε(x),x ∈ ∂Ωatlas, (11)

where the deterministic part λ is the mean of the metric Λ and ε is a mean zero Gaussian

random field. This theoretical model assumption has been checked using both Lilliefors test

(Conover, 1980) and quantile-quantile plots (qqplots) (Hamilton, 1992). The qqplot displays

quantiles from an empirical distribution on the vertical axis versus theoretical quantiles

from a Gaussisan distribution on the horizontal axis. It is used to check graphically if the

empirical distribution follows the theoretical Gaussian distribution. If the data comes from

a Gaussian field, then the qqplot should be close to a straight line (Figure 9 (a)). If the

data comes from a lognormal distribution, it may not form a straight line (Figure 9 (b)).

Because it is not possible to view qqplots for every vertices on the cortex, we measured

the correlation coefficients γ of the vertical and horizontal coordinates in qqplots. If the

empirical distribution comes from Gaussian, γ should asymptotically converge to 1. For

Gaussian simulation, γ = 0.98 ± 0.01 and for lognormal simulation γ = 0.84 ± 0.08 on the

cortex. For the cortical thickness data, which has been filtered with the diffusion smoothing,

γ = 0.96±0.03. So it does seems that the smoothed cortical thickness metric can be modeled

as a Gaussian random field. Using Lilliefors statistic, we statistically tested the Gaussian

assumption. The Lilliefors test, which is a special case of the Komogorov-Smirnov test, looks

at the maximum difference between the empirical and a theoretical Gaussian distribution

when the mean and the variance of the distribution are not known. Since the Lilliefors

statistics of the cortical thickness metric are mostly smaller than the cutoff value of 0.19 at

1% level (0.16 at 5% level), there is no reason to reject model (11). (Figure 9 (e)).

Gaussian kernel smoothed images tend to reasonably follow random field assumptions

when a fairly large FWHM is used. Diffusion smoothing is equivalent to Gaussian kernel

smoothing locally in conformal coordinates on the cortex (Chung, 2001b). Also P-value for

local maxima formula is quite stable even if a slightly different assumption such as non-

isotropy is used (Worsley et al., 1999b). Therefore, detecting the region of statistically
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significant λ(x) for some x can be done via thresholding the maximum of the T random field

defined on the cortical surface (Worsley et al., 1996a; Worsley et al., 1999).

The T random field on the manifold ∂Ωatlas is defined as

T (x) =
√

n
M(x)

S(x)
, x ∈ ∂Ωatlas

where M and S are the sample mean and standard deviation of metric Λ over the n subjects.

Under the null hypothesis

H0 : λ(x) = 0 for all x ∈ ∂Ωatlas,

i.e. no structural change, T (x) is distributed as a student’s t with n − 1 degrees of freedom

at each voxel x. The P value of the local maxima of the T field will give a conservative

threshold, which has been used in brain imaging for a quite some time (Worsley, 1996a).

For very high threshold y, we can show that

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈

3∑

i=0

φi(∂Ωatlas)ρi(y), (12)

where ρi is the i-dimensional EC-density and the Minkowski functional φi are

φ0(∂Ωatlas) = 2, φ1(∂Ωatlas) = 0, φ2(∂Ωatlas) = ‖∂Ωatlas‖, φ3(∂Ωatlas) = 0

and ‖∂Ωatlas‖ is the total surface area of ∂Ωatlas (Worsley, 1996a). When diffusion smooth-

ing with given FWHM is applied to metric Λ on surface ∂Ωatlas, the 0-dimensional and

2-dimensional EC-density becomes

ρ0(y) =

∫
∞

y

Γ(n
2
)

((n − 1)π)1/2Γ(n−1
2

)

(
1 +

y2

n − 1

)
−n/2

dy,

ρ2(y) =
1

FWHM2

4 ln 2

(2π)3/2

Γ(n
2
)

(n−1
2

)1/2Γ(n−1
2

)
y
(
1 +

y2

n − 1

)
−(n−2)/2

.

Therefore, the excursion probability on the cortical surface can be approximated by the

following formula:

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈ 2ρ0(y) + ‖∂Ωatlas‖ρ2(y).

We compute the total surface area ‖∂Ωatlas‖ by summing the area of each triangle in a

triangulated surface. The total surface area of the average atlas brain is 275,800 mm2, which
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Figure 10: T -map of the cortical dilatation rate for null data. The null data was created
by reversing time for the half of subjects chosen randomly. In the null data, the mean
time difference is −0.24 year, so our statistical analysis should not detect any morphological
changes. In fact, the t-values in every vertices were well below the threshold.

is roughly the area of 53 × 53 cm2 sheet. We want to point out that the surface area of

the average atlas brain is not the average surface area of 28 subjects. When 20mm FWHM

diffusion smoothing is used on the template surface ∂Ωatlas, 2.5% thresholding gives

P
(

max
x∈∂Ωatlas

T (x) ≥ 5.1
)

= P
(

max
x∈∂Ωatlas

T (x) ≤ −5.1
)
≈ 0.025.

Our surface-based smoothing and analysis are checked on null data. The null data is

created by reversing time for randomly chosen half of the subjects. In the null data, the

mean time difference t2−t1 is −0.24 year so the statistical analysis presented here should not

detect any morphological changes. For the cortical thickness dilatation rate, the maximum

and the minimum t-values are 3.1808 and -3.9570 respectively, well bellow the threshold 5.1

and -5.1 indicating that the analysis obviously did not detect any statistically significant

morphological changes.

7 Results

Twenty-eight normal subjects were selected based on the same physical, neurological and

psychological criteria described in Giedd et al. (1996). This is the same data set reported

in Chung et al. (2001), where the Jacobian of the 3D deformation was used to detect
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statistically significant brain tissue growth or loss in 3D whole brain via deformation-based

morphometry. 3D Gaussian kernel smoothing used in this study is not sensitive to the

interfaces between the gray, white matter and CSF. Gaussian kernel smoothing tends to

blur gray matter volume increase data across the cortical boundaries. So in some cases,

statistically significant brain tissue growth could be found in CSF. Our deformation-based

surface morphometry can overcome this inherent shortcoming associated with the previous

morphometric analysis.

Two T1-weighted MR scans were acquired for each subject at different times on the same

GE Sigma 1.5-T superconducting magnet system. The first scan was obtained at the age

t1 = 11.5 ± 3.1 years (min 7.0 years, max 17.8 years) and the second scan was obtained at

the age t2 = 16.1± 3.2 years (min 10.6 years, max 21.8 years). The time difference between

the first and the second scan was 4.6 ± 0.9 years (min time difference 2.2 years , max

time difference 6.4 years). Using the automatic image processing pipeline (Zijdenbos et al.,

1998), MR images were spatially normalized into standardized stereotactic space via a global

affine transformation (Collins et al., 1994; Talairach and Tournoux, 1988). Subsequently, an

automatic tissue-segmentation algorithm based on a supervised artificial neural network

classifier was used to classify each voxel as CSF, gray matter and white matter (Vasken,

1996). Afterwards, a triangular mesh for each cortical surface was generated by deforming

a mesh to fit the proper boundary in a segmented volume using the ASP algorithm. As

described in the previous section, the ASP algorithm is used to extract the surface and

compute the displacement field on the outer cortical surface. Then we computed the local

area dilatation, the cortical thickness and the curvature dilatation rates. Such surface metrics

are then filtered with 20 mm FWHM diffusion smoothing. Image smoothing should improves

the power of detection and compensates for some of registration errors (Chung et al., 2001).

Gray matter volume change: The total gray matter volume dilatation rate for each

subject was computed by computing the volume of triangular prisms that forms gray matter.

The mean total gray matter volume dilatation rate Λ̄total volume = −0.0050. This 0.5% annual

decrease in the total gray matter volume is statistically significant (t value of −4.45). There

has been substantial developmental studies on gray matter volume reduction for children and

adolescents (Courchesne et al, 2000; Giedd et al., 1999; Jernigan et al., 1991; Pfefferbaum et
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Figure 11: Top: t map of local gray matter change computed in 3D and then superimposed
with an atlas brain. The predominant local gray matter volume increases were detected in
somatosensory and motor cortex and temporal lobe. The left and right hemispheres show
asymmetric growth pattern. Bottom: t map of the cortical surface area dilatation rate
showing the statistically significant region of area expansion and reduction. The red regions
are statistically significant surface area expansions while the blue regions are statistically
significant surface area reductions between ages 12 and 16.

al., 1994; Rajapakse et al., 1996; Riess et al., 1996; Steen et al., 1997). Our result confirms

these studies. However, the ROI-based volumetry used in the previous studies did not allow

investigators to detect local volume change within the ROIs. Our local volumetry based on

deformation field can overcome the limitation of the ROI-based volumetry.

Brain tissue growth and loss based on the local volume dilatation rate was detected in

the whole brain volume that includes both gray and white matter (Chung et al., 2001). The

morphometric analysis used in Chung et al. (2001) generates 3D statistical parametric map

(SPM) of brain tissue growth. By superposing the 3D SPM with the triangular mesh of

the cortical surface of the atlas brain, we get gray matter volume change SPM restricted

onto the cortical surface (Figure 11). Although it is an ad hoc approach, the resulting SPM

projected on to the atlas brain seem to confirm some of the results in Giedd et al. (1999)
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and Thompson et al. (2000). In particular, Giedd et al. (1999) reported that frontal and

parietal gray matters decrease but temporal and occipital gray matters increase even after

age 12. In our analysis, we found local gray matter volume growth in the parts of temporal,

occipital, somatosensory and motor regions but did not detect any volume loss in the frontal

lobe. Instead we found statistically significant structural movements without accompanying

volume decreases (Chung et al. 2001).

Surface area change: We measured the total surface area dilatation rate for each

subject by computing the total area of triangular meshes on the both outer and inner cortical

surfaces. The mean surface areas for all 28 subjects area are

‖∂Ωout
t1 ‖ = 302180 mm2, ‖∂Ωin

t1 ‖ = 289380 mm2,

‖∂Ωout
t2

‖ = 229940 mm2, ‖∂Ωin
t2
‖ = 221520 mm2.

So we can see that both the outer and inner surface area tend to decrease between ages 12

and 16. The mean total area dilatation rate for 28 subjects was found to be

Λ̄out
total area = −0.0093, Λ̄in

total area = −0.0081.

0.8 to 0.9% decrease of both surface area change per year is statistically significant (t value

of -9.2 and -7.5 respectively). So it does seem that the outer surface shrinks faster than the

inner surface.

After knowing that the total surface areas shrink, we need to identify the regions of local

surface area growth or reduction. The surface area dilatation rates were computed for all

subjects, then smoothed with 20mm FWHM diffusion smoothing to increase the signal-to-

noise ratio. Averaging over 28 subjects, local surface area change was found to be between

−15.79% and 13.78% per year. In one particular subject, we observed between -106.5% and

120.3% of the local surface area change over 4 year time span. Figure 11 is the t map of the

cortical surface area dilatation showing cortical tissue growth pattern. Surface area growth

and decrease were detected by T > 5.1 and T < −5.1 (P < 0.05, corrected) respectively,

showing statistically significant local surface expansion in Broca’s area in the left hemisphere

and local surface shrinkage in the left superior frontal sulcus. Most of surface reduction seems

to be concentrated near the frontal region.
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Cortical thickness change: The growth pattern of cortical thickness change is found

to be very different but closely related to that of local surface area change. The average

cortical thickness at t1 is 2.55 mm while the average cortical thickness at t2 is 2.60 mm.

The average cortical thickness dilatation rate across all within and between subjects was

found to be Λ̄avg thickness = 0.012. This 1.2% annual increase in the cortical thickness is

statistically significant (t value of 4.86). However, three out of 28 subjects showed from 0.6

up to 2% of cortical thinning. Although there are regions of cortical thinning present in

all individual subjects, our statistical analysis indicates that the overall global pattern of

thickness increase is more predominant feature between ages 12 and 16. Also we localized

the region of statistically significant cortical thickness increase by thresholding the t map

of the cortical thickness dilatation rate by 5.1 (Figure 5). Cortical thickening is widespread

on the cortex. The most predominant thickness increase was detected in the left superior

frontal sulcus, which is the same location we detected local surface area reduction while

local gray matter volume remains the same. So it seems that while there is no gray matter

volume change, the left superior frontal sulcus undergoes cortical thickening and surface area

shrinking and perhaps this is why we did not detect any local volume change in this region.

The most interesting result found so far is that there is almost no statistically significant

local cortical thinning detected on the whole cortical surface between ages 12 and 16. As

we have shown, the total inner and outer surface areas as well as the total volume of gray

matter decrease. So it seems that all these results are in contradiction. However, if the rate

of the total surface area decrease is faster than the rate of the total volume reduction, it

is possible to have cortical thickening. To see this, suppose we have a shallow solid shell

with constant thickness h, total volume V and total surface area A. Then V = hA. It

can be shown that the rate of volume change per unit volume can be written as V̇ /V =

ḣ/h + Ȧ/A. Using our dilatation notation, Λ̄total volume = Λ̄avg thickness + Λ̄out
total area. In our

data, Λ̄total volume = −0.0050 > Λ̄out
total area = −0.0093, so we should have increase in the

cortical thickness. However, we want to point out that this argument is heuristic because

the cortical thickness is not uniform across the cortex. Sowell et al. (2001) reported cortical

thinning or gray matter density decrease in the frontal and parietal lobes in similar age

group. The thickness measure they used is based on gray matter density, which measures
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the proportion of gray matter within a sphere with fixed radius between 5 to 15mm around a

point on the outer cortical surface (Sowell et al., 2001; Thompson et al., 2001). However, the

gray matter density not only measures the cortical thickness but also the amount of bending.

If a point is chosen on a gyrus, the increase in the bending energy will correspond to the

increase in gray matter density. So the region of gray matter density decrease reported in

Sowell et al. (2001) more closely resembles the region of curvature increase (Figure 6) than

the region of cortical thickness change (Figure 5). Because they measure different anatomical

quantities, it is hard to directly compare the result reported in Sowell et al. (2001) to our

result.

Curvature change: Our study might be the first to use the curvature as the direct

measure of anatomical changes in normal brain development. We measured curvature

dilatation rate for each subject. The average curvature dilatation rate was found to be

Λ̄avg curvature = 2.50. 250% increase is statistically significant (t value of 19.42). Local curva-

ture change was detected by thresholding the t statistic of the curvature dilatation rate at

5.1 (corrected). The superior frontal and middle frontal gyri show curvature increase. It is

interesting to note that between these two gyri we have detected cortical thickness increase

and local surface area decrease. It might be possible that cortical thickness increase and local

surface area shrinking in the superior frontal sulcus causes the bending in the neighboring

middle and superior frontal gyri. Such interacting dynamic pattern has been also detected

in Chung et al. (2001), where gray matter tissue growth causes the inner surface to translate

toward the region of white matter tissue reduction.

We also found no statistically significant local curvature decrease over the whole cortex.

While the gray matter is shrinking in both total surface area and volume, the cortex itself

seems to get folded to give increasing curvature.

Conclusions

The surface-based morphometry presented here can statistically localize the regions of cor-

tical thickness, area and curvature change at a local level without specifying the regions of

interest (ROI). This ROI-free approach might be best suitable for exploratory whole brain
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morphometric studies. Our analysis successfully avoids artificial surface flattening (Andrade

et al., 2001; Angenent et al., 1999), which can destroy the inherent geometrical structure of

the cortical surface. It seems that any structural or functional analysis associated with the

cortex can be performed without surface flattening if an appropriate mathematics is used.

Our metric tensor formulation gives us an added advantage that not only it can be used

to measure local surface area and curvature change of the cortex but also it is used for

generalizing Gaussian kernel smoothing on the cortex via diffusion smoothing. Since it is a

direct generalization of Gaussian kernel smoothing, the diffusion smoothing should locally

inherit many mathematical and statistical properties of Gaussian kernel smoothing applied

to standard 3D whole brain volume. The modification for any other triangular mesh can be

easily done. We tried to combine and unify morphometric measurement, image smoothing

and statistical inference in the same mathematical and statistical framework.

As an illustration of this powerful unified approach, we applied it to a group of normal

children and adolescents to see if we can detect the region of anatomical changes in gray

matter. It is found that the cortical surface area and gray matter volume shrink, while

the cortical thickness and curvature tend to increase between ages 12 and 16 with a highly

localized area of cortical thickening and surface area shrinking found in the superior frontal

sulcus at the same time. It seems that the increase in thickness and the decrease in the

superior frontal sulcus might cause increased folding in the middle and superior frontal gyri.

Our unified deformation-based surface morphometry can be also used as a tool for future

investigations of neurodevelopmental disorders where surface analysis of either the cortex or

brain substructures would be relevant.
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