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Abstract

We present a unified statistical approach to deformation-based morphometry applied to the
cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As
the brain develops over time, the cortical surface area, thickness, curvature and total gray
matter volume change. It is highly likely that such age-related surface deformations are
not uniform. By measuring how such surface metrics change over time, the regions of the
most rapid structural changes can be localized. By formulating the surface deformation in
tensor geometry, surface flattening, which distorts the inherent geometry of the cortex, can
be avoided. To increase the signal to noise ratio, diffusion smoothing, which generalizes
Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and
applied to surface data. Afterwards, statistical inference on the cortical surface will be
performed via random fields theory. As an illustration, we demonstrate how this new surface-
based morphometry can be applied in localizing the cortical regions of the gray matter tissue
growth and loss in the brain images longitudinally collected in the group of children and
adolescents.
Keywords: Cerebral Cortex, Cortical Surface, Brain Development, Cortical Thickness,
Brain Growth, Brain Atrophy
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1 Introduction

The cerebral cortex has the topology of a 2-dimensional convoluted sheet. Most of the
features that distinguish these cortical regions can only be measured relative to that local
orientation of the cortical surface (Dale and Fischl, 1999). As brain develops over time,
cortical surface area as well as cortical thickness and the curvature of the cortical surface
change. As shown in the previous normal brain development studies, the growth pattern in
developing normal children is nonuniform over whole brain volume (Chung et al., 2001; Giedd
et al., 1999; Paus et al., 1999, Thompson et al., 2000). Between ages 12 and 16, the corpus
callosum and the temporal and parietal lobes shows the most rapid brain tissue growth
and some tissue degeneration in the subcortical regions of the left hemisphere (Chung et al.

20001, Thompson et al., 2001). It is equally likely that such age-related changes with respect
to the cortical surface are not uniform as well. By measuring how geometric metrics such
as the cortical thickness, curvature and local surface area change over time, any statistically
significant brain tissue growth or loss in the cortex can be detected.

The first obstacle in developing surfaced-based morphometry is the automatic segmenta-
tion or extraction of the cortical surfaces from MRI. It requires first the tissue classification
into three types: gray matter, white matter and cerebrospinal fluid (CSF). An artificial
neural network classifier (Ozkan et al., 1993) or a mixture model cluster analysis (Good et

al., 2001) can be used to segment the tissue types automatically. After the tissue classifica-
tion, the cortical surface is usually generated as a continuous triangular mesh topologically
equivalent to a sphere. The most widely used method for triangulating the surface is the
marching cubes algorithm (Lorensen and Cline, 1987). Level set method (Sethian, 1996)
or deformable surfaces method (Davatzikos, 1995) are also available. In our study, we have
used the anatomic segmentation using proximities (ASP) method (MacDonald et al., 2000),
which is a variant of the deformable surfaces method, to generate cortical triangular meshes
consisting of 81,920 triangles each. Once we have a triangular mesh as the realization of the
cortical surface, we can mathematically model how the cortical surface deforms over time.

In modeling the surface deformation, a proper mathematical framework can be found
in both differential geometry and fluid dynamics. The concept of the evolution of phase-

boundary in fluid dynamics (Drew, 1991; Gurtin and McFadden, 1991), which describes the
geometric properties of the evolution of boundary layer between two different materials due to
internal growth or external force, can be used to derive the mathematical formula for surface
deformation. It is natural to assume the cortical surfaces to be a smooth 2-dimensional
Riemannian manifold parameterized by u1 and u2:

X(u1, u2) = {x1(u
1, u2), x2(u

1, u2), x3(u
1, u2) : (u1, u2) ∈ D ⊂ � 2}.

A more precise definition of a Riemannian manifold and a parameterized surface can be
found in Boothby (1986), Carmo (1992) and Kreyszig (1959). If D is a unit square in

� 2 and a surface is topologically equivalent to a sphere then at least two different global
parameterizations are required. Surface parameterization of the cortical surface bas been
done previously by Thompson and Toga (1996) and Joshi et al. (1995). From the surface
parameterization, Gaussian and mean curvatures of the brain surface can be computed and
used to characterize its shape (Dale and Fischl, 1999; Griffin, 1994; Joshi et al., 1995). In
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Figure 1: The outer and inner cortical surfaces of a single subject at age 14 (left) and at age
19 (right) showing globally similar cortical patterns. The top of the inner cortical surface
has been removed to show predominant ventricle enlargement. The red color is the region
where the mean curvature is greater than 0.01.

particular, S.C. Joshi et al. (1995) used the quadratic surface in estimating the Gaussian
and mean curvature of the cortical surfaces.

By combining the mathematical framework of the evolution of phase-boundary with
the statistical framework developed for 3D whole brain volume deformation (Chung et al.,
2001), anatomical variations associated with the deformation of the cortical surface can be
statistically quantified. Using the same stochastic assumption on the deformation field used
in Chung et al. (2001), we derive the statistical distributions of morphological metrics such
as area dilatation rate, cortical thickness and curvature changes. These statistics will be
used in statistical inferences on the cortical surface.

As an illustration of our unified approach to surface-based morphometry, we will demon-
strate how the surface-based statistical analysis can be applied in localizing the cortical
regions of tissue growth and loss in brain images longitudinally collected in a group of chil-
dren and adolescents.

2 Modeling Surface Deformation

Let U(x, t) = (U1, U2, U3)
t be the 3D displacement vector required to deform the structure

at x = (x1, x2, x3) in gray matter Ω0 to the homologous structure after time t. Whole
gray matter volume Ω0 will deform continuously and smoothly to Ωt via the deformation
x → x + U while the cortical boundary ∂Ω0 will deform to ∂Ωt. The cortical surface ∂Ωt

may be considered as consisting of two parts: the outer cortical surface ∂Ωout
t between the

gray matter and CSF and the inner cortical surface ∂Ωin
t between the gray and white matter

(Figure 2), i.e.
∂Ωt = ∂Ωout

t ∪ ∂Ωin
t .

Although we will exclusively deal with the deformation of the cortical surfaces, our tensor-
based surface morphometry can be equally applicable to the boundary of any brain substruc-
ture. We propose the following stochastic model on the displacement velocity V = ∂U/∂t,
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Figure 2: Yellow: outer cortical surface, blue: inner cortical surface. Gray matter defor-
mation causes the geometry of the both outer and inner cortical surface to change. The
deformation of the surfaces can be written as x → x + U(x, t), where U is the surface
displacement vector field.

which has been used in the analysis of whole brain volume deformation (Chung et al., 2001):

V(x) = µ(x) + Σ1/2(x)ε(x),x ∈ Ω0, (1)

where µ is the mean displacement velocity and Σ1/2 is the 3×3 symmetric positive definite co-
variance matrix, which allows for correlations between components of the displacement fields.
The components of the error vector ε are are assumed to be independent and identically dis-
tributed as smooth stationary Gaussian random fields with zero mean and unit variance. It
can be shown that the normal component of the displacement velocity V = ∂U/∂t restricted
on the boundary ∂Ω0 uniquely determine the evolution of the cortical surface. Assuming the
surface ∂Ωt to be smooth enough, it can be locally expressed in an implicit form

F (x, t) = 0,x ∈ ∂Ωt (2)

By taking the time derivative in (2), the kinematic equation for the surface deformation is
given by

∂F

∂t
+ 〈V,∇F 〉 = 0, (3)

where ∇F =
(

∂F
∂x1

, ∂F
∂x2

, ∂F
∂x3

)t
is the gradient vector and 〈, 〉 is the inner product (Drew, 1991).

The unit normal vector to the surface is given by

n =
∇F

‖∇F‖ . (4)

From (3) and (4), the kinematic equation becomes

∂F

∂t
= −‖∇F‖Vn, (5)
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where Vn = 〈V,n〉 is the normal component of the surface displacement velocity. If we let
Vt denote the tangential component of V, then V = Vn + Vt. There are infinitely many
surface displacement velocities that gives the same normal component Vn and in turn, the
same kinematic equation (5), which describes the evolution of the cortical surface over time.
Hence, the translation of the surface in the tangential direction does not change the geometry
of the surface and only the normal component Vn uniquely determines the evolution of the
cortical surface at a given point for small time interval. This concept will play an important
role in modeling surface curvature change later.

3 Surface Parameterization

In our analysis, we have used the anatomic segmentation using proximities (ASP) method
(MacDonald et al., 2000), which is a variant of the deformable surfaces method, to extract
the cortical surfaces from T1-weighted MRIs. The ASP method generates 81,920 triangles
evenly distributed in size. In order to perform a statistical analysis on the cortical surface,
surface parameterization is an essential part. We model the cortical surface as a smooth
2D Riemannian manifold parameterized by two parameters u1 and u2 such that any point
x ∈ ∂Ω0 can be uniquely represented as

x = X(u1, u2)

for some parameter space u = (u1, u2) ∈ D ⊂ � 2 . We will try to avoid global parameter-
ization such as tensor B-splines, which are computationally expensive compared to a local
surface parameterization. Instead, a quadratic polynomial

z(u1, u2) = β1u
1 + β2u

2 + β3(u
1)2 + β4u

1u2 + β5(u
2)2

will be used as a local parameterization fitted via least-squares estimation. Using the least-
squares method, these coefficients βi can be estimated. The numerical implementation can
be found in Chung (2001). Slightly different quadratic surface parameterizations are also
used in estimating curvatures of a macaque monkey brain surface (Joshi et al., 1995; Khaneja

et al., 1998). Once βi are estimated, X(u1, u2) =
(
u1, u2, z(u1, u2)

)t
is a local surface param-

eterization we will use.

4 Surface-Based Morphological Measures

4.1 Metric Tensor Change

As in the case of local volume change in the whole brain volume (Chung et al., 2001), the
rate of cortical surface area expansion or reduction may not be uniform across the cortical
surface. Extending the idea of volume dilatation, we introduce a new concept of surface area,
curvature, cortical thickness dilatation and its rate of change over time via tensor geometry.

Suppose that the cortical surface ∂Ωt at time t can be parameterized by the parameters
u = (u1, u2) such that any point x ∈ ∂Ωt can be written as x = X(u, t). Let Xi = ∂X/∂ui be
a partial derivative vector. The Riemannian metric tensor gij is given by the inner product
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between two vectors Xi and Xj, i.e. gij(t) = 〈Xi, Xj〉. The Riemannian metric tensor gij

measures the amount of the deviation of the cortical surface from a flat Euclidean plane.
Note that gij is a function of both space and time, i.e. gij = g(x, t) but as it is standard
in tensorial computation, the spatial coordinates x will be omitted if there is no ambiguity.
The Riemannian metric tensor enables us to measure lengths, angles and areas in the cortical
surface. Let g = (gij) be a 2 × 2 matrix of metric tensors. From Appendix A, the rate of
metric tensor change is approximately

∂g

∂t
≈ 2(∇X)t(∇V)∇X, (6)

where V = ∂U/∂t and ∇X = (X1, X2)|t=0 is a 3 × 2 gradient matrix evaluated at t = 0.
We are not directly interested in the metric tensor change itself but rather functions of g or
∂g/∂t, which will be used to measure surface area and curvature change.

4.2 Local Surface Area Change

The infinitesimal surface area element (Kreyszig, 1959) [28, pp. 114] is defined as

√
det g = (g11g22 − g2

12)
1/2. (7)

It measures the transformed area of the unit square in the parameter space D via the
transformation X(·, t) : D → ∂Ωt and it is a generalization of Jacobian, which has been used
in measuring local volume in whole brain volume (Chung et al., 2001). The local surface

area dilatation rate Λarea or the rate of local surface area change per unit surface area is then

Λarea =
∂

∂t
ln

√
det g =

1

2 det g

∂(det g)

∂t
.

If the whole gray matter Ωt is parameterized by 3D curvilinear coordinates u = (u1, u2, u3),
then the dilatation rate ∂(ln

√
det g)/∂t becomes the local volume dilatation rate Λvolume first

introduced in deformation-based morphometry (Chung et al., 2001). Therefore, the concepts
of local area dilatation and volume dilatation rates are equivalent in tensor geometry. A
simple matrix manipulation in Harville (1999, pp. 304-308) shows that

Λarea =
1

2
tr

(
g−1∂g

∂t

)
. (8)

From (6) and (8), the rate of local surface area change becomes

Λarea ≈ tr[g−1(∇X)t(
∂

∂t
∇U)∇X].

Since the partial derivatives of Gaussian random fields are again Gaussian (Adler, 1981, pp.
33), under the assumption of stochastic model (1), the area dilatation rate is then distributed
as Gaussian:

Λarea(x) = λarea(x) + εarea(x), (9)
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where λarea = tr[g−1(∇X)t(∇µ)∇X] is the mean area dilatation rate and εarea is a mean
zero Gaussian random field defined on the cortical surface. The area dilatation rate is
invariant under parameterization, i.e. the area dilatation rate will always be the same no
matter which parametrization is chosen. Afterwards, statistical inference on local surface
area expansion or reduction can be performed via the T random field defined on the cortical
surface (Worsley et al., 1996a; Worsley et al., 1999). In order to apply the random field
theory developed in Worsley et al. (1996a) and Worsley et al. (1999), it is assumed that
Var(εarea) is independent of t. So far our statistical modeling is concentrated on localizing
regions of rapid morphological changes on the cortical surface but both local and global
morphological measures are important in the characterization of brain deformation. Global
morphometry is relatively easy compared to local morphometry with respect to modeling
and computation. The total surface area of the cortex ∂Ωt is given by

‖∂Ωt‖ =

∫

D

√
det(g) du,

where D = X−1(∂Ωt) and g is the metric matrix corresponding to the global parameterization
X(u). ‖∂Ωt‖ can be estimated by the sum of the areas of 81,920 triangles generated by the
ASP algorithm. Then we define the total surface area dilatation rate as

Λtotal area =
∂

∂t
ln ‖∂Ωt‖

∣∣∣
t=0

.

It can be shown that, under assumption (1), the total surface area dilatation rate Λtotal area is
distributed as a Gaussian random variable and hence a statistical inference on total surface
area change will be based on a simple t test. This measure will be used in determining the
rate of the total surface area decreases in both outer and inner cortical surfaces between ages
12 and 16.

4.3 Cortical Thickness Change

The average cortical thickness for each individual is about 3mm (Henery and Mayhew, 1989).
Cortical thickness usually varies from 1mm to 4mm depending on the location of the cortex.
In normal brain development, it is highly likely that the change of cortical thickness may not
be uniform across the cortex. We will show how to localize the cortical regions of statistically
significant thickness change in brain development. Our approach introduced here can also
be applied to measuring the rate of cortical thinning, possibly associated with Alzheimer’s
disease. As in the case of the surface area dilatation, we introduce the concept of the cortical
thickness dilatation, which measures cortical thickness change per unit thickness and unit
time. There are many different computational approaches to measuring cortical thickness
but we will use the Euclidean distance d(x) from a point x on the outer surface ∂Ωout

t to
the corresponding point y on the inner surface ∂Ωin

t , as defined by the automatic linkages
used in the ASP algorithm (MacDonald et al. , 2000). A validation study for the assessment
of the accuracy of the cortical thickness measure based on the ASP algorithm has been
performed and found to be valid for the most of the cortex (Kanani et al., 2000). There is
also an alternate method for automatically measuring cortical thickness based on the Laplace
equation (Jones et al., 2000).
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Figure 3: Top: Cortical thickness dilatation rate for a single subject mapped onto an atlas.
The red (blue) regions show more than 67% thickness increase (decrease). Note the large
variations across the cortex. Due to such large variations, surface-based smoothing is required
to increase the signal-to-noise ratio. Bottom: t statistical map thresholded at the corrected P
value of 0.05 (t value of 5.1). Both yellow and red regions are statistically significant regions
of thickness increase. There is no region of statistically significant cortical thinning detected.
The blue region shows very small t value of -2.4, which is not statistically significant.

Let d(x) = ‖x − y‖ be the cortical thickness computed as usual Euclidean distance
between x ∈ ∂Ωout and y ∈ ∂Ωin. We define the cortical thickness dilatation rate as the rate
of the change of the thickness per unit thickness and unit time, i.e.

Λthickness =
∂

∂t
ln d(X).

Under the assumption of stochastic model (1) and Appendix B, we have a linear model on
the thickness dilatation rate given by

Λthickness(x) = λthickness(x) + εthickness(x),

where λthickness is the mean cortical thickness dilatation rate and εthickness is a mean zero
Gaussian random field. Therefore, the statistical inference on the cortical thickness change
can be again based on the T random field.

4.4 Local Gray Matter Volume Change

Local volume dilatation rate Λvolume for whole brain volume is defined in Chung et al. (2001)
using Jacobian of deformation x → x + U(x). Compared to the local surface area change
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Figure 4: Outer (left) and inner (middle) triangular meshes. Triangle (p1,p2,p3) ∈ ∂Ωout
t on

the outer surface will have corresponding triangle (q1,q2,q3) ∈ ∂Ωin
t on the inner surface.

A convex-hull from 6 points {p1,p2,p3,q1,q2,q3} will then form a triangular prism and a
collection of 81,920 triangular prisms become the whole gray matter.

measurement, the local volume change measurement is more sensitive to small deformation.
If a unit cube increases its sides by one, the surface area will increase by 22 − 1 = 3 while
the volume will increase by 23 − 1 = 7. Therefore, the statistical analysis based on the local
volume change will be at least twice more sensitive compared to that of the local surface
area change. So the local volume change should be able to pick out gray matter tissue
growth pattern even when the local surface area change may not. In Result section, the
highly sensitive aspect of local volume change in relation to local surface area change will be
demonstrated.

Similar to the total surface area dilatation rate, we define the total gray matter volume
dilatation rate. The gray matter Ωt can be considered as a thin shell bounded by two surfaces
∂Ωout

t and ∂Ωin
t with varying cortical thickness d(x). Then the total gray matter volume is

approximately

‖Ωt‖ ≈
∫

∂Ωout
t

d(x) dx. (10)

with respect to the outer cortical surface. Let us define the total gray matter volume dilata-
tion rate as

Λtotal volume =
∂

∂t
ln ‖Ωt‖

∣∣∣
t=0

.

It can be shown that

Λtotal volume ≈
1

‖Ω0‖

∫

Ω0

Λvolume dx,

where Λvolume = tr(∇V) is the local volume dilatation rate distributed as a mean zero
Gaussian random field (Chung et al., 2001). Therefore, under the assumption of (1), the
total volume dilatation rate of the gray matter is distributed as a Gaussian random variable.
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Figure 5: Top: Bending energy computed on the inner cortical surface of a 14 year old sub-
ject. It measures the amount of folding or curvature of the cortical surface. This metric can
be also used to extract sulci and gyri in the problem of sulcal segmentation. Bottom: Cor-
rected t map thresholded at 5.1 showing statistically significant region of curvature increase.
Most of curvature increase occurs on gyri while there is no significant change of curvature on
most of sulci. Also there is no statistically significant curvature decrease detected indicating
that the complexity of the surface convolution may actually increase between ages 12 and
16.

In triangular meshes generated by ASP algorithm, each of 81,920 triangles on the outer
surface has a corresponding triangle on the inner surface (Figure 4). Let p1,p2,p3 be the
three vertices of a triangle on the outer surface and q1,q2,q3 be the corresponding three
vertices on the inner surface such that pi is linked to qi by ASP algorithm. The trian-
gular prism consists of three tetrahedra with the vertices {p1,p2,p3,q1}, {p2,p3,q1,q2}
and {p3,q1,q2,q3}. Then the volume of the triangular prism is given by the sum of the
determinants

D(p1,p2,p3,q1) + D(p2,p3,q1,q2) + D(p3,q1,q2,q3),

where D(a,b, c,d) = | det(a − d,b − d, c − d)|/6 is the volume of a tetrahedron whose
vertices are {a,b, c,d}. Afterwards, the total volume ‖Ωt‖ can be estimated by summing
the volumes of all 81,920 triangular prisms.
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4.5 Curvature Change

When the surface ∂Ω0 deforms to ∂Ωt, curvatures of the surface change as well. The principal

curvatures can characterize the shape and location of the sulci and gyri, which are the valleys
and crests of the cortical surfaces (Bartesaghi et al., 2001; Joshi et al., 1995; Khaneja et al.,
1998; Subsol, 1999). By measuring the curvature changes, rapidly folding and unfolding
cortical regions can be localized. Let κ1 and κ2 be the two principal curvatures as defined in
Boothby (1986) and Kreyszig (1959). From Shi (2000), the local bending energy of an ideal
thin plate is defined as

K =
κ2

1 + κ2
2

2
.

K could be any number between 0 and infinity and it measures the amount of curvature at
a given point. If the cortical surface is flat, the bending energy K vanishes. The larger the
bending energy, the more surface will be crested (Figure 5). We define the local curvature

dilatation rate as

Λcurvature =
∂

∂t
ln K. (11)

Under the linear model (1), it can be shown that the curvature dilatation is distributed as
a mean Gaussian random field. Based on the kinematic equation (3), the rate of curvature
change is given as a system of simultaneous partial differential equations (Drew, 1991, pp.
206-210) [14]:

∂κi

∂t
= κ2

i Vn + ∆Vn, i = 1, 2,

where ∆ is the Laplace-Beltrami operator on the cortical surface. For relatively small dis-
placement velocity V, the Laplacian can be neglected, i.e.

∂κi

∂t
≈ κ2

i Vn, i = 1, 2. (12)

Then it follows that Λcurvature ≈ (κ3
1 + κ3

2)Vn/K. Under the assumption of (1), the normal
velocity component becomes

Vn = µn + εVn
, (13)

where µn = 〈µ,n〉 is the mean normal velocity and εVn
is a mean zero Gaussian random

field. It follows that the curvature dilatation rate can be modeled as

Λcurvature(x) = λcurvature(x) + εcurvature(x),

where λcurvature is the mean curvature dilatation rate and εcurvature is a mean zero Gaussian
random field. Afterwards, detecting the region of statistically significant curvature change
can be performed via thresholding the maximum of the T random field defined on the cortical
surface (Worsley et al., 1996a; Worsley et al., 1999).

The total bending energy of surface is computed as the integral over the surface ∂Ωt of
the local bending energy: ∫

∂Ωt

K(x) dx.

A similar approach has been taken to measure the amount of bending in the 2D contour of
the corpus callosum (Peterson et al., 2001).
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5 Surface-Based Diffusion Smoothing

In order to increase the signal-to-noise ratio (SNR) as defined in Dougherty (1999), Rosenfeld
and Kak (1982) and Worsley et al. (1996c), Gaussian kernel smoothing is desirable in many
statistical analyses . For example, Figure 3 shows fairly large variations in cortical thickness
of a single subject displayed on the average brain atlas Ωatlas. By smoothing the data
on the cortical surface, the SNR will increase if the signal itself is smooth and in turn,
it will be easier to localize the morphological changes. However, due to the convoluted
nature of the cortex whose geometry is non-Euclidean, we can not directly apply Gaussian
kernel smoothing on the cortical surface. Gaussian kernel smoothing of functional data
f(x),x = (x1, . . . , xn) ∈ � n with FWHM (full width at half maximum) = 4(ln 2)1/2

√
t is

defined as the convolution of the Gaussian kernel with f :

F (x, t) =
1

(4πt)n/2

∫
�

n

e−(x−y)2/4tf(y)dy. (14)

Formulation (14) can not be directly to the cortical surfaces. However, by reformulating
Gaussian kernel smoothing as a solution of a diffusion equation on a Riemannian manifold,
the Gaussian kernel smoothing approach can be generalized to an arbitrary curved surface.
This generalization is called diffusion smoothing and has been used in the analysis of fMRI
data on the cortical surface (Andrade et al., 2001). It can be shown that (14) is the integral
solution of the n-dimensional diffusion equation

∂F

∂t
= ∆F (15)

with the initial condition F (x, 0) = f(x), where ∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n is the Laplacian
in n-dimensional Euclidean space (Egorov and Shubin, 1991). Hence the Gaussian kernel
smoothing is equivalent to the diffusion of the initial data f(x) after time t. When apply-
ing diffusion smoothing on curved surfaces, the smoothing somehow has to incorporate the
geometrical features of the curved surface and the Laplacian ∆ should change accordingly.
The extension of the Euclidean Laplacian to an arbitrary Riemannian manifold is called the
Laplace-Beltrami operator (Arfken, 2000; Kreyszig, 1959). The approach taken in Andrade
et al. (2001) is based on a local flattening of the cortical surface and estimating the pla-
nar Laplacian, which may not be as accurate as our estimation based on the finite element
method (FEM). Further, our direct FEM approach completely avoid any local or global sur-
face flattening. For given Riemannian metric tensor gij, the Laplace-Beltrami operator ∆ is
defined as

∆F =
∑

i,j

1

|g|1/2

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
, (16)

where (gij) = g−1 (Arfken, 2000, pp. 158-167). Note that when g becomes a 2 ×2 identity
matrix, the Laplace-Beltrami operator in (16), simplifies to a standard 2D Laplacian:

∆F =
∂2F

∂(u1)2
+

∂2F

∂(u2)2
.
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Figure 6: A typical triangulation in the neighborhood of p = p0. When ASP algorithm
is used, the triangular mesh is constructed in such a way that it is always pentagonal or
hexagonal.

Using the FEM on the triangular cortical mesh generated by the ASP algorithm, it is pos-
sible to estimate the Laplace-Beltrami operator as the linear weights of neighboring vertices
(Chung, 2001).

Let p1, · · · ,pm be m neighboring vertices around the central vertex p = p0. Then the
estimated Laplace-Beltrami operator is given by

∆̂F (p) =
m∑

i=1

wi

(
F (pi) − F (p)

)

with the weights

wi =
cot θi + cotφi∑m

i=1 ‖Ti‖
,

where θi and φi are the two angles opposite to the edge connecting pi and p, and ‖Ti‖ is
the area of the i-th triangle (Figure 6). This is an improved formulation from the previous
attempt in diffusion smoothing on the cortical surface (Andrade et al., 2001), where the
Laplacian is simply estimated as the planar Laplacian after locally fattening the triangular
mesh consisting of nodes p0, · · · ,pm onto a flat plane. In the numerical implementation, we
have used formulas

cot θi =
〈pi+1 − p,pi+1 − pi〉

2‖Ti‖
, cotφi =

〈pi−1 − p,pi−1 − pi〉
2‖Ti‖

and ‖Ti‖ = ‖(pi+1 − p) × (pi − p)‖/2. Afterwards, the finite difference scheme is used to
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iteratively solve the diffusion equation at each vertex p:

F (p, tn+1) − F (p, tn)

tn+1 − tn
= ∆̂F (p, tn),

with the initial condition F (p, 0) = f(p). After N -iterations, the finite difference scheme
gives the diffusion of the initial data f after duration Nδt. If the diffusion were applied to
Euclidean space, it would be equivalent to Gaussian kernel smoothing with

FWHM = 4(ln 2)1/2
√

Nδt.

It should be emphasized that Gaussian kernel smoothing is a special case of diffusion smooth-
ing restricted to Euclidean space. Computing the linear weights for the Laplace-Beltrami
operator takes a fair amount of time (about 4 minutes in Matlab running on a Pentium
III machine), but once the weights are computed, it is applied through the whole iteration
repeatedly and the actual finite difference scheme takes only two minutes for 100 iterations.

6 Statistical Inference on the Cortical Surface

All of our morphological measures such as surface area, cortical thickness, curvature dilata-
tion rates are modeled as Gaussian random fields on the cortical surface, i.e.

Λ(x) = λ(x) + ε(x),x ∈ ∂Ωatlas, (17)

where the deterministic part λ is the mean of the metric Λ and ε is a mean zero Gaussian
random field. As we have explained earlier, we need to assume that Var(ε) does not depends
on time t. The T random field on the manifold ∂Ωatlas is defined as

T (x) =
√

n
M(x)

S(x)
, x ∈ ∂Ωatlas

where M and S are the sample mean and standard deviation of metric Λ over the n subjects.
Under the null hypothesis

H0 : λ(x) = 0 for all x ∈ ∂Ωatlas,

i.e. no structural change, T (x) is distributed as a student’s t with n − 1 degrees of freedom
at each voxel x. The P value of the local maxima of the T field will give a conservative
threshold, which has been used in brain imaging for a quite some time (Worsley, 1996a). For
very high threshold y, we can show that

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈

3∑

i=0

φi(∂Ωatlas)ρi(y), (18)

where ρi is the i-dimensional EC-density and the Minkowski functional φi are

φ0(∂Ωatlas) = 2, φ1(∂Ωatlas) = 0, φ2(∂Ωatlas) = ‖∂Ωatlas‖, φ3(∂Ωatlas) = 0
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and ‖∂Ωatlas‖ is the total surface area of ∂Ωatlas (Worsley, 1996a). When diffusion smoothing
with given FWHM is applied to metric Λ on the atlas cortical s urface ∂Ωatlas, the 0-
dimensional and 2-dimensional EC-density becomes

ρ0(y) =

∫
∞

y

Γ(n
2
)

((n − 1)π)1/2Γ(n−1
2

)

(
1 +

y2

n − 1

)
−n/2

dy,

ρ2(y) =
1

FWHM2

4 ln 2

(2π)3/2

Γ(n
2
)

(n−1
2

)1/2Γ(n−1
2

)
y
(
1 +

y2

n − 1

)
−(n−2)/2

.

Therefore, the excursion probability on the cortical surface can be approximated by the
following formula:

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈ 2ρ0(y) + ‖∂Ωatlas‖ρ2(y).

We compute the total surface area ‖∂Ωatlas‖ by summing the area of each triangle in a
triangulated surface. The total surface area of the average atlas brain is 275,800 mm2, which
is roughly the area of 53 × 53 cm2 sheet. We want to point out that the surface area of
the average atlas brain is not the average surface area of 28 subjects. When 20mm FWHM
diffusion smoothing is used on the template surface ∂Ωatlas, 2.5% thresholding gives

P
(

max
x∈∂Ωatlas

T (x) ≥ 5.1
)
≈ 0.025,

P
(

max
x∈∂Ωatlas

T (x) ≤ −5.1
)
≈ 0.025.

7 Results

Twenty-eight normal subjects were selected based on the same physical, neurological and
psychological criteria described in Giedd et al. (1996). This is the same data set reported
in Chung et al. (2001), where the Jacobian of the 3D deformation was used to detect sta-
tistically significant brain tissue growth or loss in 3D whole brain via deformation-based

morphometry. 3D Gaussian kernel smoothing used in this study is not sensitive to the inter-
faces between the gray, white matter and CSF. Gaussian kernel smoothing tends to blur gray
matter volume increase data across the cortical boundaries. So in some cases, statistically
significant brain tissue growth could be found in CSF. Tensor-based surface morphometry
can overcome this inherent shortcoming associated with the previous morphometric analysis.

Two T1-weighted MR scans were acquired for each subject at different times on the
same GE Sigma 1.5-T superconducting magnet system. The first scan was obtained at the
age 11.5 ± 3.1 years (min 7.0 years, max 17.8 years) and the second scan was obtained at
the age 16.1 ± 3.2 years (min 10.6 years, max 21.8 years). The time difference between
the first and the second scan was 4.6 ± 0.9 years (min time difference 2.2 years , max
time difference 6.4 years). Using the automatic image processing pipeline (Zijdenbos et al.,
1998), MR images were spatially normalized into standardized stereotactic space via a global
affine transformation (Talairach and Tournoux, 1988). Subsequently, an automatic tissue-
segmentation algorithm based on an artificial neural network classifier was used to classify
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each voxel was as CSF, gray matter and white matter (Ozkan et al., 1993). Afterwards,
a triangular mesh for each cortical surface was generated by deforming a mesh to fit the
proper boundary in a segmented volume using the ASP algorithm. For the first scan at time
t1, the outer cortical surface was triangulated in two steps: first, an ellipsoidal mesh placed
outside the brain was shrunk down to the inner cortical surface, which is the white-gray
matter boundary. The resulting mesh was used as the initial estimate in the second step
that expands the mesh to fit the outer cortical surface, which is the gray-CSF boundary. To
generate the outer surface for the second scan at time t2, we start with the inner surface from
the first scan taken at time t1, and then expand it outward to match the outer surface on
the classified volume of the second scan. Starting with the same mesh for the inner surface
in the two expansion steps, each node in the initial mesh gets mapped to a point on the
outer surface for each scan. This surface deformation method assumes that the shape of the
cortical surface does not appreciably change within subject. This assumption is valid in the
case of brain development for a short period of time as illustrated in Figure 1, where the
global sulcal geometry remains stable for five year interval, although local cortical geometry
shows some changes. This deformation technique may fail if we try to deform the inner
surface of one subject to the outer surface of another subject. From this surface deformation
technique, the displacement vector fields from the point on the outer surface of the first scan
to the corresponding point on the second scan are obtained.

Gray matter volume change

The total gray matter volume dilatation rate Λj
total volume for subject j was computed using

the triangular meshes that represents the outer and inner cortical surfaces. The mean total
gray matter volume dilatation rate Λ̄total volume was

Λ̄total volume =
1

n

n∑

j=1

Λj
total volume = −0.0050.

This 0.5% annual decrease in the total gray matter volume is statistically significant (t
value of −4.45). There has been substantial developmental studies on gray matter volume
reduction for children and adolescents (Courchesne et al, 2000; Giedd et al., 1999; Jernigan
et al., 1991; Pfefferbaum et al., 1994; Rajapakse et al., 1996; Riess et al., 1996; Steen et

al., 1997). Our result confirms these studies. However, the ROI-based volumetry used in
the previous studies did not allow investigators to detect local volume change within the
ROIs. Our local volumetry based on deformation field can overcome the limitation of the
ROI-based volumetry.

Brain tissue growth and loss based on the local volume dilatation rate was detected in
the whole brain volume that includes both gray and white matter (Chung et al., 2001). The
morphometric analysis performed in Chung et al. (2001) generates 3D statistical parametric
map (SPM) of brain tissue growth. By superposing the 3D SPM with the triangular mesh
of the cortical surface of the atlas brain, we get gray matter volume change SPM restricted
onto the cortical surface (Figure 7). Although it is an ad hoc approach, the resulting SPM
projected on to the atlas brain seem to confirm some of the results in Giedd et al. (1999)
and Thompson et al. (2000). In particular, Giedd et al. (1999) reported that frontal and
parietal gray matters decrease but temporal and occipital gray matters increase even after
age 12. In our analysis, we found local gray matter volume growth in the parts of temporal,
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Figure 7: Top: t map of local gray matter change computed in 3D and then superimposed
with an atlas brain. The predominant local gray matter volume increases were detected in
somatosensory and motor cortex and temporal lobe. The left and right hemispheres show
asymmetric growth pattern. Bottom: t map of the cortical surface area dilatation rate
showing the statistically significant region of area expansion and reduction. The red regions
are statistically significant surface area expansions while the blue regions are statistically
significant surface area reductions between ages 12 and 16.

occipital, somatosensory and motor regions but did not detect any volume loss in the frontal
lobe. Instead we found statistically significant structural movements without accompanying
volume decreases (Chung et al. 2001).

Surface area change

We measured the total surface area dilatation rate Λj
total area for subject j by computing the

total area of triangular meshes on the both outer and inner cortical surfaces. Then the mean
total area dilatation rate Λ̄totalarea for n = 28 subjects was found to be

Λ̄total area =
1

n

n∑

j=1

Λj
total area = −0.0094.

This 0.9% decrease of the total cortical surface area per year is statistically significant (t
value of -9.25). Between the first scan taken at age 11.5 and the second scan taken at age
16.1, there was 4.3% decrease in the total cortical surface area.

In order to detect the regions of local surface area growth or reduction, the surface area
dilatation rates were computed for all subjects, then smoothed with 20mm FWHM diffusion

18



smoothing to increase the signal-to-noise ratio. Averaging over 28 subjects, local surface area
change was found to be between −15.79% and 13.78% per year. In one particular subject,
we observed between -106.5% and 120.3% of the local surface area change over 4 year time
span. Figure 7 is the t map of the cortical surface area dilatation showing cortical tissue
growth pattern. Surface area growth and decrease were detected by T > 5.1 and T < −5.1
(P < 0.05, corrected) respectively, showing statistically significant local surface expansion
in Broca’s area in the left hemisphere and local surface shrinkage in the left superior frontal
sulcus. Most of surface reduction seems to be concentrated near the frontal region.

Cortical thickness change

The growth pattern of cortical thickness change is found to be very different but closely
related to that of local surface area change. In the numerical implementation, the cortical
thickness dilatation rate Λj

thickness for subject j is given by the discrete approximation:

Λj
thickness =

‖x(tj) − y(tj)‖ − ‖x(0) − y(0)‖
tj‖x(0) − y(0)‖ ,

where tj is the time difference between two scans. Afterwards, the within average cortical
thickness dilatation rate is computed by computing

Λ̄j
thickness =

1

‖∂Ωatlas‖

∫

x∈∂Ωatlas

Λj
thickness(x) dx.

The average cortical thickness dilatation rate across all within and between subjects was
found to be

Λ̄thickness =
1

n

n∑

j=1

Λ̄j
thickness = 0.025

This 2.5% annual increase (11.3% over 4.6 year time span) in the cortical thickness is statis-
tically significant (t value of 17.7). Although there are regions of cortical thinning present
in all individual subjects, our statistical analysis indicates that the overall global pattern of
thickness increase is more predominant feature between ages 12 and 16. Also we localized
the region of statistically significant cortical thickness increase by thresholding the t map
of the cortical thickness dilatation rate by 5.1 (Figure 3). Cortical thickening is widespread
on the cortex. The most predominant thickness increase was detected in the left superior
frontal sulcus, which is the same location we detected local surface area reduction while
local gray matter volume remains the same. So it seems that while there is no gray matter
volume change, the left superior frontal sulcus undergoes cortical thickening and surface area
shrinking and perhaps this is why we did not detect any local volume change in this region.

The most interesting result found so far is that there is almost no statistically significant
local cortical thinning detected on the whole cortical surface between ages 12 and 16. As
we have shown, the total inner and outer surface areas as well as the total volume of gray
matter decrease. So it seems that all these results are in contradiction. However, if the
rate of the total surface area decrease is faster than the rate of the total volume reduction,
then it is possible to have cortical thickening. To see this, suppose we have a shallow solid
shell with constant thickness h, total volume V and total surface area A. Then V = hA.
It can be shown that the rate of volume change per unit volume can be written as V̇ /V =
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ḣ/h + Ȧ/A. Using our dilatation notation, Λ̄total volume = Λ̄thickness + Λ̄total area. In our data,
Λ̄total volume = −0.0050 > Λ̄total area = −0.0094, so we should have increase in the cortical
thickness. However, we want to point out that this argument is only heuristic because the
cortical thickness is not uniform across the cortex. Sowell et al. (2001) reported cortical
thinning or gray matter density decrease in the frontal and parietal lobes in similar age
group. The thickness measure they used is based on gray matter density, which measures
the proportion of gray matter within a sphere with fixed radius between 5 to 15mm around a
point on the outer cortical surface (Sowell et al., 2001b; Thompson et al., 2001). However, the
gray matter density not only measures the cortical thickness but also the amount of bending.
If a point is chosen on a gyrus, the increase in the bending energy will correspond to the
increase in gray matter density. So the region of gray matter density decrease reported in
Sowell et al. (2001b) more closely resembles the region of curvature increase (Figure 5) than
the region of cortical thickness change (Figure ). Because they measure different anatomical
quantities, it is hard to directly compare the result reported in Sowell et al. (2001b) to our
result.

Curvature change: Our study is the first to use the curvature as the direct measure
of anatomical changes in normal brain development. If a flat surface with bending energy
K = 0 bends to a curved surface with K > 0 at a certain vertex, the curvature dilatation rate
becomes infinite. To avoid such divergence in numerical computation, we have thresholded
the bending energy to be 0.001 < K < 1 and this range of curvature is sufficient to capture
the bending of the cortex (Figure 5). Then we measured curvature dilatation rate Λj

curvature

for each subject j based on the thin plate bending energy. The within average curvature
dilatation rate for each subject is defined as

Λ̄j
curvature =

1

‖∂Ωatlas‖

∫

∂Ωatlas

Λj
curvature(x) dx.

The average curvature dilatation rate across all within and between subjects was found to
be

Λ̄curvature =
1

n

n∑

j=1

Λ̄j
curvature = 2.50.

250% increase in total bending energy is statistically significant (t value of 19.42). Local
curvature change was detected by thresholding the t statistic of the curvature dilatation rate
at 5.1 (corrected). The superior frontal and middle frontal gyri show curvature increase. It is
interesting to note that between these two gyri we have detected cortical thickness increase
and local surface area decrease. It might be possible that cortical thickness increase and local
surface area shrinking in the superior frontal sulcus causes the bending in the neighboring
middle and superior frontal gyri. Such interacting dynamic pattern has been also detected
in Chung et al. (2001), where gray matter tissue growth causes the inner surface to translate
toward the region of white matter tissue reduction.

We also found no statistically significant local curvature decrease over whole cortex.
While the gray matter is shrinking in both total surface area and volume, the cortex itself
seems to get folded to give increasing curvature.

20



Conclusions

The surface-based morphometry presented here can quantify the rate of cortical thickness,
area, curvature and the gray matter volume change at a local level without specifying the
regions of interest (ROI). This ROI-free approach might be best suitable for exploratory
whole brain morphometric studies. Because the approach is based on tensor geometry and
parameterized surface, it successfully avoids artificial surface flattening (Andrade et al., 2001;
Angenent et al., 1999), which can destroy the inherent geometrical structure of the cortical
surface. It seems that any structural or functional analysis associated with the cortex can
be performed without surface flattening if tensor geometry is used as a basic mathematical
model. Riemannian metric tensor formulation gives us an added advantage that not only it
can be used to measure intrinsic geometrical properties of the cortex but also it is used for
generalizing Gaussian kernel smoothing on the cortex via diffusion smoothing. Since it is a
direct generalization of Gaussian kernel smoothing, the diffusion smoothing should locally
inherit many mathematical and statistical properties of Gaussian kernel smoothing applied
to standard 3D whole brain volume. The diffusion smoothing algorithm written in Mat-
lab is freely available for Montreal Neurological Institute (MNI) triangular mesh file format
at http://www.stat.wisc.edu/ mchung/diffusion. The modification for any other triangular
mesh can be easily done. We tried to combine and unify morphometric measurement, im-
age smoothing and statistical inference in the same framework of tensor geometry. As an
illustration of this powerful unified approach, we applied it to a group of normal children
and adolescents to see if we can detect the region of anatomical changes in gray matter. It
is found that the cortical surface area and gray matter volume shrinks, while the cortical
thickness and curvature tends to increase between ages 12 and 16 with a highly localized
area of cortical thickening and surface area shrinking found in the superior frontal sulcus at
the same time. It seems that the increase in thickness and decrease in the superior frontal
sulcus might cause increased folding in the middle and superior frontal gyri.

Our unified tensor-based surface morphometry can be also used as a tool for future
investigations of neurodevelopmental disorders where surface analysis of either the cortex or
brain substructures would be relevant.

Appendix

A. Rate of Metric Tensor Change

We will suppress spatial parameter u in X(u, t) and write it as X(t) whenever there is no
ambiguity. Then we have

X(t) = X(0) + U(X(0), t). (19)

Differentiating (19),
Xi(t) = Xi(0) + (∇U)Xi(0),
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where ∇U = (∂Uk/∂xl) is the 3 × 3 displacement gradient matrix defined in Chung et al.

(2000). The metric tensor gij can be written as

gij(t) = 〈Xi(t), Xj(t)〉 (20)

= gij(0) + 2X t
i (0)(∇U)Xj(0) + X t

i (0)(∇U)t(∇U)Xj(0), (21)

where t is the matrix transpose. For relatively small displacement, the higher order term
involving (∇U)t(∇U) can be neglected:

gij(t) ≈ gij(0) + 2Xi(0)t(∇U)Xj(0).

In the matrix form g = (gij), the rate of metric change is given by

∂g

∂t
≈ 2(∇X)t(∇V)∇X,

where V = ∂U/∂t and ∇X = (X1, X2)|t=0 is a 3 × 2 gradient matrix evaluated at t = 0.

B. Rate of Cortical Thickness Change

Under deformation (19), the cortical thickness at x(t) ∈ ∂Ωout
t can be written as

‖x(t) − y(t)‖ = ‖x(0) − y(0) + U(x(0), t) − U(y(0), t)‖. (22)

For relatively small displacement, we may neglect the higher order terms of U in the Taylor
expansion of (22):

‖x(t) − y(t)‖ ≈ ‖x(0) − y(0)‖ +
(
Ut(x(0), t) − Ut(y(0), t)

) x(0) − y(0)

‖x(0) − y(0)‖ . (23)

Furthermore, U(x(0), t) − U(y(0), t) ≈ ∇U(x(0), t)
(
x(0) − y(0)

)
. Differentiating (23), we

get
∂

∂t
‖x − y‖ ≈

(
x(0) − y(0)

)
(∇V)

x(0) − y(0)

‖x(0)− y(0)‖ .

If we let d = (d1, d2, d3)
t = (x(0)−y(0))/‖x(0)−y(0)‖, the thickness dilatation rate is given

as a quadratic form in d such that

∂

∂t
ln ‖x − y‖ ≈ dt(∇V )d =

3∑

i,j=1

didj
∂2Uj

∂t∂xi
.
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