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Abstract

The scientific aim of computational neuroanatomy using magnetic resonance imaging (MRI)

is to quantify inter- and intra-subject morphological variabilities. A unified statistical frame-

work for analyzing temporally varying brain morphology is presented. Based on the math-

ematical framework of differential geometry, the deformation of the brain is modeled and

key morphological descriptors such as length, area, volume dilatation and curvature change

are computed. To increase the signal-to-noise ratio, Gaussian kernel smoothing is applied

to 3D images. For 2D curved cortical surface, diffusion smoothing, which generalizes Gaus-

sian kernel smoothing, has been developed. Afterwards, statistical inference is based on the

excursion probability of random fields defined on manifolds.

This method has been applied in localizing the regions of brain tissue growth and loss

in a group of 28 normal children and adolescents. It is shown that children’s brains change

dramatically in localized areas even after age 12.
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Résumé

La neuroanatomie numérique, utilisant l’imagerie par résonnance magnétique (MRI), a pour

but de quantifier les variabilités morphologiques intra et inter-sujets. Une analyse statis-

tique de la variabilité temporaire de la morphologie du cerveau est présentée. Basé sur

des principes de géométrie différentielle, la déformation du cerveau est modelée, et des car-

actéristiques morphologiques sont calculées: les dilatations de la longueur, de la surface et

du volume du cerveau, ainsi que les changements de courbure. Afin d’augmenter le ratio

signal/bruit, un lissage gaussien est appliqué aux images tridimensionnelles. Pour les images

des surfaces corticales en 2 dimensions, le lissage par diffusion a été utilisé; celui-ci généralise

le lissage gaussien de manifolds arbitraires. L’inférence statistique est basée sur la probabilité

d’excursion des champs aléatoires définis sur les manifolds.

Cette méthode a été appliquée à un groupe de 28 enfants et adolescents, afin de localiser

les régions de croissance et de perte du tissus cérébral. On montrera que les cerveaux de ces

enfants changent considérablement, contredisant certaines hypothéses préalables au sujet du

développement du cerveau.
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Chapter 1

Introduction

1.1 Deformation-Based Morphometry

Brain morphology across the span of human aging is not uniform. Brain growth spurts

during childhood are followed by a brief period of morphological stability as loss of brain

volume begins in middle age. The advancement of magnetic resonance imaging (MRI) gives

us a new computational tool for the characterization of such temporally varying brain mor-

phology and this is emerging as the new field of computational neuroanatomy [59]. MRI

depends on the response of magnetic fields to produce digital images that provide structural

information about brain tissue. This noninvasive but somewhat expensive procedure has

become a standard neuro-imaging modality in examining the structure of the brain.

In order to characterize temporally varying brain morphology, we must compare different

individual images taken at different times. Such comparisons require a reference coordinate

system which can be obtained via image registration. The objective of the image registration

problem is to deform as smoothly as possible from one brain image to another brain image.

For the complete treatment of various image registration techniques, see the book “Brain

Warping” edited by A.W. Toga [114] and an article by H. Lester and R.A. Simon [70]. One

of the most widely used registration method is the intensity-based matching, which tries

to align one image to another in such a way that the correlation of the image intensity is

maximized [25, 26]. Alternate methods based on elastic deformation and fluid dynamics
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models are also available [21, 32, 44, 111, 113].

Via image registration algorithms, biologically homologous points in two different im-

ages are identified and the mathematical transformation between these two points, called

deformation, can be computed. The deformation is given as a 3-dimensional vector at each

voxel. Mathematically this deformation can be represented as a transformation from a point

x to a homologous point x + U(x) in a fixed coordinate system. The 3-dimensional vector

U is usually called displacement field in elastic deformation theory [75] and it measures a

relative movement of the point x. Morphological studies based on studying this deformation

is called the deformation-based morphometry [8]. Although the idea of deformation orig-

inates from elastic theory and continuum mechanics [19, 75], perhaps the first person to

apply this concept to deform one biological structure to another closely related structure is

D’arcy Thompson in his classical book “On Growth and Form” [109], where he deformed the

skulls of human and primates, and other biological structures using deformable grids. Unlike

classical morphometry in shape analysis [12, 13, 40, 62, 101] , the deformation-based mor-

phometry tries to avoid anatomical landmarks in characterizing morphological changes. An

anatomical landmark is a point assigned by an expert that corresponds between organism in

some biologically meaningful way [40]. However, it is very hard to identify such anatomical

landmarks in brain images systematically and this is the one reason why automatic im-

age registration methods are preferred to image registration methods based on anatomical

landmarks.

In many morphological studies, temporally varying morphological differences in the brain

have been examined primarily by MRI-based volumetry until now. Classical MRI-based

volumetry requires segmentation of the region of interest, either manually or by spatial

normalization, in two MR images taken at different times t1 and t2. Then the total volumes

V1 and V2 of the homologous regions are calculated by counting the total number of voxels.

Afterwards, the volume variation ∆V = V2−V1 is used as an index of morphological changes

[47, 85, 89, 107]. So the advantage of deformation-based morphometry over the classical MRI-

based volumetry is that it does not require a priori knowledge of the region of interest to

perform the morphological analysis. Moreover, the deformation-based volumetry improves

the power of detecting the regions of volume change within the limits of the accuracy of the

registration algorithm. These two advantages of the deformation-based volumetry over the
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standard MRI-based volumetry have also been noted in [8, 32].

As a part of deformation-based morphometry, a new technique called deformation-based

volumetry is emerging; this method does not require segmentation of a priori regions of

interest [8, 32]. In deformation-based volumetry, the Jacobian of the deformation field that is

required to register one brain to another is used to detect volumetric changes. By introducing

the concept of local volume dilatation , which is the first order approximation of the Jacobian

change, the local volume change at each voxel can be computed and used to measure possible

brain tissue growth or loss [22, 23]. By definition, the Jacobian of the deformation is the

volume of the unit-cube after the deformation. Assuming that one can find the deformation

field at any voxel, volume change can be detected at a voxel level. Although it seems

that there are many different ways of detecting morphological changes in deformation-based

morphometry, a translation, a rotation and a strain are sufficient for detecting a relatively

small displacement and, in turn, for characterization of morphological changes over time.

Because the deformation-based morphometry (DBM) is a relatively new method, there

are very few morphological studies that have used the Jacobian for local volume-change. C.

Davatzikos et al. used the Jacobian of the 2D deformation field as a measure of local area-

change in 2D cross-sections of the corpus callosum to test gender-specific shape differences

[34]. P. Thompson et al. applied the Jacobian of 3D deformations as a measure of the regional

growth of the corpus callosum [113]. J.-P. Thirion used the divergence of the displacement-

vector field, which is equivalent to the dilatation, for detecting growth of brain tumors [107].

Also P. Thompson et al. used local rates of dilatation, contraction and shearing from the

deformation field to detect morphological changes in brain development [110]. Although

these researchers are using the same or closely related concept of Jacobian, most of previous

deformation-based volumetric studies lack systematic statistical treatments. The major aim

of this thesis is to develop the unified statistical methodology for the deformation-based

morphometry based on the mathematical framework of random fields.
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1.2 Random Fields

In the deformation-based morphometry, it is sufficient to analyze the displacement vector

fields U , which are assumed to be realizations of a vector of Gaussian random fields defined in

either 3D Euclidean space or 2D Riemannian manifolds. The generalization of a continuous

stochastic process defined in R to a higher dimensional abstract space is called a random

field. For the general overview of random fields, see the books by R. J. Adler [1], E.R.

Dougherty [38] and A.M. Yaglom [126]. Given a probability space, a random field X(x)

defined in Rn is a function such that for every fixed x ∈ Rn, X(x) is a random variable on

the probability space. The more precise measure-theoretic definition can be found in [1, pp.

13]. It is also possible to extend the definition of a random field onto a Riemannian manifold

[59, 106].

The covariance function R(x, y) of a random field X is defined as the cross-covariance

between two random variables X(x) and X(y):

R(x, y) = E

(
(X(x)− µ(x))(X(y)− µ(x))

)
,

where µ(x) = E(X(x)) is the mean function. If the joint distribution

Fx1,··· ,xm(z1, · · · , zm) = P
(
X(x1) ≤ z1, · · · , X(xm) ≤ zm

)

is invariant under the translation from (x1, · · · , xm) → (x1 + τ, · · · , xm + τ), then a random

field X is said to be stationary [1]. For a stationary random field X , we can show µ(x) = µ(0)

and R(x, y) = f(x− y) for some function f . Although the converse is not always true, such

a case has never been encountered in practical applications [126]. Since we are interested in

more practical applications, throughout the thesis we will equate the stationarity with the

condition µ(x) = µ(0) and R(x, y) = f(x− y).

An important class of random fields is Gaussian fields. A Gaussian random fieldX(x) is a

random field whose finite joint distribution Fx1,··· ,xm(z1, · · · , zm) is a multivariate Normal for

every x1, · · · , xm. Because any mean zero multivariate Normal distribution can be completely

characterized by its covariance matrix, a mean zero Gaussian random field X can be uniquely

determined by its covariance function R(x, y). As in the case of Gaussian random variables,

we can use Gaussian fields to construct new random fields such as χ2, t, F and Hotelling’s
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T 2 fields, all of which are discussed through the thesis. For example, the χ2 field with m

degrees of freedom is defined as

W (x) =
m∑

i=1

X2
i (x),

where X1, · · · , Xm are independent, identically distributed Gaussian fields with zero mean

and the variance equals to one [1]. Similarly, we can define t and F fields [121] as well as

Hotelling’s T 2 field [17]. The Hotelling’s T 2 statistic for the displacement field U has been

widely used in detecting morphological changes [17, 27, 43, 59, 111]. In particular, J. Cao

and K.J. Worsley in [17] were able to derive the excursion probability of the Hotelling’s T 2

random field and applied it to detect gender specific morphological differences. However, the

Hotelling’s T 2 field only measures the amount of relative translation and it is not sufficient

to characterize local morphological changes.

Statistical inferences for a random fieldX have been usually based on the series expansion

of X of the form

X(x) =
∞∑

i=1

Ziφi(x),

where {φi(x)} are basis functions and {Zi} are random variables. Then the statistical infer-

ence is performed on the realizations of coefficients {Zi} [11]. For a Gaussian random field,

the most well known series expansion is called the Karhunen-Loeve expansion [38, 66, 126].

Alternately, statistical inference can be based on the extreme distributions of X [1, 69]. For

a finite domain Ω ∈ RN , a random variable maxx∈ΩX(x) has been used as a test statistic in

both functional and structural brain imaging studies [4, 17, 23, 119, 125].

1.3 Cortical Surface

We can extend the deformation-based morphometry to the cortical surfaces. Brain tissue is

usually classified into two types: gray matter (GM) and white matter (WM) (Figure 1.1).

The empty space between the brain and the skull is filled with a liquid called cerebral spinal

fluid (CSF). The cerebral cortex (outer cortical surface) is the boundary layer between CSF

and gray matter. It has the topology of a 2-dimensional highly convoluted sheet and the most

of the cortical surface is buried deep inside. This has been partially confirmed by computing

the total surface area of the outer cortical surface in the thesis. Most of the features that
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Figure 1.1: Cortical anatomy.

distinguish these cortical regions can only be measured relative to the local orientation of

the cortical surface [31]. The inner cortical surface is the boundary layer between gray

matter and white matter. As brain develops over time, cortical surface area as well as

cortical thickness and the curvature of the cortical surface change. It is highly likely that

such age-related changes of the cortical surface area and cortical thickness are not uniform

(Figure 1.2). By measuring how such morphological descriptors change over time, brain

tissue growth or loss of cortical regions can be localized [24]. The first obstacle in developing

surfaced-based morphometry is automatic segmentation or extraction of the cortical surfaces

from MRI . The segmented surface is usually represented as a triangular mesh. The most

widely used method for triangulating the surface is the marching cubes algorithm [72]. Level

set method [97] or deformable surfaces method [33] are also available. In our thesis, we have

used the anatomic segmentation using proximities (ASP) method [73, 74], which is a variant

of the deformable surfaces method, in order to generate cortical triangular meshes consisting

of 81,920 triangles. Once we have a triangular mesh as the realization of the cortical surface,

we can model the cortical surface deformation. In modeling the surface deformation, a proper

mathematical framework can be found in both differential geometry and fluid dynamics. The
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concept of the evolution of phase-boundary in fluid dynamics [39, 53], which describes the

geometric properties of the evolution of boundary layer between two different materials due

to internal growth or external force, can be used to derive the mathematical formula for

surface deformation.

It is natural to assume the cortical surfaces to be a smooth 2-dimensional Riemannian

manifold parameterized by u1 and u2:

X(u1, u2) = {x1(u1, u2), x2(u1, u2), x3(u1, u2) : (u1, u2) ∈ D ⊂ R
2}.

A more precise definition of a Riemannian manifold and a parameterized surface can be

found in the classical books by W.M. Boothby [14], M.P.D. Carmo [18] and E. Kreyszig

[64]. The pair of the mapping X and its range X(D) is called a coordinate neighborhood

or a local chart. A local chart can be approximated at each point on the surface by locally

approximating the diffeomorphism by up to the quadratic terms in its Taylor series. If D is

a unit square in R2 and a surface is topologically equivalent to a sphere then at least two

different local charts are required. Due perhaps to the computational difficulty of extracting

the cortical surfaces of human brain, there are not many studies that models the cortical

surfaces as Riemannian manifolds. Gaussian and mean curvatures of the brain surface have

been used to characterize its shape [33, 50, 60]. In particular, S.C. Joshi et al. used the

quadratic surface in estimating the Gaussian and mean curvature of the cortical surfaces [60].

S. Angenent et al. used a conformal mapping to flatten the brain surface in a way which

preserves angles [6]. Bakircioglu et al. and P. Thompson et al. used spherical harmonics in

cortical surface registration [10, 112].

1.4 Image Smoothing

All brain images are inherently noisy due to errors associated with image acquisition. Com-

pounding the image acquisition errors, there are errors caused by image registration and sur-

face parameterization. In order to increase the SNR (signal-to-noise ratio), image smoothing

is most often used. The SNR is defined as the ratio:

SNR =
Variance of signal

Variance of noise
.
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Figure 1.2: Outer cortical surface of a single subject a. at age 14 and b. at age 19 showing
globally similar cortical patterns although slight sulcal variations can be found inside the
marked circles. On the other hand, cortical surfaces of different individuals show more sulcal
variabilities.

The precise definition of SNR using the spectral density can be found in [38, 91, 124]. Among

many possible image smoothing methods, Gaussian kernel smoothing has emerged as a de

facto smoothing technique among brain imaging researchers [63, 79]. An integral version

of Gaussian kernel smoothing of an n-dimensional image f(x),x = (x1, · · · , xn) ∈ Rn with

smoothing parameter h > 0 is defined by

F ∗(x, h) =

∫

Rn

K
(x− y

h

)f(y)
hn

dy,

where a Gaussian kernel is K(x) = (2π)−n/2 exp(−‖x‖2/2). F ∗(x, h) is the scale-space repre-

sentation of the image f(x) first introduced by A. Witkin [117]. Gaussian kernel smoothing,

as the name implies, tends to blur images as h gets large. So each F ∗(x, h) for different

values of h produces a blurred copy of its original. The resulting scale-space representa-

tion from coarse to fine resolution can be used in multiscale image processing approaches

such as hierarchical searches and image segmentation. See articles [71, 81, 82, 83, 98, 124]

for the review of the major problems in scale-space and multiscale descriptions of images.

F (x, t) = F ∗(x,
√
2t ) is known to satisfy the diffusion equation

∂F

∂t
= ∆F, F (x, 0) = f(x),

where ∆ = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
n
is the Laplacian in Rn. See an article by A. Grigor’yan [51] for a

brief overview of the relations between a Gaussian kernel, diffusion equations and Brownian
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motion. Hence, Gaussian kernel smoothing can be derived by solving a diffusion equation.

The most widely used methods in solving diffusion equations are the finite element method

(FEM) and the finite difference method (FDM). The earliest mathematical treatment of

the FEM can be found in an article by R. Courant [28]. It has been a standard tool for

solving PDEs and variational problems. The books by M.N.O. Sadiku [93], and J. Oden

and G. Garey [77] would serve as good text books for the FEM. Also see the book by J.C.

Strikwerda for the review of FDM [102]. The FEM usually requires four steps [92]: 1)

discretizing the solution region into finite number of subregions called finite elements, 2)

deriving governing equations for an element, 3) assembling of all elements, 4) and solving

the system of equations.

The drawback of Gaussian kernel smoothing is that it does not respect the natural bound-

aries of objects. We would like to encourage smoothing within a region rather than smoothing

across the boundaries. This could be achieved by solving the diffusion equation with the

condition F (x, t) = 0 on the boundaries. Solving a partial differential equation with such

boundary condition is called the BVP (boundary value problem) and such smoothing method

is usually referred as diffusion smoothing or diffusion filtering. J.O. Ramsay has solved the

BVP to smooth data constrained within a region [86]. Extending the work of A. Witkin

[117], P. Pernona and J. Malik [79] first introduced the concept of anisotropic diffusion in

the problem of edge enhancement and detection by running the diffusion equation backwards

in time. Diffusion smoothing has been also used in the analysis of functional magnetic reso-

nance imaging (fMRI) data on the brain surface [4] and detecting the regions of surface area

change in brain development [24].

1.5 Outline of the Thesis

Chapter 2 presents the deformation-based morphometry in 3D whole brain MRI and in-

troduce the concept of local volume dilatation, which will be modeled in the mathematical

setting of random fields. The statistical methodology will be tested to normal brain devel-

opment and comparisons will be made with previous brain developmental studies.

Chapter 3 contains the further generalization of diffusion smoothing in Rn to an arbitrary
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Riemannian manifold using the Laplace-Beltrami operator. It is essential to have surface-

based smoothing algorithm that generalizes Gaussian kernel smoothing, in order to apply

the results of random field theory without major modification. We will present two different

methods to solve a diffusion equation on manifolds. The first method uses quadratic poly-

nomials for local surface parameterization. The second method will be based on the finite

element method, which will be used to derive the exact mathematical form of the estimated

Laplace-Beltrami operator.

Chapter 4 extend the deformation-based morphometry developed in Chapter 2 to the

cortical surfaces by modeling the cortical surface as a Riemannian manifold. Morphological

descriptors based on the geometry of the manifold will be used to detect surface area, cortical

thickness and curvature changes over time.

Finally, Chapter 4 presents a brief summary of the thesis as well as the future research

topics which have been left out in the thesis.
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Chapter 2

Deformation-Based Morphometry in

3D Volumes

In this chapter, we present a unified statistical framework for detecting brain tissue growth

and loss in temporally varying brain morphology. As an illustration, we will demonstrate

how the method can be applied in detecting regions of tissue growth and loss in brain images

longitudinally collected in a group of the same children and adolescents.

2.1 Deformation Model

Unlike other brain morphological studies that try to characterize the structural variabili-

ties among different individuals of similar age groups, morphological studies of temporally

varying brain structure have an extra temporal dimension. Therefore, a different approach

to morphometry is required to fully understand the spatio-temporal complexity of brain

development.

Let U(x, t) = (U1, U2, U3) be the 3D displacement vector field required to move the

structure at position x = (x1, x2, x3) of the atlas or template brain Ωatlas and at the reference

time 0 to the corresponding position after time t. Thus the structure at x deforms to

x + U(x, t) with respect to a fixed reference coordinate. The displacement U at fixed time

t is usually estimated via volume-based non-linear registration techniques on two images
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Figure 2.1: The structure at x deforms to the homologous structure at x+U(x, t) after time
t.

taken at time 0 and t. Then we propose to test the following stochastic model of brain

development:

∂U

∂t
(x, t) = L(U) + Σ1/2(x)ǫ(x), x ∈ Ωatlas, t ∈ R+ (2.1)

where L is a partial differential operator involving spatial components and Σ(x) is the 3

× 3 symmetric positive-definite covariance matrix, which allows for correlations between

components of the deformations and depends on the spatial coordinates x only. Since Σ is

symmetric positive-definite, the square-root of Σ always exists. The components of the error

vector ǫ are independent and identically distributed as smooth stationary Gaussian random

fields with zero mean and unit standard deviation. The error structure Σ1/2ǫ was first intro-

duced in [122] and [17]. An equation of the type (2.1) is usually called a stochastic evolution

equation and it models how the structure evolves over time. Any smooth morphological

change can be completely described with the stochastic evolution equation (2.1) within the

bound set by the error structure Σ1/2ǫ. If the deformation is assumed to follow a diffusing

behavior, then L can be chosen as the Laplacian L = σ2( ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
). If the morphological

changes are assumed to follow a fluid dynamics model, L becomes a Navier-Stokes operator

given in [67]. Since the displacement U is a function of both time t and space x, the partial

differential operator L applied to U is again a function of both time and space.
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Longitudinal analysis based on (2.1) is essentially the inverse problem of brain registra-

tion. This analysis tries to determine the partial differential operator L from given displace-

ment fields. On the other hand, in brain registration, the objective is to find the displacement

field U that matches homologous points between two images based on minimizing a cost func-

tion or actually solving partial differential equations. The most widely used physical models

that have been used in brain registration are elastic deformations and fluid dynamics models

[21, 32, 44, 113]. Suppose that the displacement field U is obtained as a solution of the

elastic deformation equation given by

∂U

∂t
= Lelastic(U) + Σ1/2ǫ,

where the operator

Lelastic(U) = λ1∇2U + λ2∇(∇ · U) + F

and ∇ is the gradient operator, ∇· is the divergence operator and λ1,λ2 are called the Lamé

constants [116]. Then using this displacement field U as given data, we try to estimate

(2.1) which minimizes a certain error criterion based on Σ1/2ǫ. Then the best estimator of

L is heavily biased toward the prior operator Lelastic. It indicates that the estimation of the

evolution equation should be based on an image registration method that does not assume

an a priori physical model or on an empirical Bayesian framework. We will use intensity-

based registration algorithms that do not have explicit physical model assumptions to warp

one brain to another [26, 9], but there should be further comparative studies of the different

image registration methods to draw any general conclusions.

It can be assumed that, in the case of morphological changes occurring in a healthy brain

over a relatively short period of time, deformation occurs continuously and smoothly, so the

higher order temporal derivatives of the displacement U are relatively small compared to

the displacement itself. In such a case, the first order approximation to L(U) is sufficient to

capture most of the morphological variabilities over time. Therefore, we approximate L(U)

with only a first order term µ0(x), which is constant over time, i.e.

∂U

∂t
(x, t) = µ0(x) + Σ1/2(x)ǫ(x). (2.2)

By taking the expectation E on the both sides of (2.2), we see that µ0 = E
(
∂U
∂t

)
, the mean

displacement rate. Under the linear model (2.2), the problem of detecting local displacement
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can be solved with a simple hypothesis testing problem:

H0 : µ0(x) = 0 for all x ∈ Ωatlas

vs.

H1 : µ0(x) 6= 0 for some x ∈ Ωatlas.

If one wishes to assess the convexity of the growth curve, we may use a second-order model:

∂U

∂t
= µ0(x) + µ1(x)t + Σ1/2(x)ǫ(x).

Unlike estimating the first-order linear term µ0, the problem of estimating the second-order

nonlinear term µ1 requires a large amount of data to have a statistically stable result due

to intra-subject variabilities across spatial and temporal dimensions. We have limited our

discussion to the detection of the first order morphological changes and we will not attempt

to analyze the full model (2.1) in our thesis.

2.2 Detecting Local Displacement

We are interested in detecting regions of statistically significant changes in displacement

using the linear model (2.2). This is a standard multivariate statistical inference problem

and can be solved using the Hotelling’s T 2 statistic [17, 43, 59, 111].

Let U j(x, tj) be the 3D displacement vector field required to deform the structure x ∈
Ωj

0 to the corresponding homologous position after time tj , where Ωj
0 is the whole brain

volume of subject j. Let V j =
Uj(x,tj)

tj
be the displacement velocity. Then the sample mean

displacement velocity V̄ is given by

V̄ (x) =
1

n

n∑

j=1

V j(x)

while the sample covariance matrix C of the displacement velocity is given by

C(x) =
1

n− 1

n∑

j=1

(
V j(x)− V̄ (x)

)(
V j(x)− V̄ (x)

)t

,

where the superscript t denotes the matrix transpose. Then the Hotelling’s T 2 field H(x) is

defined as

H(x) = nV̄ t(x)C−1(x)V̄ (x). (2.3)
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At each voxel x, under the hypothesis of no mean displacement velocity, i.e. µ0(x) = 0, H(x)

is distributed as a multiple of an F -distribution with 3 and n− 3 degrees of freedom, i.e.

H(x)
D∼ 3

n− 1

n− 3
F3,n−3.

Then the p-value of the maxima of H(x), which corrects for searching across a whole brain

volume, is used to localize the region of statistically significant structural displacement [17].

As pointed out in [8], the Hotelling’s T 2 statistic based on the displacement does not

directly localize regions within different structures, but rather identifies brain structures

that have translated to different positions. It measures relative position of two particular

voxels before and after the deformation. Therefore, in the context of temporally varying

brain morphology, where the brain tissue growth is an important concern, the statistic based

on the displacement field should be taken as an indirect measure of brain growth. The

more direct morphological criterion that corresponds to the actual brain tissue growth is the

Jacobian of the deformation field, which we will look at in the next section.

2.3 Detecting Local Volume Change

The deformation in the Lagrangian coordinate system i.e. fixed coordinate system at time t

is

x→ x+ U(x, t).

The local volume-change of the deformation in the neighborhood x ∈ Ωt and at time t is

determined by the Jacobian J which is defined as J(x, t) = det(I + ∇U), where I denotes

an identity matrix and ∇U is the 3× 3 displacement gradient matrix of U given by

∇U =




∂U1

∂x1

∂U1

∂x2

∂U1

∂x3

∂U2

∂x1

∂U2

∂x2

∂U2

∂x3

∂U3

∂x1

∂U3

∂x2

∂U3

∂x3


 . (2.4)

The component
∂Uj

∂xi
is called the displacement tensor and, in tensor-based morphometry [8],

these nine components form scalar fields used to measure the second-order morphological

variabilities. Note that local translation captures the first-order morphological variability.

[8] separated the deformation-based morphometry into that utilizing the displacement fields
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and that utilizing the displacement tensor. However, in our statistical framework, we have

only one statistical model on the displacement and a model for the displacement gradient

∇U can be directly derived from (2.1) by taking the partial derivative with respect to the

spatial coordinates x. Hence, by modeling the morphological changes in the mathematical

framework of random fields [1], the situation of having two possibly incompatible statisti-

cal models on the displacement U and the displacement gradient ∇U can be avoided. In

our unified statistical modeling approach using (2.1), all possible statistical distributions of

morphological test criteria can be directly derived and easily manipulated from (2.1).

Since the Jacobian J measures the volume of the unit-cube after deformation, the rate

of the Jacobian change, i.e. ∂J
∂t

is the rate of the local volume change. In brain imaging, a

voxel can be considered as the unit-cube; therefore, ∂J
∂t
(x) essentially measures the amount

of change in the volume of voxel x during the deformation. Expanding the Jacobian J , we

get

J = det(I +∇U)

= 1 + tr(∇U) + detr2(∇U) + det(∇U),

where detr2(∇U) is the sum of 2 × 2 principal minors of ∇U [54]. For relatively small

displacements, which is the case in brain development, we may neglect the higher order

terms and get J ≈ 1 + tr(∇U). Taking the partial derivative with respect to the temporal

coordinate t, we get

∂J

∂t
≈ ∂2U1

∂t∂x1
+

∂2U2

∂t∂x2
+

∂2U3

∂t∂x3

=
∂

∂t
(∇ · U)

= ∇ ·
(∂U
∂t

)
,

where ∇· is the divergence operator. In elastic theory, the volume dilatation is defined as

Θvolume(x) = ∇ · U [75]. Therefore, the rate of the Jacobian change is approximately the

rate of the volume dilatation change for relatively small displacements, i.e.

∂J

∂t
≈ ∂

∂t
Θvolume(x) = Λvolume(x), (2.5)
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where we term Λvolume to be the volume dilatation rate. Since derivatives of a Gaussian field

and the sum of components of a multivariate Gaussian field are again Gaussian field, from

(2.2), we have a linear model on the volume dilatation rate Λvolume given by

Λvolume(x) = λvolume(x) + ǫvolume(x), (2.6)

where λvolume is the mean volume dilatation rate and ǫvolume is a Gaussian random field

with zero mean. When λvolume(x) = 0 in the neighborhood of x, the deformation is incom-

pressible so there is no volume change. However, if λvolume(x) > 0, the volume increases

while λvolume(x) < 0, the volume decreases after the deformation. In certain registration

algorithms, the Jacobian J is forced to be larger than a certain threshold to ensure the

homologous correspondence between two brains [20]. When such a registration algorithm

is used, the power of detecting the region of statistically significant volume change may be

reduced. Statistical inference on the linear model (2.6) is easier than that of (2.2) since it is

a univariate Gaussian.

Let Θj
volume denote the volume dilatation of the displacement U j = (U j

1 , U
j
2 , U

j
3 ) for

subject j after time tj. Then the volume dilatation rate or growth rate Λj
volume of subject j

is

Λj
volume =

1

tj
Θj

volume =
1

tj

(∂U j
1

∂x1
+
∂U j

2

∂x2
+
∂U j

3

∂x3

)
.

In the actual numerical implementation, the displacement tensor
∂Uj

i

∂xi
can be computed by

the finite difference on rectangular grid. For example, at voxel position x = (x1, x2, x3),

∂U j
1

∂x1
≈ U j

1 (x1 + δx1, x2, x3)− U j
1 (x1, x2, x3)

δx1
,

where δx1 is the length of the edge of a voxel along the x1 axis. Then the T random field is

defined as

T (x) =
√
n
Mvolume(x)

Svolume(x)
, (2.7)

where Mvolume and Svolume are the sample mean and standard deviation of Λj
volume. Under

the assumption of no local volume change at x, i.e. λvolume(x) = 0, T (x)
D∼ tn−1, a student

t-distribution with n − 1 degrees of freedom. As we shall see in the Result section, the

sample mean dilatation-rate Mvolume(x) does not provide accurate information about where

the brain growth is dominant but the T (x) does (Figure 2.2). Then the p-value of the
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maxima of T (x), which corrects for searching across a whole brain volume, can be used to

localize the region of statistically significant structural displacement [121]. In order to use

the p-value based on the maxima of T random field, we need a certain assumption on the

temporal correlation structure of the deformation field U . It is required that the variance

Var(ǫvolume) in (2.6) does not depend on time t. Strictly speaking the error ǫvolume must

be dependent on both space and time, but with the condition that ǫvolume = ǫvolume(x, t) is

stationary in time, we can suppress the dependency on time, i.e.

Var
(
ǫvolume(x, t)

)
= Var

(
ǫvolume(x, 0)

)
.

2.4 Statistical Inference in 3D whole brain volume

Statistical inference on both the T random field and the Hotelling’s T 2 random field is based

on the excursion probability

P
(
max
x∈Ω

Z(x) > z
)

(2.8)

where Z is a sufficiently smooth isotropic random field in RN . The smoothness of a random

field corresponds to the random field being differentiable. According to R. J. Adler, there are

very few cases for which exact formulas for the excursion probability (2.8) is known [2]. For

this reason, approximating the excursion probability is essential. From the Poisson clumping

heuristic [3, pp. 1-6],

P
(
max
x∈Ω

Z(x) < z
)
≈ exp

(
− ‖Ω‖
E‖Az‖

P
(
Z(x) ≥ z

))
,

where ‖ · ‖ is the Lebesgue measure of a set and the random set Az = {x : Z(x) > z}
is called the excursion set above the threshold z. This approximation involves unknown

E‖Az‖, which is the mean clump size of the excursion set. The distribution of ‖Az‖ has

been estimated for the case of Gaussian [3], χ2, t and F fields [16] but for general random

fields, no approximation is available. An alternate approximation based on the expected

Euler characteristic (EC) of Az is also available. For very high threshold z, it can be shown

that

P
(
max
x∈Ω

Z(x) > z
)
≈ E χ(Az),
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where χ(Az) is the Euler characteristic of Az [125]. Compared to other approximation meth-

ods such as the Poisson clump heuristic and the tube formulae, the advantage of using the

Euler characteristic formulation is that a simple exact expression can be found for E χ(Az).

If Z is isotropic,

E χ(Az) =

N∑

i=0

φi(Ω)ρi(z), (2.9)

where ρi is the i-dimensional EC density of the random field Z and φi(Ω) is the Minkowski

functional of Ω [119]. Let K∂Ω be the curvature matrix of ∂Ω and detri(K∂Ω) be the sum of

the determinant of all i × i principal minors of K∂Ω. For i = 0, · · · , N − 1 the Minkowski

functional φi(Ω) is defined as

φi(Ω) =
Γ(N−i

2
)

2π
N−i
2

∫

∂Ω

detrN−1−i(K∂Ω) dA,

and φN(Ω) = ‖Ω‖, the Lebesgue measure of Ω. Also the EC density ρi is defined as

ρi(z) = E
[
(Z ≥ z) det(−Z̈i)|Żi = 0

]
fŻi

(0),

where Ż and Z̈ are the first and second derivatives of Z and the subscript i represents the

first i components of Z and fŻi
is the multivariate density of Żi. For a Gaussian field with

zero mean and unit variance,

ρi(z) =





∫∞
z
(2π)−

1
2 e−u2/2 du , i = 0

c
i
2 (2π)−

i+1
2 Hei−1(z)e

−z2/2 , i ≥ 1
,

where c = Var(Ż1) and Hei is the Hermite polynomial of degree i. The exact expression

for the EC density ρi can be found for other random fields such as t, χ2, F fields [121],

Hotelling’s T 2 fields [17] and scale-space random fields [98]. In each case, the EC density ρi

is proportional to c
i
2 and it changes depending on the smoothness of the field. If the random

field Z is given as the convolution of a smooth kernel Kh(x) = K(x/h)/hN with a white

Gaussian noise [98, 123], the covariance matrix of Ż = ∂Z
∂x

is given by

Var(Ż) =

∫
RN K̇(x

h
)K̇t(x

h
) dx

h2
∫
RN K2(x

h
) dx

.

Applying it to a Gaussian kernel K(x) = (2π)−n/2e−‖x‖2/2 gives c = Var(Ż1) =
1

2h2 . In terms

of the full width at half maximum (FWHM) of the kernel Kh as defined in (3.2), c = 4 ln 2
FWHM2 .
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Figure 2.2: The statistical analysis of local volume change data on the mid-sagittal section.
a. The sample mean dilatation-rate Mvolume. It gives an incorrect impression that the local
volume change only occurs near the outer cortical boundaries due, perhaps, to registration
error. b. t-map of local volume change. Local maxima appear around the corpus callosum.
A lot of noise on the cortical boundaries disappears. c. t-map of local volume change after
10mm Gaussian kernel smoothing. The smoothing is applied directly to the displacement
fields and the signal-to-noise ratio improves. d. Thresholded t-map superimposed on the
mid-sagittal section of the atlas brain. The corpus callosum shows volume increase. When
the corrected threshold of t > 6.5 is applied, most of the red regions disappears except the
local maximum in the splenium and the isthmus of the corpus callosum.
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2.5 Important Measures in Brain Development

We have presented two different statistics (2.3) and (2.7), based on local translation and

local volume changes to measure morphological changes over time. One might ask if these

two statistics are sufficient to capture temporally varying morphological changes in brain and

how one statistic is related to the other. Do they measure common morphological properties

or different aspects of morphological changes? In this section, we will give some answers to

these questions.

For a relatively small displacement, neglecting higher order terms in the Taylor expansion,

the displacement U at x+ dx can be written as

U(x+ dx, t) ≈ U(x, t) +∇U(x, t) dx.

As we have pointed out already, some elements of ∇U are used to measure morphological

changes [107, 8, 110]. The displacement tensor can be further decomposed into two parts

depending on whether it is symmetric or antisymmetric:

∂Uj

∂xi
=

1

2

(∂Uj

∂xi
− ∂Ui

∂xj

)
+

1

2

(∂Uj

∂xi
+
∂Ui

∂xj

)
. (2.10)

The antisymmetric first part corresponds to a rotation or vorticity [94] of the deformation

and the symmetric second part corresponds to a strain. Then the displacement U can be

decomposed into three parts:

U(x+ dx, t) ≈ U(x, t)− ω(x, t)× dx+ ε(x, t) dx,

where ω = 1
2
(∇ × U) is the vorticity vector and ε = (εij) =

1
2

(
∇U + (∇U)t

)
is the strain

matrix. By taking the temporal derivative, we have the displacement velocity V decomposed

into three parts:

V (x+ dx, t) ≈ V (x, t)− ∂w

∂t
(x, t)× dx+

∂ε

∂t
(x, t) dx. (2.11)

(2.11) captures most of the spatio-temporal variabilities of the displacement velocity into

three components: the rate of changes in a translation, a rotation and a strain for relatively

small displacements.

The strain-rate tensor
∂εij
∂t

can be further separated into two parts: the diagonal elements

∂εii
∂t

describing the length change of the volume element in each x1, x2 and x3 coordinate, and
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Figure 2.3: Square grid under translation, rotation and volume change. Red: volume in-
crease, Blue: volume decrease, Gray: rotation, Yellow: translation. a. square grid under
no deformation. b. Horizontal translation caused by local volume increase on the left side.
c. 45 degree clockwise rotation. The rotation induces the outer region of the center of the
rotation to translate. d. Volume expansion in the middle causes the grid to radially translate
outward.

the off-diagonal elements
∂εij
∂t

(i 6= j) describing the shearing rate of the volume element. The

volume element is a mathematical abstraction defined as an infinitesimally small cube, but

because the smallest unit in brain imaging is a voxel, we may take the voxel as the volume

element. Shearing is the deformation that preserves the volume of a voxel but distorts its

shape. Note that the sum of the diagonal elements of the strain rate is the first order

approximation to the rate of the Jacobian change, i.e.

∂J

∂t
≈ Λvolume =

∂ε11
∂t

+
∂ε22
∂t

+
∂ε33
∂t

.

It seems that we may have to consider translational, rotational and strain changes for a

complete morphological description. However, the most meaningful measurement of brain

tissue growth or loss is the rate of the Jacobian change because it directly measures the

volumetric changes in the brain. The local translation, the local rotation and the local
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shearing change can all be considered as readjustments and reorientations of the local brain-

structure due to the volumetric changes in the neighboring regions (Figure 2.3). In between-

subject morphological studies of different clinical populations, such measurements might be

useful criteria of shape differences. However, in temporally varying within-subject brain

morphological studies, we are more interested in regions of brain tissue growth or loss that

cause the volumetric changes. Hence, the rate of the Jacobian change is the most meaningful

morphological measure of brain tissue growth or loss in deformation-based morphometry.

Finally, the dilatation statistic that consists of spatial derivatives of the displacement

field is statistically independent from the local translation statistic at each fixed point. To

see this, note that any partial derivative of a stationary Gaussian random field is statistically

independent from the field itself at a single point [1]. Since the dilatation consists of spatial

derivatives of the displacement, it must be statistically independent of the displacement.

So the Hotelling’s T 2 field of the displacement and the T field of the dilatation measure

morphologically different properties at the same voxel.

2.6 Detecting Global Volume Change

Standard MRI-based volumetry, where we are interested in detecting volume changes of the

regions of interest (ROI), can be considered as a special case of deformation-based volumetry.

Let ΩROI
t be the 3D region of interest with smooth 2D boundary ∂ΩROI

t at time t. The region

ΩROI
0 deforms to ΩROI

t under the deformation x → x + U(x, t). Note that the volume of

ΩROI
t is given by

‖ΩROI
t ‖ =

∫

ΩROI
t

dx =

∫

ΩROI
0

J(x, t) dx.

Then the ROI volume-dilatation rate ΛROI is given by

ΛROI =
1

‖ΩROI
0 ‖

∂

∂t
‖ΩROI

t ‖ (2.12)

=
1

‖ΩROI
0 ‖

∫

ΩROI
0

∂J

∂t
dx (2.13)

≈ 1

‖ΩROI
0 ‖

∫

ΩROI
0

Λvolume dx. (2.14)

Therefore, the global ROI volume dilatation rate ΛROI is equivalent to the average of the

local volume dilatation rate Λvolume taken over all ΩROI
0 . Since Λvolume is distributed as a
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Gaussian random field, ΛROI becomes a Gaussian random variable. So testing the hypothesis

whether there is any volume change between ΩROI
0 and ΩROI

t can be performed through a

simple t-test.

It is also possible to test the global volume change via surface-based deformation analysis.

Gauss’s Divergence Theorem states that

∫

ΩROI
0

∇ · U dx =

∫

∂ΩROI
0

U · n dA, (2.15)

where n is a unit normal vector on the surface ∂ΩROI
0 and dA is the surface area element

[75]. It follows that

ΛROI ≈
1

‖ΩROI
0 ‖

∫

∂ΩROI
0

V · n dA,

where V = ∂U
∂t

is the surface displacement velocity on the boundary ∂ΩROI
0 . In Chapter 4,

we will develop more sophisticated surface-based local analysis.

2.7 Detecting Global Displacement Change

Instead of testing local translational change, we can test translational change on a global

scale. We assume that the displacement vector field is N -dimensional. Suppose that the

covariance matrix Σ is known in the linear model (2.2). We are interested in testing the null

hypothesis:

H0 : µ0(x) = 0 for all x ∈ Ω.

Similar to the Hotelling’s T 2 field in (2.3), we define W (x) = V t(x)Σ−1(x)V (x), where V is

the displacement velocity. Under H0, W (x) =
∑N

i=1 ǫ
2
i (x) is distributed as a stationary χ2

N

random field [121], where ǫ(x) = (ǫ1, · · · , ǫN)t is the error term defined in (2.2).

Consider another null hypothesis:

H ′
0 :

∫

Ω

‖µ0‖2(x) dx = 0

The two hypothesis H0 and H
′
0 are equivalent over the equivalent class of a function g which

satisfies
∫
Ω
|g|2(x) dx = 0. Therefore, instead of testing the null hypothesis H0, we test H ′

0.

Under H ′
0, the exact distribution of the random variable

∫
Ω
W (x) dx can be found via the

Karhunen-Loève expansion [2, 38, 66, 126].

36



Karhunen-Loéve expansion states that for a mean zero Gaussian random field Z(x) with

mean square continuity property over a bounded domain Ω ⊂ RN , there exist independent

mean zero Gaussian random variables {Zi} and orthonormal bases {φi} such that

Z(x) =
∞∑

i=0

Ziφi(x). (2.16)

Let σ2
i = EZ2

i <∞ and R(x, y) be the covariance function of Z(x). It can be shown that σ2
i

and φi are the i-th eigenvalue and eigenfunction of the integral equation

∫

Ω

R(x, y)φi(y) dy = σ2
i φi(x). (2.17)

Equation (2.17) is a Fredholm equation of the first kind and φi and σ2
i can be estimated

numerically if the kernel R(x, y) is given [7]. The bases {φi} are orthonormal with respect

to the inner product defined by 〈f, g〉 =
∫
Ω
f(x)g(x) dx such that

〈φi, φj〉 = δij.

The error components ǫi are distributed as i.i.d. isotropic Gaussian random fields so they

have the orthogonal expansion of the form ǫi(x) =
∑∞

j=0 ǫijφj(x) with E(ǫ2ij) = σ2
j and ǫij

are independent Gaussian random variables for all i, j. Then it follows that

∫

Ω

W (x) dx =

N∑

i=1

〈ǫi, ǫi〉

=
N∑

i=1

∞∑

j,k=0

∫

S

ǫijǫikφj(t)φk(t)dt

=

N∑

i=1

∞∑

j=0

ǫ2ij

=
∞∑

j=0

N∑

i=1

ǫ2ij .

Note that
N∑

i=1

ǫ2ij
D∼ σ2

jχ
2
N ,

where χ2
N is the chi-squared distribution with N degrees of freedom. Summing up the above

results, we have the exact distribution for global displacement change:

∫

S

W (x) dx
D∼

∞∑

j=0

σ2
jXj , (2.18)
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where Xj
i.i.d.∼ χ2

N and σ2
j =

∫
Ω×Ω

R(x, y)φj(x)φj(y) dxdy. The sum of the independent chi-

squared random variables in (2.18) can be approximated by another chi-square distribution

[95]. Note that

E

( ∞∑

j=0

σ2
jXj

)
= N

∞∑

j=0

σ2
j

Var
( ∞∑

j=0

σ2
jXj

)
= 2N

∞∑

j=0

σ4
j .

Then approximately,
∞∑

j=0

σ2
jXj

D∼ cχ2
ν ,

where c =
∑∞

j=0 σ
4
j /

∑∞
j=0 σ

2
j and the approximate degrees of freedom

ν = N

(∑∞
j=0 σ

2
j

)2
∑∞

j=0 σ
4
j

.

A similar test procedure that does not use the Karhunen-Loève expansion for testing the

null hypothesis of no functional activation can be found in [118].

2.8 Results

Twenty eight normal subjects were selected based on the same physical, neurological and

psychological criteria described in [47]. Two T1-weighted MR scans were acquired for each

subject at different times on the same GE Sigma 1.5 T superconducting magnet system.

The first scan was obtained at the age 11.5± 3.1 years (min. 7.0 yr, max. 17.8 yr) and the

second scan was obtained at the age 16.1± 3.2 years (min. 10.6 yr, max. 21.8 yr). The time

difference between the first and the second scan was 4.6±0.9 years (min. time difference 2.2

yr , max. time difference 6.4 yr). Table 4.1 shows the complete description of the ages. Using

the automatic image-processing pipeline [128], a total of 56 MR images were transformed

into standardized stereotactic space via a global affine transformation [104] followed by a

nonlinear deformation to match the atlas brain Ωatlas. The global affine transformation

removes most of the intra- and inter-subject global differences in brain size; adult brains are

approximately 5% larger than those of five year old children [35, 36]. Because we are only

interested in finding local morphological changes, these global morphological variabilities
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Figure 2.4: The procedure for computing the displacement vector field U j for subject j. 1.
Compute the displacement field U j

S1 from the first scan registered onto the atlas brain Ωatlas.
2. Compute the displacement field U j

S2 from the second scan registered onto the atlas brain
Ωatlas. 3. Compute the difference U j = U j

S1 − U j
S2, which is then defined automatically at

each voxel x ∈ Ωatlas.

should be removed via global affine transform in order to improve the power of detection.

These registration procedures are based on an automatic multi-resolution intensity matching

algorithm [26, 25]. Unlike other registration algorithms that assume a certain fluid dynamics

or an elastic deformation model, the intensity-based registration does not assume any explicit

physical model in which the deformation from the subject brain to the atlas brain should

follow [44, 110]. So the deformation fields obtained from these registration processes can

be considered free of any explicit physical model assumption although there might be some

intensity-based model assumption,which somehow relates to a physical model.

If U j
S1 and U j

S2 are the displacement obtained from the non-linear registration of the

first and the second scan of subject j to the atlas brain Ωatlas at time tjS1 and tjS2, the

actual displacement U j between the first scan and the second scan is U j = U j
S1 − U j

S2 and

the time difference is tj = tjS2 − tjS1 (Figure 2.4). It is true that if the first scan were

directly registered to the second scan without going through the atlas brain, the registration
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error would be smaller. However, the displacement fields obtained by the direct registration

method still have to be registered onto the atlas brain in order to form statistical parametric

maps. The reason for such statistical treatment to analyze the structural data is obvious

considering that the displacement field obtained from image registration algorithms for brain

development contains a fairly large component of error. The length of the displacement

velocity we have observed for the spatially normalized MR scans of 28 normal subjects is

usually less 1mm/year, i.e. µ0 = E
(
∂U
∂t

)
≤ 1 mm/year in average. Optimistically assuming

that the image registration algorithm is accurate to within one voxel distance (usually 1 or 2

mm), the registration error seems to be relatively large in brain development. So one may be

skeptical about whether the deformation-based morphometry can possibly detect such small

changes. Nevertheless it is still possible to pick out the signal when there are enough data;

Figure 2.2 illustrates how image smoothing and the statistical treatments improve the power

of detection. Statistical treatments compensate for some of such registration errors. Finally

the displacement velocity field is smoothed with a 10mm FWHM Gaussian kernel to increase

the signal-to-noise ratio (the smoothing parameter FWHM is defined in 3.2). Without the

smoothing, it may have been more difficult to detect morphological patterns illustrated in

Figure 2.2. However, Gaussian kernel smoothing sometimes tends to blur the fine details of

deformation pattern (Figure 2.5).

The regions of statistically significant displacement have been detected (Figure 2.6, yel-

low) by the Hotelling’s T 2 field with the corrected threshold [17]:

P
(

max
x∈Ωatlas

H(x) > 60.0
)
≈ 0.05.

Most of the structural movements have been observed in the frontal lobe without any ac-

companying significant change in local volume. This may indicate that there are continued

readjustments of the exact position of brain structures in the frontal lobe without any brain

tissue growth or loss in adolescence. Also note that the statistically significant displacement

occurs evenly and shows some degree of symmetry between the left and the right hemi-

spheres. Because the local translation statistic measures the relative displacement of brain

structure, it does not truly reflect the brain tissue growth process. However, it does indicate

the principal direction of the brain growth as shown in the purple box in Figure 2.6 and en-

larged in Figure 2.8. Hence, the local translation statistic should be used in conjunction with

the local volume change statistic to fully understand the complex dynamics of temporally
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Figure 2.5: t-map of local volume change that is not treated with Gaussian kernel smoothing.
Notice that the most of the local volume decrease is concentrated in the white matter. It
may be useful as a visual aid for determining deformation patterns, but due to low t-value
in most parts, such deformation pattern were found to be statistically insignificant.
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changing morphological pattern.

Previous developmental MRI studies have provided evidence for age-related increase in

total white matter volume and decrease in total gray matter volume [30, 57, 80, 85, 89] but

the analytic procedures used in these studies did not allow the investigators to detect local

volume change. The local volume change statistic T (x) is computed using the formula (2.7)

with tj = tjS1 − tjS2. The t-statistic map is thresholded at

P
(

max
x∈Ωatlas

T (x) > 6.5
)
≈ 0.025,

P
(

max
x∈Ωatlas

T (x) < −6.5
)
≈ 0.025.

At this threshold, most of the local volume increase observed around the corpus callosum

in Figure 2.2 disappears except for very few localized statistically significant “peaks” in the

isthmus and splenium. There was no volume change detected in the rostrum and genu.

Figure 2.6 also shows the localized growth in the splenium of the corpus callosum on the

coronal section (the single red dot). Therefore, we observe highly focused regions of brain

tissue growth at the corpus callosum. [46, 84, 110] reported similar results of growth at the

corpus callosum.

The growth at the corpus callosum seems relatively small when compared to the global

peaks observed predominantly in somatosensory and motor cortex (the largest red cluster in

Figure 2.6). Localized brain tissue loss was also detected at the same time as tissue growth.

This tissue loss was highly localized in the subcortical region of the left hemisphere (Figure

2.6, blue). Similar results were also reported in [110], where the extent of the peak growth

is wider and less localized than our study has found. It seems our statistical treatments

based on the large sample size (n = 28) tend to remove a lot of intra-subject variabilities

and pick out the common morphological pattern among subjects compared to the smaller

sample size (n = 6) studied in [110]. Slightly different growth patterns observed between

our study and [110] may be due to many factors. Our approach is based on the systematic

statistical treatments of large sample size (n = 28) with a less accurate intensity based

automatic registration algorithm. While the approach taken in [110] is based on a sample

size of six without any statistical approach, a more accurate elastic model based registration

algorithm with manually matched sulcal landmarks was used. However, the most important

difference between the two studies is the age distribution of the subjects. In [110], the age
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Figure 2.6: Left: 3D statistical parametric maps of local volume increase (red), vol-
ume decrease (blue) and structural displacement (yellow) thresholded at the probability
0.025, 0.025, 0.05 (corrected). Right: Statistical parametric maps are superimposed on the
axial, sagittal and coronal sections of the atlas brain MRI. The cross-sections are taken at
the interior of the largest red cluster inside the purple box (parietal cortex). The white lines
indicate where the cross-sections are taken.
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Figure 2.7: 3D statistical parametric map shown in Figure 2.6 is superimposed with the
outer cortical surface of the template brain showing dominant local volume increase around
the primary motor cortex in the left hemisphere while local volume decrease in the right
hemisphere.

distribution of the six subjects is in most part younger than our mean age of 11.5 for the first

scan and 16.1 for the second scan. So although there are similar growth patterns common

to both studies such as predominant growth at the parietal lobe, localized peak growth at

the corpus callosum etc., the two studies are detecting morphological changes in different

but nonexclusive age groups.

Finally in answering the question of whether the local translation statistic and the local

volume change statistic are measuring different morphological variabilities, we have com-

puted the overlapping regions between the significant volume change and the translation

statistics. The volume of the overlapping regions is less than 10% of the total volume of the

two statistics combined together. We have already shown that these two statistics are dis-

tributed independently at the same voxel. The voxel-by-voxel computation seems to support

our claim that these two statistics are indeed measuring different aspects of morphological

change. Although they measure different morphological properties, we have observed very

interesting relations between these two statistics as illustrated in Figures 2.6 and 2.8. Figure

2.8 is the close-up of the parietal region of the left hemisphere (the purple box in Figure 2.6),

showing a large local displacement from the region of volume growth to a region of volume

loss, indicating how the structure boundary has moved from the increasing volume to the
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Figure 2.8: A close up of part of the outer left hemisphere inside the purple box in Figure
2.6. Black arrows represent the sample mean displacement velocity subsampled every 10mm
and scaled by 50 mm/year. The direction of the mean displacement velocity suggests how
the local volume expansion (red) causes the translational movement of the structure (yellow)
toward the region of atrophy (blue). The heads of arrows are manually enhanced to clearly
indicate the direction of the displacement.

decreasing volume. This phenomenon is also schematically illustrated in Figure 2.3 b, where

the square grid is undergoing a horizontal translation from the region of volume increase on

the left to the region of volume decrease on the right, and Figure 2.3 d, where the volume

expansion in the middle causes the neighboring structures to radially translate outward. It

seems that by studying these two statistical parametric maps simultaneously, the complex

dynamic patterns in temporally varying brain morphology can be captured.
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Chapter 3

Diffusion Smoothing on Manifolds

F (x, t) = F ∗(x,
√
2t ) is known to satisfy the diffusion equation

∂F

∂t
= ∆F, F (x, 0) = f(x),

where ∆ = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
n
is the Laplacian in Rn. See an article by A. Grigor’yan [51] for a

brief overview of the relations between a Gaussian kernel, diffusion equations and Brownian

motion. Hence, Gaussian kernel smoothing can be derived by solving a diffusion equation.

The most widely used methods in solving diffusion equations are the finite element method

(FEM) and the finite difference method (FDM). The earliest mathematical treatment of

the FEM can be found in an article by R. Courant [28]. It has been a standard tool for

solving PDEs and variational problems. The books by M.N.O. Sadiku [93], and J. Oden

and G. Garey [77] would serve as good text books for the FEM. Also see the book by J.C.

Strikwerda for the review of FDM [102]. The FEM usually requires four steps [92]: 1)

discretizing the solution region into finite number of subregions called finite elements, 2)

deriving governing equations for an element, 3) assembling of all elements, 4) and solving

the system of equations.

The drawback of Gaussian kernel smoothing is that it does not respect the natural bound-

aries of objects. We would like to encourage smoothing within a region rather than smoothing

across the boundaries. This could be achieved by solving the diffusion equation with the

condition F (x, t) = 0 on the boundaries. Solving a partial differential equation with such

boundary condition is called the BVP (boundary value problem) and such smoothing method
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is usually referred as diffusion smoothing or diffusion filtering. J.O. Ramsay has solved the

BVP to smooth data constrained within a region [86]. Extending the work of A. Witkin

[117], P. Pernona and J. Malik [79] first introduced the concept of anisotropic diffusion in

the problem of edge enhancement and detection by running the diffusion equation backwards

in time. Diffusion smoothing has been also used in the analysis of functional magnetic reso-

nance imaging (fMRI) data on the brain surface [4] and detecting the regions of surface area

change in brain development [24].

We will present two conceptually different approaches to diffusion smoothing on a tri-

angulated cortical surface via the Laplace-Beltrami operator, which generalizes an ordinary

Laplacian in Euclidean space to manifolds. The first method uses quadratic polynomials for

local surface parameterization. Then using a conformal coordinate transform, the Laplace-

Beltrami operator is reduced to the planar Laplacian. The second method is based on the

finite element method of estimating the Laplace-Beltrami operator. As an illustration, the

mean curvatures on the outer cortical surface is smoothed to show how the the smoothing

incorporates the geodesic curvature information of the surface.

3.1 Diffusion Smoothing

The most general form of Gaussian kernel smoothing of the function f(x), x = (x1, . . . , xn) ∈
Rn is defined as the convolution of Gaussian kernel KH with f :

FH(x) =

∫

Rn

KH(x− y)f(y) dy, (3.1)

where KH(x) = K(H−1x)/ det(H) and the Gaussian kernel is

K(x) =
1

(2π)n/2
e−‖x‖2/2.

The n×n symmetric matrix H is called bandwidth matrix [96, 100] and it controls the extent

of smoothing. Note that KH(x) is a multivariate normal density with the mean zero and

the covariance matrix H2. By choosing H = hIn for some smoothing parameter h > 0, we

have isotropic Gaussian kernel smoothing. The smoothing parameter h controls the extent

of smoothing. We will restrict our attention to isotropic Gaussian kernel smoothing and its

kernel Kh(x) ≡ KhIn(x) = K(x/h)/hn. As h → 0, Kh(x) becomes a Dirac delta function
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Figure 3.1: FWHM of the Gaussian kernel K(x).

δ(x) [127], which is defined as ∫

Rn

δ(x) dx = 1,

δ(x) = 0 if x 6= 0.

From the property of the Dirac delta function,

lim
h→0

Fh(x) =

∫

Rn

δ(x− y)f(y) dy = f(x).

So when the bandwidth parameter is too small, we have undersmoothing while when it

gets larger, we tend to have oversmoothing. Both oversmoothing and undersmoothing have

problems: oversmoothing has small variability but large bias but undersmooting has small

bias but large variability. In order to measure over all smoothness, mean integrated square

error (MISE) has been used as a criterion in most of the theoretical works [15, 96, 100]. The

optimal bandwidth parameter h is chosen to minimize MISE. Among imaging researchers,

FWHM (full width at half maximum) is often used as the smoothing parameter in Gaussian

kernel smoothing. FWHM is defined as the the full width at the half maximum of Gaussian

kernel (Figure 3.1):

FWHM = 4(ln 2)1/2
√
t = 2(2 ln 2)1/2h. (3.2)

Let t = h2/2 and F (x, t) = F√
2t(x). We may consider t as time. Using the Fourier

transform [41], it can be shown that F (x, t) is the integral solution of the n-dimensional

isotropic diffusion equation

∂F

∂t
= ∆F (3.3)
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with the initial condition F (x, 0) = f(x), where ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
n

is the Laplacian

in n-dimensional Euclidean space. Hence Gaussian kernel smoothing of f is equivalent to

the diffusion of the initial data f . The duration of the diffusion of the initial function

f determines the extent of smoothing via the relationship t = h2/2. We shall call the

smoothing method that is based on solving a diffusion equation as diffusion smoothing.

Although diffusion smoothing uses the Laplacian, it is different from Laplace smoothing,

which penalizes higher powers of the Laplacian ∆ in spline smoothing [88]. Because the

partial differential equation (PDE) formulation is more adaptable to various situations where

the Gaussian kernel smoothing fails, diffusion smoothing has been used in many applications.

In anisotropic diffusion, for instance, the extent of smoothing depends on proximity to edges

so that it has been mainly used in edge detection [79]. Another application of diffusion

smoothing can be found in [86] where it is used to smooth data in a planar region, while

constraining the solution to remain within the region via the boundary value problem (BVP)

of PDE.

3.1.1 Diffusion Smoothing in R

Let us illustrate diffusion smoothing in R and shows why it is more robust than Gaussian

kernel smoothing. The discrete version of Gaussian kernel smoothing (3.1) on N data points

x1 < · · · < xN ∈ R is

Fh(x) =
xN − x1

N

N∑

i=1

Kh(x− xi)f(xi), (3.4)

which approximates (3.1). Despite the simplicity of Gaussian kernel smoothing, it becomes

unstable near the boundary of an area in which the data is defined and this instability worsens

as the bandwidth parameter gets larger although it is possible to correct such boundary bias

of Gaussian kernel smoothing by using boundary kernels [87, 96, 100]. Consider 1-dimensional

diffusion equation

∂F

∂t
=
∂2F

∂x2
, F (x, 0) = f(x). (3.5)

The diffusion equation (3.5) can be solved iteratively by the finite difference method [102]:

F (xi, tj+1) = F (xi, tj) + (tj+1 − tj)
∂̂2F

∂x2
(xi, tj), (3.6)
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Figure 3.2: Comparison between Gaussian kernel smoothing with the bandwidth parameter
h = 1 (solid line) and diffusion smoothing (dotted line). a. before the iteration. b. after
0.05 seconds (5th. iteration). c. after 0.25 seconds (25th. iteration). d. after 0.5 seconds
equivalent to h = 1 (50th. iteration).

where ∂̂2F
∂x2 (x

i, tj) is an estimator of ∂2F
∂x2 (x

i, tj). To simplify the problem, take the same

iteration step size ∆t = tj+1 − tj and iterate until tj hits h
2/2 (Figure 3.2). Estimating the

second derivative of a function requires at least three data points. One way of estimating

∂2f(xi)
∂x2 is to differentiate a quadratic function that passes through three points

(
xi−1, f(xi−1)

)
,
(
xi, f(xi)

)
,
(
xi+1, f(xi+1)

)
.

It can be shown that the estimation based on the quadratic interpolation is

∂̂2f

∂x2
(xi) =

f(xi+1)−f(xi)
xi+1−xi − f(xi)−f(xi−1)

xi−xi−1

xi+1−xi−1

2

.
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Figure 3.3: Breakdown of Gaussian kernel smoothing with h = 1 at the boundary (red line).
Diffusion smoothing solved with the boundary condition (blue dotted line). a. after 0.25
seconds (25th. iteration). b. after 0.5 seconds equivalent to h = 1 (50th. iteration).

We can not interpolate at the end points x1 and xN so we are forced to set up boundary

conditions F (x1, tj) = f(x1), F (xN , tj) = f(xN ) for all tj in our iteration scheme. With these

boundary conditions, we are numerically solving a BVP of PDE and this is why diffusion

smoothing will outperform Gaussian kernel smoothing near boundary. Figure 3.3 shows

the comparison between Gaussian kernel smoothing in (3.4) and the equivalent diffusion

smoothing in (3.6). Note that there are slight discrepancies near the edges due to the fact

that the diffusion equation was solved with the boundary conditions while Gaussian kernel

smoothing is not.

3.1.2 Smoothing Random Fields

Consider smoothing random noise X(x). We may take X(x) to be a mean zero stationary

Gaussian random field in Rn with the covariance function RX(x, y). Then Gaussian kernel

smoothing Y of the random field X is defined by

Y (x) =

∫

Rn

Kh(x− y)X(y) dy

is again a mean zero stationary Gaussian random field with the covariance function

RY (x, y) =

∫

Rn

∫

Rn

Kh(x− x′)Kh(y − y′)RX(x
′, y′) dx′ dy′ (3.7)

Let z = x⊕ y be a 2n-dimensional vector formed by stacking two n-dimensional vectors
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x = (x1, · · · , xn)t and y = (y1, · · · , yn)t such that x ⊕ y = (x1, · · · , xn, y1, · · · , yn)t. The
operator ⊕ is usually called the direct sum. Gaussian kernel is additive in a sense that

Kh(x)Kh(y) = Kh(x⊕ y). Then (3.7) can be rewritten as

RY (z) =

∫

R2n

Kh(z − z′)RX(z
′) dz′,

where z = x ⊕ y and z′ = x′ ⊕ y′. Hence the covariance function RY is Gaussian kernel

smoothing of RX in 2n-dimension. It is interesting to see that the covariance function RY

is a solution of a 2n-dimensional diffusion equation

∂R

∂t
= ∆R,

with the initial condition R(z, 0) = RX(z) after time t = h2/2. In order to find optimal

bandwidth parameter h, we minimize a certain penalty function Wh(x). Different penalties

will give a different choice of bandwidth. Among digital image researchers, the matched filter

theorem [91] has been used as a basis for choosing the optimal filter. The theorem states

that the optimal choice of smoothing kernel should match the signal to be detected. For

instance, in enhancing sulcal patterns of the outer cortical surface (See Section 3.6), we used

5mm FWHM which is the approximate width of the hollows of the cortical surface along the

sulci and visual inspection seems to indicate that 5mm FWHM is a good choice for the sulcal

pattern enhancement. Instead of trying to determine the bandwidth parameter in advance,

the scale-space search method can be used [81, 82, 83, 98, 124]. It searches over a range of

bandwidth parameter h ∈ [h0, h1] to find 4D local maxima in both location and parameter

space, i.e.

max
x∈Ω,h∈[h0,h1]

∫

Rn

Kh(x− y)X(y) dy.

Consider the following penalty

Wh(x) = E |Y (x)−X(x)|2 +Var Y (x) (3.8)

= 2E
(
Y 2(x)

)
− 2E

(
Y (x)X(x)

)
+ E

(
X2(x)

)
(3.9)

= 2RY (x, x)− 2RXY (x, x) +RX(x, x), (3.10)

where RXY is the cross-covariance function of X and Y . When h → 0, the first term

E |Y (x)−X(x)|2 vanishes while the second term obtains its maximum Var Y (x) = RX(0, 0).

As t → ∞, the diffusion process will reach the stability condition ∂R
∂t

= 0 and the covari-

ance function will flatten out to satisfy the harmonic condition ∇R = 0. So when h → ∞,
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Var Y (x) vanishes while the first term obtains its maximum. Because X and Y are sta-

tionary, the penalty function is constant with respect to x, i.e. Wh(x) = Wh(0). But if X

is a non-stationary random field, then Wh(x) becomes a function of both x and h. In such

a case, the optimal bandwidth h will be different for each x and we get spatially adaptive

smoothing. For a non-stationary random field X , we can fix the bandwidth by minimizing

the integrated penalty over a finite domain Ω, i.e.

min
h>0

∫

Ω

Wh(x) dx.

For a stationary random field X , the minimum can be obtained by differentiating (3.10) with

respect to h:

∂RY

∂h
(x, x) =

∂RXY

∂h
(x, x), (3.11)

or equivalently

2E
(∂Y
∂h

(x)Y (x)
)
= E

(∂Y
∂h

(x)X(x)
)
. (3.12)

The integral equation (3.12) is similar to the Wiener-Hopf equation [38], which is used to

find an optimal linear filter and can be solved numerically via the Karhunen-Loève expansion

explained in (2.16). Solving (3.12) in general is not easy for a non-trivial covariance function

but for a simple case the exact optimal bandwidth can be obtained without resorting to

numerical methods. Consider a mean zero stationary Gaussian random field X with the

covariance function RX(x, y) = ρKg(x, y) for some constant ρ. We will use the following two

identities:

Kh(x)Kg(x) =
1

(2π)n/2βn
Kα/β(x),

Kh(x)Kg(x− y) = Kα/β

(
x− h2

β2
y
)
Kβ(y),

where α = hg and β =
√
h2 + g2. From (3.7) and using the fact that RY (x, x) = RY (0, 0),

RY (x, x) = ρ

∫

Rn

∫

Rn

Kh(x)Kh(y)Kg(x− y) dx dy

= ρ

∫

Rn

Kβ(y)Kh(y)

∫

Rn

Kα/β(x−
h2

β2
y) dx dy

=
ρ

(2π)n/2γn

∫

Rn

Kβh/γ(y) dy

=
ρ

(2π)n/2γn
,
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where γ =
√
h2 + β2 =

√
2h2 + g2. Also

RXY (x, x) =

∫

Rn

Kh(x− y)RX(x, y) dy

=
ρ

(2π)n/2βn

∫

Rn

Kα/β(x− y) dy

=
ρ

(2π)n/2βn
.

Solving (3.11), we get

h = g
(41/(n+2) − 1

2− 41/(n+2)

)1/2

.

When n = 1, 2, 3, we get h = 1.12g, h = 0.84g, h = 0.69g respectively. So once we can

estimate the FWHM of the covariance function RX , it can be used to pick up the optimal

bandwidth based on the penalty Wh(x).

Diffusion smoothing has also found applications in the problem of smoothing fMRI data

to increase the signal-to-noise ratio on the cortical surfaces of the human brain [4]. When

using diffusion smoothing on a curved surface, the smoothing somehow has to incorporate the

geometrical features of the curved surface and the Laplacian ∆ should change accordingly.

For example, on a unit sphere, the spherical Laplacian is

∆F =
1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

sin2 θ

∂2F

∂φ2
(3.13)

when the spherical coordinates (x1, x2, x3) = (sin θ cosφ, sin θ sin φ, cosφ) are used. If we use

a different coordinate system on the sphere, we will have a different form of the Laplacian

since it depends on the coordinate system used. The extension of the Euclidean Laplacian

to an arbitrary Riemannian manifold is called the Laplace-Beltrami operator [51, 64]. In the

following sections, we will explicitly explain two computational methods for estimating the

Laplace-Beltrami operator on triangulated meshes. The first, which we call the parametric

method uses a local quadratic parameterization of the surface, and then a transformation

to an orthogonal coordinate system on which the Laplace-Beltrami operator will be reduced

to the simple 2-dimensional Euclidean Laplacian. The other approach uses a finite element

formulation and provides a discrete Laplace-Beltrami operator using only the edge lengths

of the triangulated surface. 3
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3.2 Differential Geometry

Before we introduce diffusion smoothing on an arbitrary manifold, let us review some basic

differential geometry relevant to the Laplace-Beltrami operator and curvature. See classical

books by W.M. Boothby [14], M.P.D. Carmo [18] and E. Kreyszig [64] for an overview of

differential geometry.

Suppose we have an orientable surface ∂Ω which we assume to be a smooth twice-

differentiable 2-dimensional manifold embedded in R3. Then we have a parameterization

of the surface ∂Ω:

X(u) = {x1(u), x2(u), x3(u) : u = (u1, u2) ∈ D}

where all partial derivatives of X up to the second order are continuous in a planar domain

D. The smooth map X : D → ∂Ω is called a parameterized surface of ∂Ω if the partial

derivative vectors

X1(u) =
(∂x1
∂u1

,
∂x2
∂u1

,
∂x3
∂u1

)t

and X2(u) =
(∂x1
∂u2

,
∂x2
∂u2

,
∂x3
∂u2

)t

(3.14)

form a basis for the tangent plane Tp(∂Ω) at any p = X(u) ∈ ∂Ω, i.e. X1(u)× X2(u) 6= 0

for any u ∈ D.

3.2.1 Riemannian Metric Tensors

Because X1 and X2 form a basis for the tangent plane Tp(∂Ω), any vector dξ ∈ Tp(∂Ω) can

be written as a linear combination of the basis vectors X1 and X2: dξ = du1X1 + du2X2 for

some constants du1 and du2. Then the length of the vector dξ in the Cartesian coordinate is

dξ2 ≡ 〈dξ, dξ〉 = g11du
1du1 + g12du

1du2 + g21du
2du1 + g22du

2du2, (3.15)

where the coefficients gij = 〈Xi, Xj〉 are called the Riemannian metric tensor and they

measure the amount of deviation from the Cartesian coordinate system. The bilinear form

(3.15) is called the first fundamental form. The first fundamental form enables us to compute

intrinsic properties of the surface such as lengths, angles and areas. If a curve on the

surface ∂Ω is given by X(u(s)), where the curvilinear coordinates u(s) = (u1(s), u2(s)) is
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parameterized by a single parameter s, its length is given by

∫
‖u̇‖ ds =

∫ (∑

i,j

gij
∂ui

∂s

∂uj

∂s

)1/2

ds.

The angle θ between two vectors ξ, η ∈ Tp(∂Ω) can be computed in terms of the Riemannian

metric tensor in the following way:

cos θ =
ξ · η

‖ξ‖‖η‖ =

∑
i,j gijξ

iηj

(
∑

i,j gijξ
iξj)1/2(

∑
i,j gijη

iηj)1/2
.

The total surface area of a region A ⊂ ∂Ω is

∫

X−1(A)

√
det g du1du2,

where det g = g11g22−g212 and does not depends on the parameterizationX [18, pp. 97]. Note

that
√
det g is the local surface area element, which will be used in Chapter 4 in measuring

the amount of local surface area change.

3.2.2 Gaussian and Mean Curvatures

The unit outward normal vector n to the surface is given by

n =
X1 ×X2√

det g
.

Then the vectors (X1, X2,n) form an orthogonal basis in the 3D Euclidean space. So the

partial derivative of the basis vectors X1, X2 and n can be expressed in terms of the basis:

∂Xi

∂uj
= Γ1

ijX1 + Γ2
ijX2 + Γ3

ijn,

∂n

∂uj
= Γ1

3jX1 + Γ2
3jX2 + Γ3

3jn,

where the constants Γk
ij are called the Christoffel symbols.

The second fundamental form is given by

−〈dξ, dn〉 = l11du
1du1 + l12du

1du2 + l21du
2du1 + l22du

2du2, (3.16)

where lij = 〈Xij ,n〉 and

Xij =
∂Xi

∂uj
=

( ∂2x1
∂ui∂uj

,
∂2x2
∂ui∂uj

,
∂2x3
∂ui∂uj

)t

.
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Let g = (gij) and l = (lij). The principal curvatures κ1 and κ2 are defined as the eigenvalues

of g−1l and the mean curvature KM and the Gaussian curvature KG can be given in terms

of the principal curvatures as

KM = (κ1 + κ2)/2 = tr(g−1l)/2 and KG = κ1κ2 = det(l)/det(g). (3.17)

In estimating the Gaussian curvature on a triangulated mesh, there is an alternative method

based on the covariance matrix of the surface normals [5]. There is also a finite element

version of the mean curvature estimation [37, 78].

For the surface of the form

x3 = z(x1, x2) = β0 + β1x1 + β2x2 +
1

2
β3x

2
1 + β4x1x2 +

1

2
β5x

2
2 + · · · ,

we can parameterize it by X(u1, u2) =
(
u1, u2, z(u1, u2)

)
. A simple computation shows that

X1 = (1, 0, β1), X2 = (0, 1, β2), X11 = (0, 0, β3), X12 = (0, 0, β4), X22 = (0, 0, β5) at the origin.

Then the normal vector n is

n =
(−β1,−β2, 1)

(1 + β2
1 + β2

2)
1/2
.

From (3.15) and (3.16), the coefficients of the fundamental forms at the origin are given by

g =


1 + β2

1 β1β2

β1β2 1 + β2
2


 , l =

1

(1 + β2
1 + β2

2)
1/2


β3 β4

β4 β5


 . (3.18)

Then the mean curvature is given by

KM =
β3(1 + β2

2) + β5(1 + β2
1)− 2β1β2β4

(1 + β2
1 + β2

2)
3/2

. (3.19)

So it is easy to compute geometric quantities such as local surface area, length and curvatures

when the local quadratic surface patch is used. Because of this simplicity, quadratic surface

fitting has been used in estimating curvatures of a macaque brain surface [60].

3.2.3 Laplace-Beltrami Operator

The gradient ∇X of F on the tangent plane Tp(∂Ω) is defined as

∇XF =
∑

i,j

gij
∂F

∂uj
Xi, (3.20)
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where (gij) = g−1 [75, p. 69]. Then the generalized Laplacian called the Laplace-Beltrami

operator ∆X corresponding to the surface parameterization X is defined as the divergence

of the gradient operator such that

∆XF = ∇X · (∇XF ) =
1

|g|1/2
∑

i,j

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
(3.21)

[64, 75]. For the derivation of the Laplace-Beltrami operator without using differential

geometry, one may approach the problem in terms of a curvilinear coordinate transform

[29]. One of the most important properties of the Laplace-Beltrami operator is that it is

independent of the parameterization of ∂Ω, i.e. if X̃ = X ◦Φ is another parameterization of

the surface ∂Ω,

∆X̃ F̃ = ∆̃XF.

However, this equivalence may fail numerically when we estimate ∆F with different param-

eterizations, so that great care should be taken to choose a proper parameterization which

stabilizes the numerical computation and minimizes the variances of errors in estimating the

Laplace-Beltrami operator. Another important property of the Laplace-Beltrami operator,

which will be used in the finite element method, is that the operator is self-adjoint. If F and

G are twice differentiable functions on ∂Ω, then

∫

∂Ω

G∆F dS =

∫

∂Ω

F∆G dS = −
∫

∂Ω

〈∇F,∇G〉 dS,

where the inner product

〈∇F,∇G〉 =
∑

ij

gij
∂F

∂ui
∂F

∂vi

and the surface area element dS =
√
det g du1du2 [51, pp.143].

Conformal coordinates are defined as a coordinate system u = (u1, u2) whose metric is

given by dξ2 = λ(du1)2+λ(du2)2 for some function λ = λ(u). With respect to the conformal

coordinates, the Laplace-Beltrami operator can be simplified to

∆X =
1

λ

(
∂2

∂(u1)2
+

∂2

∂(u2)2

)
.

For an arbitrary smooth surface and a fixed point p, we can always find conformal coordinates

such that X(u) = p and λ(u) = 1 [18]. Therefore, if we find a conformal coordinate system

at each p ∈ ∂Ω, the computation of the Laplace-Beltrami operator at p = X(u) becomes
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Figure 3.4: A typical triangular mesh of the outer cortical surface consisting of 81,920
triangles and 40,962 vertices.

the planar Laplacian at u. In the following section, we will explain a way to find such

conformal coordinate systems on a triangulated surface by a simple affine transformation of

the coordinates.

3.3 Parametric Method

The standard method for triangulating the surface is the marching cubes algorithm [72].

Alternative methods such as the level set method [97] or deformable surfaces method [33]

are available. We have used the anatomic segmentation using proximities (ASP) method

[74], which is a variant of the deformable surfaces method. In triangulating cortical surfaces

of the human brain from 3D MRI, we have used the ASP method to extract 81,920 triangles.

At this surface sampling rate, the average intervertex distance is about 3mm (Figure 3.4).

3.3.1 Estimating Normal Vectors

In order to compute the Riemannian metric tensors on the triangulated surface, we first

estimate the tangent plane and its normal vector at each node then find a local parame-
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Figure 3.5: A typical triangulation in the neighborhood of p = p0. The triangulation is
either pentagonal or hexagonal in ASP algorithm for 81920 triangles.

terization in the neighborhood of each node. Usually normal vectors are computed during

the triangulation process. In the ASP method, the outward unit normal vector n at each

node p is computed as the weighted average of the unit normals of the incident triangles.

If p1, . . . ,pm are m neighboring points of p = p0 in the counter-clockwise direction with

respect to the tangent plane Tp(∂Ω) at p (Figure 3.5), then the unit normal vector n is

estimated as

n =

∑m
i=1 ϕini∑m
i=1 ϕi

,

where the unit vectors ni are normal to each triangle Ti.

ni =
(pi+1 − p)× (pi − p)

‖(pi+1 − p)× (pi − p)‖

and the interior angles are

ϕi = cos−1 〈pi+1 − p,pi − p〉
‖pi+1 − p‖‖pi − p‖ .

Alternatively, we may employ a method similar to principal components analysis (PCA).

The equation of the plane with the unit normal vector n passing through the point p is

〈n, x〉 = 〈n,p〉. The distance from the point pi to the plane is the length of the projection of
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pi − p onto the unit normal vector n, i.e. 〈n,pi − p〉. Then we find the best fitting tangent

plane in the sense of minimizing the sum of squared distance of the points p1, . . . ,pm to the

plane:

min
n

m∑

i=1

〈n,pi − p〉2 = min
n

ntCn,

where C =
∑m

i=1(pi−p)(pi−p)t. If the fitting plane is not forced to pass through the point

p, C becomes the sample covariance matrix of p1, . . . ,pm and the optimization problem

is exactly the standard PCA. Since ntn = 1, using the Lagrange multiplier γ minimize

n′Cn− γ(n′n− 1). Differentiating with respect to n, Cn− γn = 0. Thus, γ is an eigenvalue

of C. Note that we are minimizing n′Cn = n′γn = γ. So the unit normal vector n of

the best fitting tangent plane should be the eigenvector n that corresponds to the smallest

eigenvalue.

If the interior angle of triangles joining the vertex p is acute, the best fitting plane

passing through p might end up perpendicular to the tangent plane Tp(∂Ω). In this case,

the unit normal vector n to Tp(∂Ω) should be the eigenvector that corresponds to the largest

eigenvalue.

3.3.2 Global Parameterization: B-Splines

The ASP algorithm provides a one-to-one mapping from the surface to a sphere [74]. Using

spherical projection, every point except the north pole on the sphere can be mapped onto the

plane. Spherical projection has been used as a global parameterization in flattening the whole

brain surface onto a single plane [6]. One of the most widely used surface parameterization

method is to extend the B-Spline curves to surfaces via tensor product. Let us review special

B-spline curves called Bézier curves [52, 76]. Consider m+1 given points p0, · · · ,pm ∈ RN .

The simplest Bézier curve is a line segment pi,j(u) joining two points pi and pj :

pi,j(u) = (1− u)pi + upj, u ∈ (0, 1).

For three points p0,p1 and p2, a quadratic Bézier curve is given by

p0,2(u) = (1− u)p0,1 + up1,2 = (1− u)2p0 + 2(1− u)p1 + u2p2.
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In general, m-th order Bézier curve is

p0,m(u) =
m∑

j=0

φj,m(u)pj , u ∈ (0, 1)

where the basis functions {φj,m(u) =
(
m
j

)
(1 − u)m−juj, j = 0, . . . , m} are Bernstein polyno-

mials of degree m. Cubic Bézier curves are the most often used Bézier curve because cubics

satisfy the minimum curvature or strain energy property, which make them a more suitable

tool for a smooth curve approximation [52, 76]. To avoid increasing the degree of the Bézier

curve, we need to piece together Bézier curves. If continuity conditions are satisfied for each

Bézier curve segments, the result is a B-spline curve. In general, a B-spline curve of degree

K − 1 with m+ 1 vertices p0, · · ·pm is defined as

X(u) =

m∑

j=0

Bj,K(u)pj ,

where the B-spline functions {Bj,K(u), j = 0, · · · , m} are defined recursively in [52, 76].

Then we can use these B-spline curves to generate surfaces. Consider a rectangular mesh of

vertices {Vij}. A B-spline surface parameterization X of degree K−1 for points pij ∈ R3can

be defined by the tensor product:

X(u1, u2) =
∑

i,j

Bi,K(u
1)Bj,K(u

2)pij . (3.22)

The advantage for using B-spline to represent the surface is that it is easy to evaluate the

curvature of a surface or other geometric characteristics of the surface because polynomial

functions can be differentiated easily. The disadvantage of using the tensor B-spline is that

it is not easy to modify the above formulation which works so well for a rectangular mesh

to a irregular triangular mesh.

3.3.3 Local Parameterization: Quadratic Surface

Instead of using B-splines to form a parametric surface, there is a simpler method based

on the polynomial regression [90]. This is a smoothing technique to fit the given points

p0, . . . ,pm by the least-squares method to a polynomial function of the form

f(x, y) =
∑

i+j≤p

βij x
iyj.
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Then for pi = (xi, yi, zi), P = (p+1)(p+2)
2

unknown coefficients βij ’s are chosen to minimize

the residual
m∑

i=0

[
zi − f(xi, yi)

]2
.

The drawback of the polynomial regression is that there is a tendency to weave the outer most

vertices to find vertices in the center. Therefore, polynomial regression is not recommended

for global surface parameterization. Our surface-based morphometry will try to avoid using

any global surface parameterization. Other families of surface parameterizations have been

suggested but are rarely used. One of them is to use finite Fourier series:

f(x, y) =
∑

0≤i,j≤r

[aij sin(iω1x) sin(jω2y) + bij sin(iω1x) cos(jω2y)

+cij cos(iω1x) sin(jω2y) + dij cos(iω1x) cos(jω2y)].

Such a surface requires a large number of coefficients aij , bij , cij, dij plus the fundamental

frequencies ω1, ω2 to be estimated. Hence, surface fitting based on finite Fourier series on

the large data set is computationally intensive although the fit would be better than the

standard polynomial regression.

However, in estimating the Laplace-Beltrami operator or curvatures, it is not necessary

to find such global parameterization of the surface ∂Ω. A local surface parameterization

in the neighborhood of p can be obtained via the projection of the local surface onto the

tangent plane Tp(∂Ω). Let Q be an orthogonal matrix which rotates the normal vector n to

align with the x3 axis, i.e. Qn = (0, 0, 1)t. It is easy to see that

Q =




n3 0 −
√
n2
1 + n2

2

0 1 0
√
n2
1 + n2

2 0 n3







n1√
n2
1+n2

2

n2√
n2
1+n2

2

0

− n2√
n2
1+n2

2

n1√
n2
1+n2

2

0

0 0 1




is such an orthogonal matrix assuming n1, n2 6= 0. If n1 = n2 = 0, we can take Q = I3.

Let x ∈ ∂Ω be a point in the neighborhood of p. Consider the transformation defined by

y = (y1, y2, y3)
t = Q(x−p). Under this transformation, the local surface region translates to

the origin and then rotates by Q. Then with respect to the new coordinates (y1, y2, y3), the

local surface can be explicitly written as y3 = z(y1, y2) for some function z assuming local

smoothness of the surface. Hence by identifying (y1, y2) as our parameter space, we have the
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following local parameterization in the neighborhood of p:

X(u1, u2) = p+Qt
(
u1, u2, z(u1, u2)

)t

. (3.23)

Then the basis on the tangent plane is

X1 = Qt
(
1, 0,

∂z

∂u1
∣∣
(0,0)

)t

and X2 = Qt
(
0, 1,

∂z

∂u2
∣∣
(0,0)

)t

.

Thus the Riemannian metric tensor is given by

gij = 〈Xi, Xj〉 = δij +
∂z

∂ui
∂z

∂uj
, (3.24)

where the derivatives are evaluated at (0, 0). Hence the metric tensor at p is completely

determined by the derivatives of the function z evaluated at (0, 0) and it is independent of

the rotation of the tangent plane by Q. Similarly, the coefficients of the second fundamental

form are invariant under such a transformation.

In the neighborhood of (0, 0), we have the Taylor approximation of the function z:

z(u1, u2) = β1u
1 + β2u

2 + β3(u
1)2 + β4u

1u2 + β5(u
2)2 + · · · . (3.25)

Since we are forcing the function z to pass through the origin, there is no constant term in the

Taylor expansion. The problem of estimating the coefficients βi can be formulated in terms

of least-squares estimation. For m neighboring points p1, . . . ,pm, let ui = (u1i , u
2
i , u

3
i )

t =

Q(pi −p). Then the unknown coefficients βi are chosen to be the least-squares estimates of

a system of linear equations Y = Xβ: where β = (β1, · · · , β5)t, Y = (u31, · · · , u3m)t and the

m× 5 matrix X is given by

X =




u11 u21 (u11)
2 u11u

2
1 (u21)

2

u12 u22 (u12)
2 u12u

2
2 (u22)

2

. . . . . . . . . . . . . . . . . . . . . .

u1m u2m (u1m)
2 u1mu

2
m (u2m)

2



.

The least-squares estimation is

β̂ = (β̂1, . . . , β̂5)
t = (Xt

X)−XtY, (3.26)

where − denotes a generalized inverse, which can be obtained through the singular value

decomposition [68]. Then from (3.24), the fundamental forms can be estimated and conse-

quently the mean and the Gaussian curvatures. In practice, gii can be any number bigger
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than 1. The smoother the triangular mesh, the closer g11, g22 are to the value 1. When

gij = δij , we have locally Euclidean space.

3.3.4 Local Conformal Coordinates

Because gij 6= δij , the Laplace-Beltrami operator (5.1) has many terms. As we have seen

in the previous section, the mathematical form (5.1) reduces to the planar Laplacian when

locally conformal coordinates are used. Such local conformal coordinate can be obtained by a

linear transformation. Let us define new coordinates v = (v1, v2)t = A−1u, where A = (aij) is

an invertible constant matrix in the neighborhood of p = X(u). Then we have the new local

surface parameterization Y (v) ≡ X(u) = X(Av). Let g∗ = (g∗ij) be the new metric matrix

corresponding to the new parameterization. Then from the chain rule, ∂Y
∂vi

=
∑

k aki
∂X
∂uk and

g∗ij = 〈∂Y
∂vi

,
∂Y

∂vj
〉 =

∑

k,l

akialj〈
∂X

∂uk
,
∂X

∂ul
〉 =

∑

k,l

akialjgkl.

In matrix notation, g∗ = A′gA. Since g is symmetric positive definite, there exists g−1/2 =

(g
−1/2
ij ). So by choosing A = g−1/2 in the neighborhood of p, g∗ij = δij and we have the

local conformal coordinates (v1, v2). In such a coordinate system, the surface (3.25) can be

written as

z(v1, v2) = γ1(v
1)2 + γ2v

1v2 + γ3(v
2)2 + · · ·

for some constants γ1, γ2, · · · and the Laplace-Beltrami operator becomes

∆X =
∂2

∂(v1)2
+

∂2

∂(v2)2
.

3.3.5 Least-Squares Estimation of the Laplace-Beltrami operator

Using the above conformal mapping, we have reduced the problem of estimating the Laplace-

Beltrami on an irregular triangulation in 3D to the problem of estimating the planar Lapla-

cian on an irregular triangulation in a 2D flat plane. Estimating the planar Laplacian on an

irregular triangulation can be solved as a least-squares estimation problem [4, 56].

The i-th neighboring point pi of p under the local conformal transformation becomes

vi = (v1i , v
2
i , v

3
i )

t = g1/2Q(pi−p). Now expand the function F = F (v) as a Taylor expansion
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and evaluate at vi:

F (vi) ≈ F (0) + F1(0)v
1
i + F2(0)v

2
i +

1

2
F11(0)(v

1
i )

2 + F12(0)v
1
i v

2
i +

1

2
F22(0)(v

2
i )

2.,

where Fj =
∂F
∂vj

and Fij =
∂2F

∂vi∂vj
. Let

α = (α1, . . . , α5)
t =

(
F1(0), F2(0), F11(0), F12(0), F22(0)

)t

and

Y =
(
F (v1)− F (0), . . . , F (vm)− F (0)

)t
.

Then we solve a system of linear equations Y = Xα, where the i-th row of the matrix X is
(
v1i , v

2
i ,
1

2
(v1i )

2, v1i v
2
i ,
1

2
(v2i )

2
)
.

The least-squares estimation to Y = Xα is α̂ = (α̂1, . . . , α̂5) = (XtX)−XtY , where − denotes

a generalized inverse. Therefore, the Laplace-Beltrami operator of F at vertex p is estimated

by

∆̂F (p) = α̂3 + α̂5 =

m∑

i=1

wi

(
F (pi)− F (p)

)
,

where the weight wi is equivalent to the the sum of the i-th component of the 3rd and 5th

rows of (X′X)−Xt. We will show in the next section how the weights wi can be estimated

via the finite element method. However, it has been shown that the approximation of the

Laplacian based on least-squares estimation is one of the best performers on an irregular

triangulation of a sphere [56]. The explanation lies in the fact that the above least-squares

approximation is based on a Taylor expansion, thus explicitly minimizing the difference

between the analytical and the approximated Laplacian.

3.4 Finite Element Method

In this section we present a finite element method (FEM) to solve the diffusion equation on

the cortical surface. The FEM has its origin in the field of structural analysis and since then

it has been used in diverse areas. Because the ASP algorithm already provides a triangular

mesh, there is no need to discretize the surface ∂Ω so it has the advantage of avoiding local

surface parameterizations. In general, the finite element discretization of a PDE requires a

corresponding variational principle [93]. However, in our approach we have avoided using

the variational method.
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3.4.1 Barycentric Coordinates

Let NT be the number of triangles in the triangular mesh. We seek an approximate solution

Fi within the i-th triangle Ti such that the solution Fi(x, t) is continuous across neighboring

triangles. The approximate solution F for the whole region is then

F (x, t) ≈
NT∑

i=1

Fi(x, t). (3.27)

The most common form of approximation for F within each triangular element is linear

interpolation [93]. Let pi1 ,pi2 ,pi3 be the vertices of a triangular element Ti. We interpolate

the solution Fi by

Fi(x, t) = ξi1(x)F (pi1 , t) + ξi2(x)F (pi2 , t) + ξi3(x)F (pi3 , t), (3.28)

where ξik are given by the barycentric coordinates, which is a special case of element shape

functions [99, 93]. It is possible to expand the solution F at each vertex of the triangula-

tion, which has been used in estimating the Laplace-Beltrami operator in the brain surface

flattening problem [6]; however, from (3.27) and (3.28), we immediately see that these two

expansions are equivalent.

In the barycentric coordinates, any point x ∈ Ti is uniquely determined by

x = ξi1(x)pi1 + ξi2(x)pi2 + ξi3(x)pi3 and ξi1(x) + ξi2(x) + ξi3(x) = 1. (3.29)

If x 6∈ Ti, we may let ξik = 0. So the barycentric coordinates satisfy 0 ≤ ξik ≤ 1. Solving the

equations (3.29), we get

(ξi1 , ξi2)
t = (P tP )−1P t(x− pi3),

where the 3× 2 matrix P = (pi1 − pi3 ,pi2 − pi3).

3.4.2 Discrete Diffusion Equation

Let G be an arbitrary piecewise linear function given by

G(x) =

NT∑

i=1

ξi1(x)Gi1 + ξi2(x)Gi2 + ξi3(x)Gi3,
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where Gi1, Gi2 , Gi3 are the values of function G at the three vertices of the triangle Ti. Note

that the Laplace-Beltrami operator is self-adjoint with respect to the L2 norm defined on

the space of continuous piecewise linear functions [51]. Thus the diffusion equation (4.24) at

each triangular element Ti becomes

∫

Ti

G
∂F

∂t
dS =

∫

Ti

G∆F dS = −
∫

Ti

〈∇F,∇G〉 dS. (3.30)

The left-hand term in (3.30) can be written as

∫

Ti

G
∂F

∂t
dS =

3∑

k,l=1

Gik

∂F (pil , t)

∂t

∫

Ti

ξikξil dS = [Gi]
t[Ai]

d

dt
[Fi], (3.31)

where [Gi]
t = (Gi1 , Gi2, Gi3), [Fi] =

(
F (pi1 , t), F (pi2, t), F (pi3, t)

)t
and the kl-th element of

the matrix [Ai] is Ai
kl =

∫
Ti
ξikξil dS. It can be shown that

[Ai] =
|Ti|
12




2 1 1

1 2 1

1 1 2


 ,

where |Ti| is the area of the triangular element Ti [93, pp. 459-465]. Similarly the right-hand

term in (3.30) can be written as

∫

Ti

〈∇F,∇G〉 dS =

3∑

k,l=1

GikF (pil , t)

∫

Ti

〈∇ξik ,∇ξil〉 dS = [Gi]
t[C i][Fi], (3.32)

where the kl-th element of [C i] is C i
kl =

∫
Ti
〈∇ξik ,∇ξil〉 dS. Because Ti is planar, the gradient

∇ becomes the standard 2-dimensional Euclidean gradient. The matrix [C i] is usually called

the element coefficient matrix and its exact expression can be computed using the property

of the element shape functions [99, 93]:

[C i] =
1

2




cot θi2 + cot θi3 − cot θi3 − cot θi2

− cot θi3 cot θi1 + cot θi3 − cot θi1

− cot θi2 − cot θi1 cot θi1 + cot θi2


 ,

where θik is the interior angle of vertex pik of the triangle Ti. From (3.31) and (3.32), the

equation (3.30) becomes

[Gi]
t[Ai]

d[Fi]

dt
= −[Gi]

t[Gi][Fi]. (3.33)
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Since the equation (3.33) should be satisfied for an arbitrary column vector [Gi]
t, we have a

system of ordinary differential equation given by

d[Fi]

dt
= −[Ai]−1[C i][Fi] (3.34)

for each triangle Ti. The equation (3.34) is a discretized diffusion equation within each

triangle Ti.

3.4.3 Assembling Elements

Having discretized a triangular element, the next step is to assemble all such elements in m

incident triangles around the central node p. We do not need to assemble all elements in the

triangular mesh but only m incident triangles around the node p because the diffusion of

signal for a relatively small time interval is strictly a local phenomenon. Let p1, · · · ,pm be

the m neighboring nodes around p = p0 in the counter-clockwise direction. Let p,pi,pi+1

be the vertices of the triangular element Ti (Figure 3.5). Then from (3.32),

∫

T1∪···∪Tm

〈∇F,∇G〉 dS =
m∑

i=1

∫

Ti

〈∇F,∇G〉 dS (3.35)

=

m∑

i=1

[Gi]
t[C i][Fi] (3.36)

= [G]t[C][F ], (3.37)

where the column vectors are

[F ] = [F (p, t), F (p1, t), · · · , F (pm, t)]
t,

[G] = [G(p), G(p1), · · · , G(pm)]
t.

The (m+1)×(m+1) matrix [C] is called the global coefficient matrix, which is the assemblage

of individual element coefficients. The contribution to the ij-th element Cij of the matrix

[C] comes from all finite elements containing nodes i and j (0 ≤ i, j ≤ m). In the case of a
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hexagonal triangulation in Figure 3.5, the 7× 7 matrix [C] is given by




C1
00 + · · ·+ C6

00 C1
01 + C6

01 C1
02 + C2

02 C2
03 + C3

03 C3
04 + C4

04 C4
05 + C5

05 C5
06 + C6

06

C1
01 + C6

01 C1
11 + C6

11 C1
12 0 0 0 C6

16

C1
02 + C2

02 C1
12 C1

22 + C2
22 C2

23 0 0 0

C2
03 + C3

03 0 C2
23 C2

33 + C3
33 C3

34 0 0

C3
04 + C4

04 0 0 C3
34 C3

44 + C4
44 C4

45 0

C4
05 + C5

05 0 0 0 C4
45 C4

55 + C5
55 C5

56

C5
06 + C6

06 C6
16 0 0 0 C5

56 C5
66 + C6
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.

Also from (3.31),

∫

T1∪···∪Tm

G
∂F

∂t
dS =

m∑

i=1

∫

Ti

G
∂F

∂t
dS (3.38)

=

m∑

i=1

[Gi]
t[Ai]

d[Fi]

dt
(3.39)

= [G]t[A]
d[F ]

dt
, (3.40)

where the ij-th element Aij of the matrix [A] has the same structure as [C], i.e. A01 =

A1
01 + A6

01 instead of C01 = C1
01 + C6

01 in the first row and the second column. Combining

(3.37) and (3.40), we have

[G]t[A]
d[F ]

dt
= −[G]t[C][F ]. (3.41)

Since equation (3.41) should be satisfied for an arbitrary piecewise linear function G, we

have a discrete diffusion equation on m elements T1, · · · , Tm given by

d[F ]

dt
= −[A]−1[C][F ]. (3.42)

The first row of the simultaneous ODE (3.42) gives the discrete diffusion equation at the

vertex p = p0:

dF (p, t)

dt
= −

m∑

i,k=0

A−1
0k CkiF (pi, t), (3.43)

where A−1
0k is the 0k-th element of A−1. The right-hand side of the equation (3.43) is the

estimation of the Laplace-Beltrami operator based on the FEM at p. Simplifying the matrix
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computation using the computational algebra software Maple, we have the FEM estimation

for the Laplace-Beltrami operator given by

∆̂F (p) =

m∑

i=1

wi

(
F (pi)− F (p)

)
(3.44)

with the weights

wi =
cot θi + cotφi

|T | ,

where θi and φi are the two angles opposite to the edge pi − p and |T | = ∑m
i=1 |Ti| is the

sum of the areas of the incident triangles (Figure 3.5). In terms of Cartesian coordinates,

we have

cot θi =
〈pi+1 − p,pi+1 − pi〉

2|Ti|
, cotφi =

〈pi−1 − p,pi−1 − pi〉
2|Ti|

and

|Ti| =
1

2
‖(pi+1 − p)× (pi − p)‖.

When m = 4 with the fixed angles θi, φi = π/4, the triangular mesh becomes a square

grid and ∆̂F (p) in (5.1) reduces to the finite difference estimation of the Laplacian in the

square grid [56, 102].

3.5 Finite Difference Scheme

So far we have presented two methods of estimating the Laplace-Beltrami operator as a

weighted linear smoothing of the form ∆̂F (p, t) =
∑m

i=1wi

(
F (pi, t) − F (p, t)

)
. In both

methods, the diffusion equation can be solved by the finite difference scheme:

F (p, tn+1) = F (p, tn) + (tn+1 − tn)∆̂F (p, tn) (3.45)

with the initial condition F (p, 0) = f(p) for each node p on the triangular mesh. We may

fix the iteration step size tn+1 − tn = δt. The value δt controls the spread of the diffusion

smoothing and it should be chosen with respect to the smoothness of the Laplace-Beltrami

operator of F . If p1, · · · ,pm are neighboring nodes of p, then the diffusion of heat should

satisfy the following approximate boundary condition for small δt

min
0≤i≤m

F (pi, tn) ≤ F (p, tn+1) ≤ max
0≤i≤m

F (pi, tn). (3.46)
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The inequality (3.46) simply states that the diffused heat must be anywhere between the

highest and the lowest heat. Since the Laplace-Beltrami operator can be transformed to the

the planar Laplacian via local conformal transform, we only need to show (3.46) is in R2.

Let Ap ⊂ R2 be a bounded set containing a point p. Suppose that

max
x∈Ap

F (x, t) = F (pmax, t).

For infinitesimally small δt, F (p, t + δt) restricted to Ap will also attain it’s maximum at

pmax. At the local maximum pmax, the second derivatives of F will be negative. Hence

∆F (pmax, t) ≤ 0. Then

F (p, t+ δt) ≤ F (pmax, t+ δt)

= F (pmax, t) +

∫ δt

t

∆F (pmax, s) ds

≤ max
x∈Ap

F (p, t).

The minimum case follows similarly. The inequality (3.46) may break down if δt is large.

From (3.45) and (3.46), the iteration step size must satisfy

δt ≤ min
(∣∣∣maxi F (pi, tn)− F (p, tn)

∆̂F (p, tn)

∣∣∣,
∣∣∣mini F (pi, tn)− F (p, tn)

∆̂F (p, tn)

∣∣∣
)
. (3.47)

The denominator ∆̂F behaves like the sample covariance of F at p,p1, · · · ,pm. The

smoother the function F is, the smaller the Laplace-Beltrami operator of F is. In such

a case, the iteration step size δt can be large. By changing the iteration step size δt with

respect to the inequality at each node p, we will have spatially adaptive smoothing, which

depends on the smoothness of the function F . In order to determine the critical iteration

step size for the isotropic diffusion (with respect to the local conformal coordinates) with

the spatially fixed δt, it is best to measure the smoothness of the function F first and then

estimate the δt accordingly. The signal F (p, tn) tends to become smoother as n increases, in

which case, the ratio in (3.47) gets larger. Therefore, if δt satisfies the inequality (3.47) at

every node p at the first iteration n = 1, the inequality (3.46) will be satisfied for the later

iteration n ≥ 1. Note that the iteration time step should be in the order of

δt < nodal distance ×
∣∣∣ the first derivative of F

the second derivatives of F

∣∣∣

to guarantee the convergence and the stability of the finite difference scheme. The relation

between the critical iteration step size and the nodal distance has also been briefly pointed

out in [4].
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Figure 3.6: Diffusion smoothing of an artificial heat distribution on the triangulated mesh of
the brain stem consisting of 1280 triangles. The artificial signal was generated with Gaussian
noise to illustrate how the finite difference scheme works with different iteration step sizes.
a. The initial heat distribution, b. After 10 iterations with δt = 0.5, c. After 20 iterations
with δt = 0.5, d. After 50 iterations with δt = 0.2, e. After 10 iterations with δt = 1.5.
Because the iteration step size is large, the iteration breaks down and a singularity (the
white spot) begins to appear.
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If the iteration step size is bigger than the desired inequality, the iteration will diverge as

illustrated in Figure 3.6 e., where the large iteration step size δt = 1.5 causes the instability of

the iterations producing the sudden singularity (the white spot). Ideally, the finite difference

scheme should converge to the stationary solution of the diffusion equation, i.e. ∆F = 0.

After N iterations, the finite difference scheme gives an approximate solution of the diffusion

of the initial heat f after time Nδt. If the diffusion were applied to Euclidean space, it

would be equivalent to the Gaussian Kernel smoothing with FWHM = 4(ln 2)1/2
√
Nδt.

In order to have 10mm FWHM Gaussian kernel smoothing in Euclidean space, we should

have Nδt = 4.33. Hence if the iteration step size is taken as δt = 0.2, then N = 22

iterations are sufficient to get the 10mm FWHM smoothing assuming the iterations are

stable. Equivalently δt = 0.1 with N = 44 will have the equivalent result. So the number of

iterations that is required is inversely proportional to the iteration step size δt. The smaller

the iteration step size, the longer it takes to achieve the same result. This has been illustrated

in Figure 3.6 c. and d. which show almost identical results. It should be remembered that

the above discussion about 10mm FWHM Gaussian kernel smoothing is only an analogy

applied to the curved surface and should not be taken literally. To see this, note that the

Laplace-Beltrami operator in general orthogonal coordinate system (u1, u2) can be written

as

∆ =
∂2

∂(u1)2
+

∂2

∂(u2)2
+ ρ2

∂

∂u1
+ ρ1

∂

∂u2
,

where ρ1, ρ2 are the geodesic curvatures of the u1, u2 axes [64]. In the conformal coordinate

system we are using, ρ1, ρ2 are zeros. So locally in the conformal coordinates, the FWHM

has the same meaning as in Euclidean space. But in general with respect to the orthogonal

coordinates, the Laplace-Beltrami operator involves the geodesic curvatures of the surface.

Therefore, how the surface is curved influences the smoothing and FWHM does not have

the same meaning as in Euclidean space.

3.6 Result: Smoothing the Mean Curvature

The surface based diffusion smoothing has been used to increase the signal to noise ratio

in fMRI activation on the cortical surface [4, 48]. Another application of the smoothing

technique would be in the area of enhancing structural information such as the mean and the
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Figure 3.7: The mean curvature of the outer cortex is mapped onto an ellipsoid consisting
of 81920 triangles preserving the connectivity. Note that the diffusion was run directly on
the cortical surface and mapped onto the ellipsoid later. a. Before the iteration. b. After
40 iterations with δt = 0.02 c. After 100 iterations with δt = 0.02. If the smoothing were
based on simple internodal averaging, such sulcal pattern can not be obtained.

Gaussian curvatures on the outer cortex [60], the cortical thickness [58], and the displacement

vector fields on the cortical surface deformation problem. Just like smoothing functional

activation, it is also possible to smooth coordinates of the triangular mesh resulting in a

mesh smoothing problem [78]. So with slight modification of our algorithm, triangular mesh

smoothing might be another application of the diffusion smoothing although care should be

taken to avoid the inherent mesh shrinkage problem [105].

Among many possible applications related to brain surfaces, we have picked up an ex-

ample of segmenting sulci and gyri of the cortical surface based on the segmentation of the

mean curvature. Sulci and gyri can be characterized as the crowns and the hollows of the
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Figure 3.8: Comparison of the parametric method and the finite element method of the
diffusion smoothing of the mean curvature in Figure 3.7 c. The extent of smoothing is roughly
equivalent to 5mm FWHM Gaussian kernel smoothing in 2D Euclidian space (δt = 0.02,
N = 100 iterations). a. Parametric method. b. The finite element method. The smoothing
patterns are slightly different inside the black circle.

brain surface [103]. Gaussian and mean curvatures of the brain surface have been used to

characterize its shape [33, 50, 60]. Then this geometric information can be further used

as landmarks for the brain registration process. The problem of segmenting sulci and gyri

has usually been done via multiscale or multiresolution methods in computing curvatures.

However, one can achieve similar result using the diffusion smoothing. As shown in Figure

3.7 a., b. and c., the maximum mean curvature can identify the sulci although they also

identify some unwanted regions which do not belong to the sulci. Then by applying diffusion

smoothing to the mean curvature of the cortical surface, the sulcal regions can be enhanced

(Figure 3.7 d, e. and f.). Basically the same principle has been used in extracting the edge

[79, 42].

There are two ways to compute the curvatures. The FEM version [37, 78] estimates the

mean curvature KM as

KM =
1

4|T |

m∑

i=1

(cot θi + cotφi)〈n,pi − p〉.

In the parametric version, which we will be using in our example (Figures 3.7), the mean

curvature KM is estimated using the formula (3.17). Then in terms of the local quadratic

surface (3.25), we have the mean curvature estimation (3.19).
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Comparing the parametric method and the finite element method of smoothing the mean

curvature, we have similar but nonidentical diffusion profiles due to, perhaps, different as-

sumptions on the manifold structure where the Laplace-Beltrami operators were actually

computed (Figure 3.8). But the major reason for the slight discrepancy is that 81920 tri-

angles are not sufficient enough to guarantee the smoothness of the triangulation, which is

essential for both methods of estimation to converge.
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Chapter 4

Deformation-Based Morphometry on

2D Surfaces

This chapter is the extension of the Chapter 2, where we have introduced a unified statis-

tical approach for deformation-based morphometry in 3D MRI. Using the same stochastic

assumption on the deformation field as before, we derive the statistical distributions of the

morphological variables such as area dilatation rate, cortical thickness and curvature changes.

These statistics can be used in statistical inferences on surface-based morphometric analy-

sis. As an illustration, we will demonstrate how the surface-based statistical analysis can be

applied in localizing the cortical regions of gray matter tissue growth and loss in the brain

images longitudinally collected in the same group of children and adolescents previously

analyzed in Chapter 2.

4.1 Surface Deformation

Let U(x, t) = (U1, U2, U3)
t be the 3-dimensional displacement vector required to deform the

structure at position x = (x1, x2, x3) in the gray matter Ω0 to the homologous structure

after time t. The whole volume Ω0 will deform continuously and smoothly to Ωt via the

deformation x → x+ U while the cortical boundary ∂Ω0 will deform to ∂Ωt. Note that the

cortical surface ∂Ωt consists of two parts: the outer cortical surface ∂Ωout
t between the gray
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matter and CSF and the inner cortical surface ∂Ωin
t between the gray and white matter (see

Figure 1.1 and Figure 4.1), i.e.

∂Ωt = ∂Ωout
t ∪ ∂Ωin

t .

Although we are dealing exclusively with the cortical boundaries, our surface-based analysis

can be equally applicable to the deformation of the surface of any brain substructure.

Any statistical inference on structural deformation requires a basic stochastic model. The

proposed stochastic model on the displacement velocity V , which has been already used in

Chapter 2 is

V (x) = µ(x) + Σ1/2(x)ǫ(x), x ∈ Ω0, (4.1)

where µ is the mean displacement velocity and Σ1/2 is the 3× 3 symmetric positive definite

covariance matrix, which allows for correlations between components of the displacement

fields. The components of the error vector ǫ are are assumed to be independent and iden-

tically distributed as smooth stationary Gaussian random fields with zero mean and unit

variance. The statistical model (4.1) is based on the whole gray matter volume Ω0 so it is

not truly a surface based model. However by restricting the domain of the displacement U

to the cortical surface ∂Ω0, we have the surface based model:

V (x) = µ(x) + Σ1/2(x)ǫ(x), x ∈ ∂Ω0. (4.2)

It can be shown that the normal component of the displacement velocity V = ∂U
∂t

re-

stricted on the boundary ∂Ω0 uniquely determine the evolution of the cortical surface. As-

suming the surface ∂Ωt to be smooth enough, it can be locally expressed in an implicit

form

F (x, t) = 0, x ∈ ∂Ωt (4.3)

By taking the time derivative in (4.3), the kinematic equation [39, pp. 33] for the surface

deformation is given by

∂F

∂t
+ 〈V,∇F 〉 = 0, (4.4)

where ∇F =
(
∂F
∂x1
, ∂F
∂x2
, ∂F
∂x3

)t
is the gradient vector. The unit normal vector to the surface is

given by

n =
∇F

‖∇F‖ . (4.5)
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From (4.4) and (4.5), the kinematic equation becomes

∂F

∂t
= −‖∇F‖Vn, (4.6)

where Vn = 〈V,n〉 is the normal component of the surface displacement velocity. If we let Vt

denote the tangential component of V , then V = Vn + Vt. There are infinitely many surface

displacement velocities that gives the same normal component Vn and in turn, the same

kinematic equation (4.6), which describes the evolution of the cortical surface over time.

Hence, translation of the surface in the tangential direction does not change the geometry

of the surface and only the normal component Vn uniquely determines the evolution of the

cortical surface at a given point.

The major impediment to the practical use of cortical surface-based approaches in brain

imaging is the difficulty of automating the surface extraction, registration and analysis. Cor-

tical surfaces are usually extracted as triangular meshes via the Marching Cubes algorithm

[72], the level set method [97] or deformable surfaces method [33]. In our analysis, we have

used the anatomic segmentation using proximities (ASP) method [74], which is a variant of

the deformable surfaces method. In triangulating cortical surfaces of the human brain from

3D MRI, the ASP method generates 81,920 triangles evenly distributed in size. In order to

accomplish the statistical analysis on the cortical surface, mathematical representation of

the cortical surface is an essential part. The most natural mathematical representation of

the cortical surface is by surface parameterization [14, 18, 64, 76]. We model the cortical

surface as a smooth 2-dimensional Riemannian manifold parameterized by two parameters

u1 and u2 such that any point x ∈ ∂Ω0 can be uniquely represented by

x = X(u1, u2)

for some parameter space u = (u1, u2) ∈ D ⊂ R2. We will try to avoid global parameteriza-

tion such as tensor B-splines in (3.22), which are computationally expensive compared to a

local surface parameterization. Instead, a quadratic polynomial

z(u1, u2) = β1u
1 + β2u

2 + β3(u
1)2 + β4u

1u2 + β5(u
2)2

will be used as a local parameterization fitted via least-squares estimation. Using the least-

squares solution in (3.26), these coefficients βi can be estimated. There is a slightly differ-

ent quadratic surface parameterization, which has been used in estimating curvatures of a

macaque monkey brain surface [60].
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4.2 Surface-Based Morphological descriptors

4.2.1 Riemannian Metric Tensor Change

As in the case of local volume change in the whole brain volume, the rate of cortical surface

area expansion or reduction may not be uniform across the cortical surface. Extending the

concept of volume dilatation, we introduce a new concept of surface area dilatation and its

rate of change over time via differential geometry.

Suppose that the cortical surface ∂Ωt at time t can be parameterized by the parameters

u = (u1, u2) such that any point x ∈ ∂Ωt can be written as x = X(u, t). Following the

convention of differential geometry, we will suppress the spatial parameter u in X(u, t) and

write it as X(t) whenever there is no ambiguity. Then we have

X(t) = X(0) + U(X(0), t). (4.7)

Let Xi =
∂X
∂ui be a partial derivative vector defined in (3.14). The Riemannian metric tensor

gij of the surface ∂Ωt is given by gij(t) = 〈Xi(t), Xj(t)〉. The Riemannian metric tensor gij

measures the amount of the deviation of the cortical surface from a flat Euclidean plane. It

enables us to measure lengths, angles and areas in the cortical surface and that is why gij is

called the metric tensor. For a flat plane, gij = δij . Differentiating (4.7) with respect to the

parameter ui,

Xi(t) = Xi(0) + (∇U)Xi(0), (4.8)

where ∇U = ( ∂Ul

∂xk
) is the 3 × 3 displacement gradient matrix defined in (2.4). The metric

tensor gij(t) can be written as

gij(t) = 〈Xi(t), Xj(t)〉 (4.9)

= gij(0) + 2X t
i (0)(∇U)Xj(0) +X t

i (0)(∇U)t(∇U)Xj(0), (4.10)

where t is the matrix transpose. For relatively small displacement, the higher order term

involving (∇U)t(∇U) can be neglected:

gij(t) ≈ gij(0) + 2Xi(0)
t(∇U)Xj(0).
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Let g(t) =
(
gij(t)

)
be a 2 × 2 matrix of metric tensors of ∂Ωt. In matrix notation, the rate

of metric structure change is given by

∂g

∂t
≈ 2(∇X)t(∇V )∇X, (4.11)

where ∇X =
(
X1(0), X2(0)

)
is a 3× 2 gradient matrix.

4.2.2 Local Surface Area Change

The infinitesimal surface area element [64, pp. 114] is defined as

√
det g = (g11g22 − g212)

1/2. (4.12)

It measures the transformed area of the unit square in the parameter space D via the

transformation X : D → ∂Ωt. The total surface area of ∂Ωt is then given by

‖∂Ωt‖ =

∫

X−1(∂Ωt)

√
det g du1du2.

Thus, the local area dilatation rate Λarea or the rate of local surface area change per unit

surface area becomes

Λarea =
∂

∂t
ln
√
det g =

1

2 det g

∂(det g)

∂t
.

If the whole brain volume Ωt is parameterized by 3-dimensional curvilinear coordinates

u = (u1, u2, u3), then ∂
∂t
ln
√
det g is equivalent to the local volume dilatation rate Λvolume,

discussed in (2.5). Therefore, in terms of the curvilinear coordinate system, the area dilata-

tion and volume dilatation are the same concept. A simple matrix manipulation [54, pp.

304-308] shows that

Λarea =
1

2
tr
(
g−1∂g

∂t

)
. (4.13)

From (4.11) and (4.13), the rate of local surface area change becomes

Λarea ≈ tr[g−1(∇X)t(
∂

∂t
∇U)∇X ].

The partial derivatives of Gaussian random fields are again Gaussian [1, pp. 31]. Under the

stochastic model (4.1), the area dilatation rate is distributed as Gaussian:

Λarea = λarea(x) + ǫarea(x), (4.14)
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Figure 4.1: Cortical thickness change under the deformation x → x + U(x, t). The linkage
between x and y is defined by the ASP algorithm and the cortical thickness is defined as the
Euclidian distance ‖x− y‖. a. Before the deformation. b. After the deformation.

where λarea(x) = tr[g−1(∇X)t(∇µ)∇X ] is the mean area dilatation rate and ǫarea(x) is

a mean zero Gaussian random field defined on the cortical surface. The area dilatation

rate is invariant under parameterization, i.e. the area dilatation rate will always be the

same no matter which paramerization is chosen. Afterwards, statistical inference of brain

tissue growth near the cortical surface can be performed via the T random field defined on

the cortical surface [120, 125]. As in the case of local volume dilatation model (2.6), the

Var(ǫarea) should not depend on t in order to apply the random field theory developed in

[120, 125].

4.2.3 Cortical Thickness Change

The average cortical thickness for each individual is about 3mm [55]. Cortical thickness

varies from 2mm to 4mm depending on the location of the cortex. When the brain develops,

it is highly likely that the change of cortical thickness may not be uniform across the cortical

surface. We will show how to localize the cortical regions of statistically significant thickness

change in brain development. Our approach introduced here can also be applied to measuring

the rate of cortical thinning, possibly associated with Alzheimer’s disease. As in the case

of volume dilatation, we introduce the concept of length dilatation, which measures cortical

thickness change per unit thickness. There are many different computational approaches to

measuring cortical thickness but we will use the Euclidean distance from a point x on the
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outer surface ∂Ωout
t to the corresponding point y on the inner surface ∂Ωin

t , as defined by the

automatic linkages used in the ASP algorithm [74] (Figure 4.1). A validation study for the

assessment of the accuracy of the cortical thickness measure based on the ASP algorithm has

been performed and found to be valid for the most of the cortex [61]. There is an alternate

method for automatically measuring cortical thickness based on the Laplace equation [58].

Let ‖x − y‖ be the cortical thickness computed as the Euclidean distance between x =

(x1, x2, x3) and y = (y1, y2, y3), i.e.

‖x− y‖ =
(
(y1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
)1/2

.

Under the deformation (4.7), the cortical thickness at x ∈ ∂Ωout
t can be written as

‖x(t)− y(t)‖ = ‖x(0)− y(0) + U(x(0), t)− U(y(0), t)‖

For relatively small displacement, we may neglect the higher order terms of U in the Taylor

expansion of the cortical thickness:

‖x(t)− y(t)‖ ≈ ‖x(0)− y(0)‖+
(
U t(x(0), t)− U t(y(0), t)

) x(0)− y(0)

‖x(0)− y(0)‖ .

Furthermore, U(x(0), t)− U(y(0), t) ≈ ∇U(x(0), t)
(
x(0)− y(0)

)
. It follows that

∂

∂t
‖x− y‖ =

(
x(0)− y(0)

)
(∇V )

x(0)− y(0)

‖x(0)− y(0)‖ .

Hence the length dilatation rate Λlength is given as a quadratic form in d such that

Λlength =
∂

∂t
ln ‖x− y‖ ≈ dt(∇V )d =

3∑

i,j=1

didj
∂2Uj

∂t∂xi
,

where the unit vector d = (d1, d2, d3)
t = x(0)−y(0)

‖x(0)−y(0)‖ . From (4.1), we have a linear model on

the length dilatation given by

Λlength = λlength(x) + ǫlength(x),

where λlength = dt
(
∇µ

)
d is the mean cortical thickness dilatation rate and ǫlength is a mean

zero Gaussian random field. In practice, the cortical thickness dilatation rate Λj
length for

subject j is given by the discrete approximation:

Λj
length =

‖x(tj)− y(tj)‖ − ‖x(0)− y(0)‖
tj‖x(0)− y(0)‖ ,

84



Figure 4.2: Cortical thickness dilatation rate for a single subject. The red (blue) regions
show more than 67% thickness increase (decrease). a. The outer cortical surface. b., d.

The same data as in a. projected onto the average outer cortical surface of 28 subjects.
c. The inner cortical surface. Note the high variabilities of the cortical thickness dilatation
rate across the cortex. Due to such large variabilities, surface-based smoothing is required
to increase the signal-to-noise ratio.
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where tj is the time difference between two scans. Afterwards the t-statistic is formed by

Tlength =
√
n
Mlength

Slength
,

where Mlength and Slength are the sample mean and standard deviation of n subjects respec-

tively.

4.2.4 Curvature Change

When the surface ∂Ω0 deforms to ∂Ωt, curvatures of the surface change. The mean and the

Gaussian curvature can characterize the shape and location of the sulci and gyri, which are

the crowns and hollows of the brain surface [60, 103]. By measuring the rate of change of the

mean and Gaussian curvature, rapidly folding and unfolding cortical regions can be localized.

Let us first consider a special case of the displacement restricted to U(x, t) = l(t)n(x, t),

where l is independent of x ∈ ∂Ω0. Under this parallel deformation, the deformed surface

∂Ωt is called a parallel surface of ∂Ω0 and its parametric form x(u, t) is given by

X(u, t) = X(u, 0) + l(t)n(u, t).

Then the mean curvature KM(x, t) and Gaussian curvature KG(x, t) at x ∈ ∂Ωt can be

computed (see [108, pp. 102-107]) as

KM(x, t) =
KM(x, 0)− 2KG(x, 0)l(t)

1 +KG(x, 0)l2(t)− 2KM(x, 0)
(4.15)

KG(x, t) =
KG(x, 0)

1 +KG(x, 0)l2(t)− 2KM(x, 0)l(t)
(4.16)

For relatively small displacement, the first two terms of Taylor expansions in (4.15) and

(4.16) are given by

KM(x, t) ≈ KM(x, 0) + 2
(
K2

M(x, 0)−KG(x, 0)
)
l(t), (4.17)

KG(x, t) ≈ KG(x, 0) + 2KM(x, 0)KG(x, 0)l(t). (4.18)

Then from (4.17) and (4.18), the rate of the curvature changes over time are

∂KM

∂t
= 2

(
K2

M(0)−KG(0)
)dl
dt

∂KG

∂t
= 2KM(0)KG(0)

dl

dt
.
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In general, the displacement vector field U is not always parallel to the surface normal

n in the deformation of brain and we need to generalize the concept of parallel surface in

differential geometry to nonparallel surface. Based on the kinematic equation (4.4), the

rate of the change of curvatures are given as a system of simultaneous partial differential

equations [39, pp. 206-210]. Let κ1 and κ2 be the two principal curvatures defined in Section

3.2.2. then it can be shown that the rate of the curvature change are

∂κi
∂t

= κ2iVn +∆Vn, (4.19)

where ∆ is the Laplace-Beltrami operator defined on the surface. From (3.17), which relates

the principal curvatures to the mean and Gaussian curvatures, we have

∂KG

∂t
= 2KMKGVn + 2KM∆Vn

∂KM

∂t
= 2(K2

M −KG)Vn +
1

2
∆Vn.

For relatively small displacement, we can neglect the higher order derivatives of Vn,

∂KG

∂t
≈ 2KMKGVn, (4.20)

∂KM

∂t
≈ 2(K2

M −KG)Vn. (4.21)

From the statistical model (4.1), the normal velocity component is

Vn = 〈V,n〉 = µn + ǫV , (4.22)

where µn = 〈µ,n〉 is the mean normal velocity and ǫV is a mean zero Gaussian random field.

It follows that the mean curvature change is,

∂KM

∂t
= 2(K2

M −KG)µn + ǫKM
,

where ǫKM
is a mean zero Gaussian random field.

4.3 Diffusion Smoothing

In order to increase the signal-to-noise ratio, kernel smoothing is desirable in many statistical

analyses. For example, Figure 4.2 shows high noise data on the outer cortical surface of
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the average brain atlas. By smoothing the data on the curved surface, the signal-to-noise

ratio will increase if the signal itself is smooth and in turn, it will be easier to localize the

morphological changes. However, due to the convoluted geometry of the cortex, which is

non-Euclidean, we can not directly apply Gaussian kernel smoothing on the cortical surface.

Gaussian kernel smoothing of the data f(x), x = (x1, . . . , xn) ∈ Rn with FWHM (full width

at half maximum) = 4(ln 2)1/2
√
t is defined as the convolution of the Gaussian kernel with

f :

F (x, t) =
1

(4πt)n/2

∫

Rn

e−(x−y)2/4tf(y)dy. (4.23)

As we have introduced earlier in Chapter 3, the convoluted data F (x, t) is the integral

solution of the n-dimensional diffusion equation

∂F

∂t
= ∆F (4.24)

with the initial condition F (x, 0) = f(x), where ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
n
is the Laplacian in

n-dimensional Euclidean space [41]. Hence the Gaussian kernel smoothing of the function

f(x) is equivalent to the diffusion of the initial heat f(x) after time t. The indirect approach

of solving the PDE (4.24) rather than Gaussian kernel smoothing gives diffusion smoothing,

which is adaptable to curved surfaces by generalizing the Laplacian ∆ defined in Rn to

Riemannian manifolds. When using diffusion smoothing on curved surfaces, the smoothing

somehow has to incorporate the geometrical features of the curved surface and the Laplacian

∆ should change accordingly. The extension of the Euclidean Laplacian to an arbitrary

Riemannian manifold is called the Laplace-Beltrami operator [64]. Diffusion smoothing on

the cortical surface has been used in the problem of the smoothing fMRI to increase the

signal-to-noise ratio (SNR) [4] (See [38, 91, 124] for the precise definition of the SNR). The

approach taken in [4] is a local flattening of the cortical surface and estimating the planar

Laplacian, which may not be as accurate as our estimation based on the parametric and the

finite element method. There should be further comparative investigation between these two

methods. However, instead of flattening the cortical surface first and then doing Gaussian

kernel smoothing, it is possible to solve the diffusion equation on the curved surface via the

Laplace-Beltrami operator. If the surface ∂Ω is given by the parameterizationX = X(u1, u2),

the surface Laplacian ∆ should take a different form which is determined by the Riemannian

metric tensor gij. From [7, pp. 158-167], we can show that the Laplace-Beltrami operator
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takes the following metric tensor formulation:

∆F =
∑

i,j

1

|g|1/2
∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
, (4.25)

where (gij) = g−1. Such a surface Laplacian is called the Laplace-Beltrami operator cor-

responding to the parameterization X . Using the FEM on the triangular cortical mesh

generated by the ASP algorithm, we estimated the Laplace-Beltrami operator as the linear

weights of neighboring data in Chapter 3. Let p1, · · · ,pm be m neighboring nodes around

the central node p = p0. Then we have shown in (5.1) that the estimated Laplace-Beltrami

operator is

∆̂F (p) =

m∑

i=1

wi

(
F (pi)− F (p)

)

with the weights

wi =
cot θi + cotφi∑m

i=1 ‖Ti‖
,

where θi and φi are the two angles opposite to the edge connecting pi and p, and ‖Ti‖ is the

area of ith triangle (Figure 3.5). Note that this is an improved formulation from the previous

attempt of diffusion smoothing used in smoothing fMRI data in [4], where the Laplacian is

estimated as the planar Laplacian after local fattening of the triangular mesh consisting of

nodes p0, · · · ,pm onto a flat plane. In the actual numerical implementation using Matlab,

we have used formulas

cot θi =
〈pi+1 − p,pi+1 − pi〉

2‖Ti‖
, cotφi =

〈pi−1 − p,pi−1 − pi〉
2‖Ti‖

and ‖Ti‖ = 1
2
‖(pi+1 − p) × (pi − p)‖. Afterwards, the finite difference scheme is used to

iteratively solve the diffusion equation at each node p:

F (p, tn+1)− F (p, tn)

tn+1 − tn
= σ2∆̂F (p, tn),

with the initial condition F (p, 0) = f(p). After N iterations, the finite difference scheme

gives an approximate solution of the diffusion of the initial heat f after time Nδt. If the dif-

fusion were applied to Euclidean space, it would be equivalent to Gaussian kernel smoothing

with

FWHM = 4(ln 2)1/2
√
Nδt.

It should be emphasized that Gaussian kernel smoothing is a special case of diffusion smooth-

ing restricted to Euclidian space. Computing the linear weights for the Laplace-Beltrami
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operator takes a fair amount of time (the parametric method takes about 3 minutes and

FEM method takes about 6 minutes in Matlab running on a Pentium III machine), but once

the weights are computed, it is applied through the whole iteration repeatedly and the actual

finite difference scheme takes only two minutes for 100 iterations.

4.4 Statistical Inference on 2D Surfaces

All of our morphological descriptors Λ(x) such as surface area dilatation, cortical thickness

change, curvature change are modeled as Gaussian random fields on the respective cortical

surfaces, i.e.

Λ(x) = λ(x) + ǫ(x), x ∈ ∂Ωatlas, (4.26)

where the deterministic part λ is the mean of the morphological descriptor Λ and ǫ is a

mean zero Gaussian random field. As we have explained earlier in (2.6), we need to assume

that Var(ǫ) does not depends on time t. In order to do statistical inference about structural

changes, we need to map these morphological descriptors to a template cortical surface

∂Ωatlas. The T random field on the manifold ∂Ωatlas is defined as

T (x) =
√
n
M(x)

S(x)
, x ∈ ∂Ωatlas

whereM and S are the sample mean and standard deviation of the morphological descriptor

Λ over the n subjects. Under the null hypothesis

H0 : λ(x) = 0 for all x ∈ ∂Ωatlas,

i.e. no structural change based on the morphological descriptor Λ, T (x) becomes a student’s

t-distribution with n− 1 degrees of freedom at each fixed voxel x. The p-value of the local

maxima of the T field will give a conservative threshold, which has been used in brain imaging

for a quite some time now [125]. From (2.9), we have

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈

3∑

i=0

φi(∂Ωatlas)ρi(y), (4.27)

where the Minkowski functional φi are

φ0(∂Ωatlas) = 2, φ1(∂Ωatlas) = 0, φ2(∂Ωatlas) = ‖∂Ωatlas‖, φ3(∂Ωatlas) = 0
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and ‖∂Ωatlas‖ is the total surface area of ∂Ωatlas. In order to have more smoothed sig-

nals, we apply diffusion smoothing with given FWHM to the morphological descriptor on

Ωatals. When diffusion smoothing with given FWHM is applied to Λ(x), x ∈ ∂Ωatlas, the

2-dimensional EC-density [125] becomes

ρ2(y) =
1

FWHM2

4 ln 2

(2π)3/2
Γ(n

2
)

(n−1
2
)1/2Γ(n−1

2
)
y
(
1 +

y2

n− 1

)−(n−2)/2

.

Hence, the excursion probability on the cortical surface can be approximated by the following

simple formula:

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈ 2P

(
T (x) ≥ y

)
+ ‖∂Ωatlas‖ρ2(y).

The total surface area varies from subject to subject. We can approximate the total surface

area ‖∂Ωatlas‖ by summing the area of each triangle in a triangulated surface. The total

surface area of the average atlas brain is 275,800 mm2, which is roughly the area of 53cm ×
53cm sheet. Note that the surface area of the mean atlas brain is different from the mean

surface area of 28 subjects (Table 4.1). When 20mm FWHM diffusion smoothing is used on

the template surface ∂Ωatlas, 2.5% thresholding gives

P
(

max
x∈∂Ωatlas

T (x) ≥ 5.1
)
≈ 0.025,

P
(

max
x∈∂Ωatlas

T (x) ≤ −5.1
)
≈ 0.025.

4.5 Detecting Global Surface Deformation

So far our analysis has concentrated on detecting local regions of rapid morphological changes

on the cortical surface. Global morphological analysis is relatively easier than local analysis

in terms of its modeling and numerical computation. As we have shown in Chapter 2,

global volume dilatation rate can be approximately modeled as a Gaussian random variable.

Similarly, global surface area dilation rate can be modeled with a Gaussian random variable.

Global morphological measures are important in the characterization of brain deformation.

The total area of the cortical surface ∂Ωt is given by

‖∂Ωt‖ =

∫

X−1(∂Ωt)

√
det(g) du,
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where g is the metric matrix corresponding to the global parameterizationX(u) of the surface

∂Ωt. ‖∂Ωt‖ can be estimated by the sum of the areas of 81,920 triangles generated by the

ASP algorithm. Then we define the total surface area dilatation as

Θtotal area =
‖∂Ωt‖ − ‖∂Ω0‖

‖∂Ω0‖

and the total surface area dilatation rate as

Λtotal area =
∂

∂t
ln ‖∂Ωt‖

∣∣∣
t=0
.

These measures will be used in showing that the total surface area decreases in both outer

and inner cortical surfaces between ages 12 and 16. Note that

Λtotal area =
1

‖∂Ω0‖

∫

D

∂

∂t

√
det g du (4.28)

=
1

‖∂Ω0‖

∫

D

Λarea

√
det g du, (4.29)

where D = X−1(∂Ω0) and Λarea is local surface area dilatation, which is distributed as

Gaussian in (4.14). Hence, the total surface area dilatation is distributed as a Gaussian

random variable and a statistical inference will be based on a simple t-test.

Let h(x) = ‖x − y‖ be the cortical thickness measured at x ∈ ∂Ωout
0 with the linkage y

defined by the ASP algorithm. The gray matter Ωt can be considered as a thin shell bounded

by two surfaces ∂Ωout
t and ∂Ωin

t . Then the total volume of gray matter is approximately given

by

‖Ωt‖ ≈
∫

x∈∂Ωout
0

h(x) dx (4.30)

with respect to the outer cortical surface. (4.30) is only valid for relatively small thickness

h(x). A better approximation can be obtained by using the both outer and inner cortical

surfaces at the same time. Since there are 81,920 triangles for each surfaces and each triangle

has the corresponding triangle on the other surface, Ωt consists of 81,920 triangular prisms.

Let p1,p2,p3 be the three vertices of a triangle on the outer cortical surface and q1,q2,q3

be the corresponding three vertices on the inner cortical surface such that pi is linked to qi

by ASP algorithm (Figure 4.3). The triangular prism consists of three tetrahedra with the

vertices {p1,p2,p3,q1}, {p2,p3,q1,q2} and {p3,q1,q2,q3}. Then provided the sides of the
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Figure 4.3: A triangular prism. 81,920 triangular prisms will form the gray matter.

prism are flat, the volumes of the triangular prism is given by

1

6

∣∣∣det(p1 − q1,p2 − q1,p3 − q1)
∣∣∣

+
1

6

∣∣∣det(p2 − q2,p3 − q2,q1 − q2)
∣∣∣

+
1

6

∣∣∣det(q1 − p3,q2 − p3,q3 − p3)
∣∣∣.

The total volume ‖Ωt‖ can be estimated using the above discrete computation. Similarly we

define the total gray-matter volume dilatation

Θgray =
‖Ωt‖ − ‖Ω0‖

‖Ω0‖
and the total gray-matter volume dilatation rate as

Λgray =
∂

∂t
ln ‖Ωt‖

∣∣∣
t=0
.

From (2.14),

Λgray ≈
1

‖Ω0‖

∫

Ω0

Λvolume dx,

where Λvolume is local volume dilatation rate distributed as a mean zero Gaussian random

field. So Λgray is approximately distributed as a mean zero Gaussian random variable.

4.6 Results

MR images of the same twenty eight normal subjects studied for the 3D deformation analysis

in Chapter 2, were again used in the surface-based analysis. A triangular mesh for each
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cortical surface was generated by deforming a mesh to fit the proper boundary in a classified

volume using the ASP algorithm [74]. Each voxel was pre-classified as CSF, gray matter

and white matter based on its intensity. For the first scan at time t1, the outer cortical

surface was triangulated in two steps: first, an ellipsoidal mesh placed outside the brain was

shrunk down to the inner cortical surface, which is the white-gray matter boundary. The

resulting mesh was used as the initial estimate in the second step that expands the mesh

to fit the outer cortical surface, which is the gray-CSF boundary. To generate the outer

surface for the second scan at time t2, we start with the inner surface from the first scan

taken at time t1, and then expand it outwards to match the outer surface on the classified

volume of the second scan. Starting with the same mesh for the inner surface in the two

expansion steps, each node in the initial mesh gets mapped to a point on the outer surface for

each scan. Since the two scans were affinely normalized to start with, two points to which

the node gets mapped will be roughly homologous. From this modified ASP registration

method, the displacement vector fields from the point on the outer surface of the first scan

to the corresponding point on the second scan are obtained. The modified ASP registration

method assumes heavily that the shape of the cortical surface does not appreciably change

between the first scan and the second scan. This assumption is valid in the case of brain

development for a short period of time as illustrated in Figure 1.2, where the global sulcal

geometry remains stable for five year interval, although local cortical geometry shows some

visible changes.

Total surface area dilatation. We measured the total surface area dilatation rate

Λj
total area for subject j by computing the total area of triangular meshes on the both outer

and inner cortical surfaces. The mean total area dilatation rate was

1

28

28∑

j=1

Λj
total area = −0.0094.

This 0.9% decrease of the total cortical surface area per year is found to be statistically

significant (t-value of -9.25). On average, there was 4.3% decrease in the total cortical

surface area between the first scan taken at age 11.5 and the second scan taken at age

16.1. There has been substantial developmental studies on gray matter volume reduction

for children and adolescents [30, 57, 80, 85, 89], but the ROI-based volumetry used in these

studies did not allow investigators to detect the total surface area reduction in both outer
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Figure 4.4: t-map of the cortical surface area dilatation rate showing the statistically sig-
nificant region of area expansion and reduction. The red regions are statistically significant
surface area expansions while the blue regions are statistically significant surface area reduc-
tions between ages 12 and 16. As in the case of local volume dilatation, it shows asymmetric
growth patterns.

and inner cortical surfaces.

Local surface area dilatation. In order to localize surface area change, the surface

area dilatation rates were computed for all subjects, then smoothed with 20mm FWHM

diffusion smoothing to increase the signal-to-noise ratio. The growth pattern of cortical

surface area change is different from that of the cortical thickness change. On average, local

surface area changed from −15.79% to 13.78% per year. In one subject, we observed between

-106.5% and 120.3% of the local surface area change over a 4 year time span. Figure 4.4

is the t-map of the cortical surface area dilatation. Surface area growth and decrease were

detected by T > 5.1 and T < −5.1 (P < 0.05, corrected) respectively, showing statistically

significant growth in localized temporal and parietal cortical regions of the left hemisphere

and a localized area decrease in the right hemisphere. However, these relatively smaller

regions of local surface area change may indicate that local surface area is not the dominant

feature in brain development between ages 12 and 16.

Validation. To validate our surface-based morphometry, a small artificial bump was

added to the triangular mesh of cerebellum with 1280 triangles with Gaussian random noise

(Figure 4.5). Generating 30 such random cerebellum surfaces, we tried to see if local surface

area change around the bump can be detected. By fitting the surfaces with local quadratic

polynomials, we estimated the Riemannian metric tensor gij using (3.18). Local surface area
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Figure 4.5: Simulation on artificial data. a. The cerebellum surface with 1280 triangles. b.
30 artificially deformed surfaces are generated with a bump at a fixed location with Gaussian
noise. c. t-map of local surface area dilatation after 5mm FWHM diffusion.

element (4.12) is computed by

√
det g = (1 + β2

1 + β2
2)

1/2.

By subtracting the local surface area elements from b to a in Figure 4.5, we get surface

dilatation for each random surface. Then 30 dilatation fields on the cerebellum surface are

smoothed with 5mm FWHM diffusion smoothing and t-map is formed. c in Figure 4.5 shows

very high t-value of 15 around the bump validating our methodology.

Total gray-matter volume dilatation. The total gray-matter volume dilatation rate

Λj
gray for subject j was computed. The mean total gray-matter volume dilatation rate is

1

28

28∑

j=1

Λj
gray = −0.0050.

This 0.5% decrease in the gray-matter volume per year is statistically significant (t-value of

−4.45). So we have the global morphological patterns of both shrinking cortical surface area

and shrinking gray-matter volume between ages 12 and 16 although there is some localized

cortical regions where cortical surface expansion has been detected.

Cortical thickness dilatation. Also we computed the mean cortical thickness dilata-

tion rate Mthick(x) at each voxel x defined by

Mthick(x) =
1

28

28∑

j=1

Λj
thick(x).

Then the average cortical thickness dilatation across the cortical surface is given by

1

‖∂Ωavg‖

∫

x∈∂Ωavg

Mthick(x) dx = 0.026,
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Figure 4.6: t map of the cortical thickness dilatation rate showing the statistically significant
regions of cortical thickness increase (red & yellow). The red region exhibits extremely high
t-values indicating that this is a region of extreme cortical thickness increase. There was no
region of statistically significant cortical thinning showing that the cortical thickness tends
to increase rather than decrease between ages 12 and 16.

where ∂Ωavg is the outer cortical surface of the average atlas brain. There is a persistent

global morphological pattern of cortical thickness increases by 2.6% per year and 11.3%

over 4.6 year time span. We localized the region of statistically significant cortical thickness

increase by thresholding the t-map of the cortical thickness dilatation rate by 5.1 (Figure

4.6). It is noted that there is no statistically significant cortical thinning detected on any

region of the cortical surface. We conclude that, over all, gray matter gets thicker from ages

12 and 16. Further, there is an extremely localized region on the left hemisphere showing

dominant cortical thickening as illustrated in Figure 4.6.

Therefore, the cortical surface area and gray-matter volume shrinks, while the cortical

thickness tends to increase between ages 12 and 16 with a highly localized area of cortical

thickening in the left hemisphere.
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Subject Age ‖∂Ωout
0 ‖ ‖∂Ωout

t ‖ ‖∂Ωin
0 ‖ ‖∂Ωin

t ‖ ‖Ω0‖ ‖Ωt‖
1 14.05-19.13 2.8440 2.6279 2.2341 2.1342 7.4053 7.1212
2 12.73-17.05 2.9196 2.7315 2.1802 2.1237 7.3156 7.2197
3 10.02-16.41 3.0397 2.8584 2.3517 2.1665 7.6754 7.5205
4 13.94-18.66 3.0370 2.8911 2.3927 2.2740 7.8623 7.5949
5 13.62-18.40 2.9102 2.8473 2.1742 2.1951 7.5943 7.1588
6 16.41-20.99 2.7442 2.6063 2.1305 2.0991 7.3460 7.2084
7 17.07-21.75 2.9705 2.9194 2.2726 2.2517 7.6856 7.6156
8 14.87-21.20 2.9657 2.7553 2.4481 2.3758 7.7043 7.3001
9 8.97-14.86 3.2839 3.1537 2.3632 2.2858 8.1128 7.7807
10 9.85-15.93 3.0223 2.9745 2.4538 2.3637 7.8178 7.5884
11 16.41-21.47 2.8655 2.7851 2.2575 2.2151 7.3117 7.2331
12 8.28-13.18 3.1398 3.1078 2.2911 2.2150 7.8969 7.7978
13 8.45-13.09 2.9811 2.8123 2.2729 2.1097 7.4548 7.5112
14 11.82-16.08 2.9605 2.7772 2.3074 2.2053 7.7615 7.5062
15 9.18-13.29 3.0675 2.9695 2.2396 2.2056 7.8531 7.6688
16 12.72-17.01 2.7546 2.5915 2.0335 1.9352 7.5793 7.2319
17 8.15-12.66 3.0707 2.7841 2.2696 2.1558 7.8365 7.1807
18 9.48-13.93 3.0290 2.7762 2.1743 1.9861 7.6984 7.3084
19 7.72-12.67 3.2150 3.1199 2.4930 2.4298 7.7814 7.8242
20 11.67-15.64 3.0980 3.0895 2.5191 2.4574 7.4377 7.6239
21 11.75-15.85 2.9646 2.7631 2.2507 2.0337 7.5835 7.2833
22 7.02-11.28 3.1425 3.0747 2.3166 2.2015 7.9344 8.0303
23 11.61-16.04 3.0077 2.7930 2.2689 2.1558 7.7683 7.3123
24 11.88-15.93 3.3111 3.1970 2.4125 2.3790 8.2071 8.0173
25 10.25-14.77 3.2974 3.1423 2.4211 2.3037 7.8385 7.8556
26 17.84-21.21 2.8572 2.8156 2.1970 2.1790 7.4161 7.4805
27 9.15-12.71 2.9364 2.8679 2.3416 2.3394 7.4969 7.6005
28 8.41-10.61 3.1745 3.1437 2.3165 2.2476 7.6836 7.4952

Mean 11.55-16.14 3.0218 2.8920 2.2994 2.2152 7.6807 7.5025

Table 4.1: Total cortical surface area of 28 subjects ( ×105mm2). The last two columns are
the total gray-matter volume (×105mm3).
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Subject Age Θtotal area Λtotal area Θgray Λgray

1 14.05-19.13 -0.0760 -0.0150 -0.0384 -0.0076
2 12.73-17.05 -0.0644 -0.0149 -0.0131 -0.0030
3 10.02-16.41 -0.0596 -0.0093 -0.0202 -0.0032
4 13.94-18.66 -0.0480 -0.0102 -0.0340 -0.0072
5 13.62-18.40 -0.0216 -0.0045 -0.0573 -0.0120
6 16.41-20.99 -0.0503 -0.0110 -0.0187 -0.0041
7 17.07-21.75 -0.0172 -0.0037 -0.0091 -0.0019
8 14.87-21.20 -0.0709 -0.0112 -0.0525 -0.0083
9 8.97-14.86 -0.0396 -0.0067 -0.0409 -0.0070
10 9.85-15.93 -0.0158 -0.0026 -0.0293 -0.0048
11 16.41-21.47 -0.0280 -0.0055 -0.0108 -0.0021
12 8.28-13.18 -0.0102 -0.0021 -0.0125 -0.0026
13 8.45-13.09 -0.0566 -0.0122 0.0076 0.0016
14 11.82-16.08 -0.0619 -0.0145 -0.0329 -0.0077
15 9.18-13.29 -0.0320 -0.0078 -0.0235 -0.0057
16 12.72-17.01 -0.0592 -0.0138 -0.0458 -0.0107
17 8.15-12.66 -0.0933 -0.0207 -0.0837 -0.0186
18 9.48-13.93 -0.0835 -0.0188 -0.0507 -0.0114
19 7.72-12.67 -0.0296 -0.0060 0.0055 0.0011
20 11.67-15.64 -0.0028 -0.0007 0.0250 0.0063
21 11.75-15.85 -0.0680 -0.0166 -0.0396 -0.0097
22 7.02-11.28 -0.0216 -0.0051 0.0121 0.0028
23 11.61-16.04 -0.0714 -0.0161 -0.0587 -0.0133
24 11.88-15.93 -0.0345 -0.0085 -0.0231 -0.0057
25 10.25-14.77 -0.0470 -0.0104 0.0022 0.0005
26 17.84-21.21 -0.0145 -0.0043 0.0087 0.0026
27 9.15-12.71 -0.0233 -0.0066 0.0138 0.0039
28 8.41-10.61 -0.0097 -0.0044 -0.0245 -0.0111

Mean 11.55-16.14 -0.0432 -0.0094 -0.0230 -0.0050

Table 4.2: Total cortical surface area dilatation Θtotal area and its rate Λtotal area. The last
two columns are the total gray-matter volume dilatation Θgray and its rate Λgray.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

The deformation-based morphometry presented in this thesis can localize the regions where

local volume growth or loss occurs over temporally varying brain morphology by measuring

the rate of local volume changes. By using the displacement velocity instead of the dis-

placement itself in detecting the anatomical changes, temporal variabilities in MR images

for different age groups and different time intervals can be accounted for. Extending the

concept of deformation-based morphometry in Euclidean space to non-Euclidean space, we

have developed a complete statistical procedure for surface-based morphometry, which can

be used in detecting gray-matter deformation and its outer and inner cortical boundary.

In brain imaging, smoothing can enhance signal-to-noise ratio, making functional and

structural effects easier to detect. In 3D volumetric images of fMRI, PET and MRI, the

standard smoothing technique is the Gaussian kernel smoothing. Therefore, it is natural

to extend Gaussian kernel smoothing to 2D surface data. The most natural generalization

of Gaussian kernel smoothing on a curved surface is via the diffusion equation based on

the Laplace-Beltrami operator. We have developed two different approaches to diffusion

smoothing: the parametric method and the finite element method. In some applications,

the parametric method may be more suitable than the finite element method and vice versa.

For the Riemannian metric ds2 =
∑n

i,j=1 gij duiduj on a Riemannian manifold M , the
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Laplace-Beltrami operator ∆ is defined by

∆F =
1

|g|1/2
n∑

i,j=1

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
, (5.1)

where |g| = det(gij) and g
−1 = (gij). Using the finite element method, we estimated (5.1)

on the triangular mesh of the brain surfaces. Let F (pi) be the data on the i-th node pi in

the triangular mesh. If p1,...,pm are m-neighboring nodes around the central node p, the

Laplace-Beltrami operator is estimated as ∆̂F (p) =
∑m

i=1wi

(
F (pi)−F (p)

)
with the weights

wi = (cot θi+cotφi)/|T |, where θi and φi are the two angles opposite to the edge connecting

pi and p, and |T | is the sum of the areas of the m-incident triangles at p. Afterwards, the

diffusion equation is solved via the finite difference scheme:

F (p, tn+1) = F (p, tn) + (tn+1 − tn)∆̂F (p, tn)

with the initial condition F (p, t0) = f(p) for each node p on the triangular mesh. After

N -iterations, the diffusion smoothing is locally equivalent to Gaussian kernel smoothing with

smoothing parameter h =
√
2(tN − t0)

1/2.

As an illustration, we have applied the methods to MR scans of 28 normal children and

adolescents and detected regions of brain tissue growth or loss in both whole brain volume

and on the cortical surface. Between age 12 and 16, it is found that the brain tissue growth

occurs most rapidly on the somatosensory and motor cortex as well as in the isthmus and

splenium of the corpus callosum. Applying the surface-based morphometry, we found no

statistically significant cortical thinning process. Instead, there is a dominant global pattern

of cortical thickness increase over time while the both inner and outer surface areas and the

volume of the gray-matter decreases. Also we were able to localize the regions of surface

area increase on the left hemisphere and surface area decrease on the right hemisphere.

Our unified statistical framework based on the deformation-based morphometry can be

further used as a tool for future investigations of neurodevelopmental disorders where volu-

metric analysis would be relevant. It can also be applied to a general morphological studies,

such as testing for structural shape differences between two different groups of subjects.
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5.2 Future Research

5.2.1 Growth Curve Model

The linear growth model (2.2) is a special case of the full model (2.1). It would be interesting

to develop nonlinear brain growth model. It requires combining both standard longitudinal

analysis techniques [65] with random fields setting. Let J(x, t) be the Jacobian at the position

x and time t of the deformation

x→ x+ U(x, t).

A proposed brain growth model is

∂J

∂t
(x, t) =

∑

i

ψi(x)ϕi(t) + ǫ(x, t),

where ǫ(x, t) is a Gaussian random field and {ϕi} are temporal basis functions. From the

Karhunen-Loeve expansion in (2.16), the error term can be decomposed as

ǫ(x, t) =
∑

i

ǫi(x)φi(t),

where {ǫi} are independent Gaussian random fields and {φi} are orthonormal bases. Without

loss of generality, we may let ϕi = φi. Then we have

∂J

∂t
(x, t) =

∑

i

ψi(x)φi(t) +
∑

i

ǫi(x)φi(t).

where and ǫ(x) is a Gaussian random field. The problem is to estimate the unknown coef-

ficient functions {ψi} possibly by minimizing the mean squared error. Alternately, we can

also model brain development using nonparmetric kernel smoothing techniques [65].

5.2.2 Membrane Spline Energy

In our thesis, morphological descriptors were based on length, area and volume changes,

which directly measures the amount of brain tissue growth or loss. It is possible to develop

more sophisticated morphological descriptor that measures completely different morphologi-

cal properties in brain deformation. Consider two geometric objects Ω1 and Ω2 in RN which

have slight shape variations. We are interested in identifying the regions of maximum shape
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differences between Ω1 and Ω2. Let U(x) = (U1(x), · · · , UN(x))
t be the displacement vec-

tor field from Ω1 to Ω2, whose components are assumed to follow a mean zero stationary

Gaussian random fields. The deformation from Ω1 to Ω2 can be assumed to minimizes an

associated membrane spline energy [45] given by

E(U) =

∫

Ω1

N∑

i,j=1

(∂Uj

∂xi

)2

dx. (5.2)

For instance, the membrane spline energy in 2-dimension is

E(U) =

∫

Ω1

[(∂U1

∂x1

)2

+
(∂U2

∂x1

)2

+
(∂U1

∂x2

)2

+
(∂U2

∂x2

)2]
dx1 dx2

The functional inside the energy integral in (5.2) is the squared Frobenius norm of the

displacement gradient matrix ∇U in (2.4). Let us denote ‖∇U‖F to be the Frobenius norm

of ∇U , i.e.

‖∇U‖F =
[ N∑

i,j=1

(∂Uj

∂xi

)2]1/2
.

The Frobenius norm will measure the amount of local membrane spline energy associated

with the deformation x→ x+U in the neighborhood of x and it would be very interesting to

compare this local energy functional to local volume change and local displacement change

statistics. Other spline energy functionals such as the thin-plate splines [12, 49, 115] might

be also used as morphological descriptors.

5.2.3 Vorticity Tensor Fields

We introduced the concept of vorticity tensor in (2.10) which measure the amount of rotation

at a given point but never studied its statistical properties. Assume an object Ω1 to be at

time 0 and after a unit time, the object Ω1 goes through the viscous fluid deformation to

Ω2. The vorticity vector is defined as the curl of the velocity,

ω(x) =
1

2
∇× U(x),

where ∇ = ( ∂
∂x1
, . . . , ∂

∂xN
)′ and it completely determines infinitesimal rotation of the defor-

mation. The obvious testing procedure for detecting any local rotational change is to use

the Hotelling’s T 2 statistics. Because the components of ω(x) are correlated, the random
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field constructed from ω(x) is not the Hotelling’s T 2 field. So it would be of interest to be

able to compute the excursion probability based on this Hotelling’s T 2 like random field.

The vorticity tensor ωij is given by

ωij =
1

2

(∂Ui

∂xj
− ∂Uj

∂xi

)
.

Let ǫijk be the Levi-Civita tensor [94, 75], then the i-th element of ω can be given in terms

of the vorticity tensor

ωi = −ǫijkωjk.

The angular speed is defined as

‖ω‖ =
( N∑

i=1

ω2
i

)1/2
.

The angular speed is a useful scalar morphological descriptor which measures the amount

of rotation per unit time in deformation. Finding the exact statistical distribution and its

p-value based on the maximum of its field seems somewhat complicated.

5.2.4 Generalized Variance Field

In (2.4), we defined the 3-dimensional displacement gradient matrix. We introduce a new

morphological descriptor based on the determinant of the matrix. Suppose components of

the displacement vector U(x) ∈ RN are identically and independently distributed as a mean

zero stationary Gaussian field with the covariance function R(x, y) = f(x− y). Let

∇Ui =
(∂Ui

∂x1
, · · · , ∂Ui

∂xN

)t

and ∇U be the N -dimensional displacement gradient matrix defined by

∇U =
(
∇U1, · · · ,∇UN

)t
=




∂U1

∂x1
· · · ∂U1

∂xN

. . .

∂UN

∂x1
· · · ∂UN

∂xN


 .

The generalized variance field is defined as the determinant of W = (∇U)t∇U . Note that

W (x) =

N∑

i=1

∇Ui(∇Ui)
t.
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It would be very useful to approximate the excursion probability of the generalized variance

field. Unfortunately, it is not easy to compute the expected Euler characteristic of the

excursion set of W .

The covariance function of the field W 1/2 can be easily computed. By expanding the

determinant W 1/2 = det(∇U),

W 1/2 =
∑

σ∈SN

sgn(σ)
∂U1

∂xσ(1)
. . .

∂UN

∂xσ(N)

,

where SN is a symmetric group of order N and sgn(σ) is the sign function of the order

of permutation σ [54]. Since ∂U1

∂xσ(1)
, . . . , ∂UN

∂xσ(N)
are independent mean zero Gaussian fields,

E(W 1/2) = 0. The covariance function R∗ of W 1/2 is

R∗(x, y) = E[W 1/2(x)W 1/2(y)]

= E

[ ∑

σ,τ∈SN

sgn(σ)sgn(τ)
∂U1(x)

∂xσ(1)

∂U1(y)

∂yτ(1)
· · · ∂UN (x)

∂xσ(N)

∂UN (y)

∂yτ(N)

]

=
∑

σ,τ∈SN

sgn(σ)sgn(τ)E

[
∂U1(x)

∂xσ(1)

∂U1(y)

∂yτ(1)

]
· · ·E

[
∂UN (x)

∂xσ(N)

∂UN (y)

∂yτ(N)

]

=
∑

σ,τ∈SN

sgn(σ)sgn(τ)Rσ(1)τ(1)(x, y) · · ·Rσ(N)τ(N)(x, y),

where Rij(x, y) =
∂2

∂xi∂yi
R(x, y). There exists a permutation ρ ∈ SN such that τ = ρσ and

sgn(ρ) = sgn(τ)sgn(σ). Then by summing up over the index ρ,

R∗(x, y) =
∑

σ∈SN

∑

ρ∈SN

sgn(ρ)Rσ(1)ρσ(1)(x, y) · · ·Rσ(N)ρσ(N)(x, y)

=
∑

σ∈SN

det
( ∂2

∂x∂yt
R(x, y)

)

= N ! det
( ∂2

∂x∂yt
R(x, y)

)

= (−1)N det
(
Hf(x− y)

)
,

where Hf =
(

∂2f
∂xi∂xj

)
is the Hessian matrix of f .
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Note

The Matlab program used in computing the corrected thresholds of the T random field and

the Hotelling’s T 2 random field can be found at

http://www.math.mcgill.ca/keith/BICstat

The Matlab program used in diffusion smoothing can be found at

http://www.math.mcgill.ca/chung/diffusion
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Sticky Note
The link has been moved to 
http://brainimaging.waisman.wisc.edu/~chung/diffusion
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