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Abstract. We present a novel unified framework for explicitly param-
eterizing white fiber tracts. The coordinates of tracts are parameterized
using a Fourier series expansion. For an arbitrary tract, a 19 degree co-
sine expansion is found to be sufficient to reconstruct the tract with
an error of about 0.26 mm. By adding specific periodic constraints to
open tracts, we can avoid using the sine basis. Then each tract is fully
parameterized with 60 parameters, which results in a substantial data
reduction. Unlike available spline models, the proposed method does not
have internal knots and explicitly represents the tract as a linear com-
bination of basis functions. This simplicity in the representation enables
us to design statistical models, register tracts and segment tracts in a
unified Hilbert space formulation.

1 Introduction

Diffusion tensor imaging (DTI) may be used to characterize the microstructure
of biological tissues using measures of the magnitude, anisotropy and aniotropic
orientation [2]. In general, it is assumed that the direction of greatest diffusiv-
ity (the major eigenvector of the diffusion tensor) is most likely aligned to the
local orientation of the white matter fibers. White matter tractography offers
the unique opportunity to map out, segment and characterize the trajectories
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of white matter fiber bundles noninvasively in the brain. Most deterministic
tractography algorithms use the local diffusion tensor orientation (primarily the
major eigenvector) to estimate the local direction of propagation along the re-
constructed pathway or fiber tract [3] [10] [19] [17]. Tractography has been used
to visualize and map out major white matter pathways in individuals and brain
atlases [7] [20] [29] [30], segment specific white matter areas for region of in-
terest analyses [15], quantify white matter morphometry and connections [23]
[27], and visualize the relationships between brain pathology (e.g., brain tumors,
vascular malformations, other lesions) and white matter anatomy for clinical ap-
plications like neurosurgical planning [1] [21] [22]. However, tractography data
can be challenging to interpret and quantify. Whole brain tractography studies
often generate many thousand tracts and require tedious manual selection of
tract groups for subsequent analyses. Recent efforts have attempted to cluster
[24] and automatically segment white matter tracts [25] as well as characterize
tract shape parameters [4]. Many of these techniques can be quite computa-
tionally demanding given the sizes of the data sets. Clearly efficient methods
for characterizing tract shape, regional tract segmentation and clustering, tract
registration, averaging and quantitation would be of tremendous value to the
clinical and diffusion imaging research communities. In this study, we present a
novel approach for parameterizing tract features both shape and spatial location
- using Fourier descriptors.

Fourier descriptors has been previously used to classify tracts [4]. The Fourier
coefficients are computed by the Fourier transform that involves the both sine
and cosine series expansion. Then the sum of the squared coefficients are obtained
up to degree 30 for each tract and the k-means clustering is used to classify the
fibers globally. The authors conclude that a downside of using Fourier descriptors
is that they are not local and it is not possible to make statement about a specific
portion of the curve. Although the Fourier coefficients are global and mainly
used for globally classifying shapes [28], it is still possible to obtain local shape
information and make a statement about local shape characteristics [8]. In this
study, we propose to use the Fourier descriptor as a parameterization for local
shape representation.

3D curve matching using splines has previously been described mainly in
the computer vision literature [9] [11] [16]. Unfortunately, splines are not easy
to model and to manipulate explicitly as compared to Fourier descriptors due
to the introduction of knots. In Clayden et al. [9], the cubic-B spline is used
to parameterize the median of a set of tracts for tract dispersion modeling.
Matching two splines with different numbers of knots is not computationally
trivial and has been solved using a sequence of ad-hoc approaches. In Gruen
et al. [11], the optimal displacement of two cubic spline curves are obtained
by minimizing the sum of squared Euclidean distances. The minimization is
nonlinear so an iterative updating scheme is used. On the other hand, there is
no need for any numerical optimization in obtaining the displacement vectors in
our method due to the very nature of the Hilbert space framework. The optimal
solution is embedded in the representation itself.
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Instead of using the squared distance of coordinates, others have used the
curvature and torsion to find the similarity between two curves [13] [16] [18]. In
[18], curvature and torsion were estimated using a finite difference scheme and the
sum of the squared distance of curvature and torsion differences were minimized
in an iterative fashion. Due to the space limitation, we will not consider this
alternate approach.

This paper describes how to obtain local shape information employing cosine
series, a special case of Fourier expansion. To our knowledge, this is the first
paper that describes white fiber bundles using an explicit functional representa-
tion. Then using this representation, we demonstrate how to register two tracts
and average multiple tracts. The ability to register tracts of varying shape and
length enables us to develop a shape similarity based tract segmentation. We
will further demonstrate the feasibility of this idea.

2 Methods

2.1 Image Acquisition and Processing

DTI data were acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel,
receive-only head coil. DTI was performed using a single-shot, spin-echo, EPI
pulse sequence and SENSE parallel imaging (undersampling factor of 2). Diffusion-
weighted images were acquired in 12 non-collinear diffusion encoding directions
with diffusion weighting factor (b=0) 1000 s/mm2 in addition to a single ref-
erence image. Data acquisition parameters included the following: contiguous
(no-gap) fifty 2.5mm thick axial slices with an acquisition matrix of 128x128
over a FOV of 256mm, 4 averages, repetition time (TR) = 7000 ms, and echo
time (TE) = 84 ms. Two-dimensional gradient echo images with two different
echo times of 7 ms and 10 ms were obtained prior to the DTI acquisition for
correcting distortions related to magnetic field inhomogenieties.

Eddy current related distortion and head motion of each data set were cor-
rected using AIR and distortions from field inhomogeneities were corrected using
custom software algorithms based on [14]. Distortion-corrected DW images were
interpolated to 2 × 2 × 2mm voxels and the six tensor elements were calculated
using a multivariate log-linear regression method [2].

The images were isotropically resampled at 1mm3 resolution before apply-
ing the white matter tractography algorithm. The second order Runge-Kutta
streamline algorithm with tensor deflection [17] was used. The trajectories were
initiated at the center of the seed voxels and were terminated if they either
reached regions with the factional anisotropy (FA) value smaller then 0.15 or
if the angle between two consecutive steps along the trajectory was larger than
π/4. At this sampling rate, the algorithm usually produces more than 300000
tracts per brain. As an illustration, subsampled 500 tracts are shown in Figure
3. Each tract consists of 105 ± 54 control points. The distance between control
points is approximately 1mm. Whole brain tracts are stored as a file of size
approximately 600MB. This is a somewhat inefficient way of storing the tract
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Fig. 1. Cosine series representation of a tract at various degrees. Red dots are control
points. The degree 1 representation is a straight line that fits all the control points in
a least squares fashion. The degree 19 representation (60 parameters) is used through
out the study.

data. We present an efficient scalable data representation technique that can
reduce the amount of data by a factor of 500% with a minimum loss of infor-
mation. Our scalable representation can be retrieved later to give more detailed
representation iteratively.

2.2 Parameterizing tracts

Consider a tract M consisting of n control points p1, · · · , pn along the tract. The
second order Runge-Kutta streamline algorithm constructs tracts such that the
Euclidian distance between the control points, i.e. ‖pi − pi−1‖ is 1mm. Then we
are interested in estimating a function that best represents the tract consisting of
the noisy control points. This problem can be solved using piecewise continuous
polynomials such as splines [26]. However, we will avoid using splines because
they reintroduce control points that connect each piece of polynomials. Fur-
ther, it is not straightforward to build an explicit statistical model using splines.
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Fig. 2. The plot of x-,y- and z-coordinates over parameter space [0, 1]. The yellow line
is the tractography result and the black line is the reconstruction at degree 9 (left) and
19 (middle). The figure in the right is the average reconstruction error over the degree
of representation. The error decreases exponentially as the degree increases.

Therefore, we have developed a novel representation technique that avoids all
the drawbacks of splines.

Consider a mapping ζ that maps the control point pj onto the unit interval
[0, 1] as

ζ : pj →
∑j

i=1 ‖pi − pi−1‖
∑n

i=1 ‖pi − pi−1‖
= tj. (1)

This is the ratio of the arc-length from the point p1 to pj , to p1 to pn. We
let this ratio to be tj . We assume ζ(p1) = 0. Then we estimate a smooth map
ζ−1 : [0, 1] → M that passes through ζ−1(tj) = pj in a least squares fashion.

Consider the space of square integrable functions in [0, 1] denoted by L2[0, 1].
Let us solve the eigenequation

∆f + λf = 0. (2)
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in [0, 1]. The eigenfunctions will naturally form an orthonormal basis in L2[0, 1].
Instead of solving (2) in the interval [0, 1] directly, let us solve it in R with the
periodic constrain

f(t+ 2) = f(t).

Putting the periodic constrain guarantees the eigenfunctions to be the usual
Fourier sine and cosine functions making numerical implementation straightfor-
ward. The reason we did not give the period 1 constraint is that it forces the
function defined in [0, 1] to be periodic. Then from the period 2 constraint, the
tract coordinates are defined only in the intervals · · · , [−2,−1], [0, 1], [2, 3] · · · ,
there is a gap in the intervals · · · , (−1, 0), (1, 2), (3, 4) · · · . We can fill the gap by
padding with zeros or some constant values but this will result in the Gibbs phe-
nomenon (ringing artifacts) [8] at the point of discontinuity · · ·−2,−1, 0, 1, 2, · · · .
One way of filling the gap while making the function continuous across the whole
intervals is by putting the constraint of evenness, i.e. f(t) = f(−t) in the interval
[−1, 0]. The only eigenfunctions satisfying these two constraints are the cosine
functions of the form

ψ0(t) = 1, ψl(t) =
√

2 cos(lπt)

with the corresponding eigenvalues λl = l2π2 for integers l > 0. The constant√
2 is introduced to make the eigenfunctions orthonormal in [0, 1] so that

∫ 1

0

ψl(t)ψm(t) dt = δlm. (3)

Let Hk be the subspace spanned by up to the k-th degree eigenfunctions:

Hk = {
k∑

l=0

clψl(t) : cl ∈ R}.

Then we estimate a smooth function ζ−1 ∈ L2[0, 1] in the subspace Hk.
If we denote the coordinates of ζ−1(t) as (ζ−1

1 , ζ−1
2 , ζ−1

3 ), the k-th degree
cosine series representation of ζ−1 is given by

(ζ−1
1 , ζ−1

2 , ζ−1
3 )(t) =

k∑

l=0

(cl1, cl2, cl3)ψl(t). (4)

The Fourier coefficient vectors cl = (cl1, cl2, cl3) are estimated by solving the
system of equations
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1 (t1) ζ

−1
2 (t1) ζ

−1
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︸ ︷︷ ︸
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Fig. 3. Left: control points (red) obtained from the second order Runge-Kutta stream-
line algorithm. For visualization purpose, only 500 tracts with length larger than 50mm
are shown. Yellow lines are line segments connecting consequent control points. Right:
19 degree cosine series representation of control points.

The least squares estimation is given by

C = (Ψ ′Ψ)−1Ψ ′Y.

The proposed least squares estimation technique avoids using the Fourier trans-
form [4] [6] [12]. The drawback of the FFT is the need for a predefined regular
grid system so some sort of interpolation is needed. After various experiments,
we decided to use k = 19 through out the paper (Figure 1). This gives the av-
erage error of 0.26mm along the tract. The plot of the average reconstruction
error for other degrees is given in Figure 2 (lower right plot).

The advantage of the cosine series representation is that, instead of recording
the coordinates of all control points, we only need to record 3 · (k + 1) number
of parameters for all possible tract shape. This is a substantial data reduction
considering that the average number of control points is 105 (315 parameters).

2.3 Averaging White Matter Fiber Bundles

The ability to register one tract to another tract is crucial for any sort of popu-
lation study, possibly via the use of the tract-based template construction. Since
tracts are now represented as functions, the registration will be formulated as
a minimization problem in a function space Hk, thus avoiding numerical opti-
mization [11] [13] [16] [18].

Suppose the Fourier representation of η−1 is given by

(η−1
1 , η−1

2 , η−1
3 )(t) =

k∑

l=0

(dl1, dl2, dl3)ψl(t). (5)
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Fig. 4. Left: the trajectory of registration from ζ−1 to η−1 is represented as other
intermediate tracts. The intermediate tracts are artificially generated using the optimal
displacement u∗: ζ−1 + αu∗, where α ∈ [0, 1]. Right: average of a bundle consisting of
5 tracts.

Let us examine how to register tract (4) to tract (5). Consider the displacement
vector field u = (u1, u2, u3) between ζ−1 and η−1. We will search an appro-
priate displacement u in the subspace Hk such that the discrepancy between
ζ−1(t) + u(t) and η−1(t) is minimized. The discrepancy ρ between two surfaces
is measured as the integral of the sum of squared distance:

ρ(ζ−1 + u, η−1) =

∫ 1

0

‖ζ−1(t) + u(t) − η−1(t)‖2 dt. (6)

Let u∗ be the optimal displacement satisfying

u∗(t) = arg min
u∈Hk

ρ(ζ−1 + u, η−1).

Then we claim that the optimal displacement is given by

u∗(t) =

k∑

l=0

(dl1 − cl1, dl2 − cl2, dl3 − cl3)ψl(t).

The proof requires substituting ζ−1 and η−1 with the cosine series expansion
and letting

u(t) =
∑ k∑

l=0

(βl1, βl2, βl3)ψl(t)

in the expression (6). Then the expression become the unconstrained positive
definite quadratic program with respect to βlj . So the global minimum always
exists and obtained by differentiating with respect to βlj . Note that ρ(ζ−1 +
u∗, η−1) = 0. Figure 4 shows how the tract ζ−1 is registered to the other tract
η−1.
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Fig. 5. Left: Right: histogram of discrepancy measure from a reference tract. Thresh-
olding at 10mm gives the blue colored tracts.

Based on the idea of registering tracts by matching Fourier coefficients, we
have constructed the average of a white fiber bundle consisting of m tracts as

ζ−1(t) =

k∑

l=0

(cl1, cl2, cl3)ψl(t), (7)

where cli is the sample mean of the coefficients corresponding to the i-th coordi-
nate for m tracts. As an illustration, we show how to average five tract in Figure
4.

2.4 White Matter Fiber Segmentation

Based on the discrepancy measure ρ, we have investigated the feasibility of shape-
based fiber bundle segmentation. Given two cosine series representation of tracts
ζ−1 and η−1, the discrepancy measure is simplified as

ρ(ζ−1, η−1) =

∫ 1

0

∥
∥ζ−1(t) − η−1(t)

∥
∥ dt

=

∫ 1

0

3∑

j=1

[
k∑

l=0

(clj − dlj)ψl(t)

]2

dt

=

3∑

j=1

k∑

l=0

(clj − dlj)
2.

We have used the orthonormality condition (3) in removing the integral in the
expression. The advantage of our discrepancy measure is that it is automatically
obtained once the cosine series representations are computed. Among 2172 tracts
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visualized in Figure 5, one tract in the middle of the blue fiber bundle was
selected as a reference tract ζ−1 then we computed the total discrepancy between
the reference tract and the rest of tracts. By normalizing the discrepancy by the
total arc-length of ζ−1, we obtain the mean discrepancy measure along the tract.
The histogram of the mean discrepancy is given in Figure 5. The histogram shows
significant clustering in about 5 clusters. Since the histogram is visibly so well
clustered, we did not use any automatic clustering algorithm. 357 tracts within
the 10mm discrepancy error are selected and colored blue.

We have proposed a reference tract based segmentation using the discrep-
ancy measure ρ. We can extend the proposed framework to segmenting multiple
bundles. Given a collection of tracts ζ(1), · · · , ζ(n), we measure cross discrepancy

ρij = ρ(ζ(i), ζ(j)).

We may need to normalize ρij with the total arc-lengths. Then we can construct
the discrepancy matrix (ρij) and apply various classification techniques used in
clustering correlation matrices [5] [31] for automatic clustering of tracts.

3 Conclusion

We have presented a unified parametric representation of white matter fiber
tracts. The method explicitly models tracts using the orthonormal cosine ba-
sis. The model parameter estimation is done in the least squares fashion in
a computationally efficient manner. The 19 degree representation is found to
be sufficient within the 0.26mm reconstruction error. The representation will
parameterize tracts of varying length and shape with 60 parameters achieving
significant data reduction. The representation is used to register, average and
segment tracts in a unified Hilbert space framework. Future work will attempt
to use these parametric tract shape measures to perform automatic tract extrac-
tion, characterization of tract morphologic shape in different population groups,
and multiple subject spatial normalization and tract segmentation.
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