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Abstract

Although there are many imaging studies on traditional ROI-based amygdala volumetry,

there are very few studies on modeling amygdala shape variations. This paper present a

first unified computational and statistical framework for modeling amygdala shape varia-

tions in a clinical population. The recently developed weighted spherical harmonic repre-

sentation is used as to parameterize, to smooth out, and to normalize amygdala surfaces.

The complete amygdala surface modeling package AmygSurf used in the study is available

at www.stat.wisc.edu/∼mchung/research/amygdala. The representation is subsequently

used as an input for multivariate linear models accounting for age and brain size differ-

ence using SurfStat package (galton.uchicago.edu/∼worsley) that completely avoids the

complexity of specifying design matrices. The methodology has been applied in detecting

abnormal local shape variations in 22 high functioning autistic subjects. We have localized

significant shape difference in autism in right amygdala. Further we have detected significant

difference in interaction of shape and gaze fixation duration indicating localized abnormal



association of function and structure in autism.

Keywords: Amygdala, Spherical Harmonics, Fourier Analysis, Surface Flattening, Gen-

eral Linear Model

1. Introduction

Amygdala is an important brain substructure that has been implicated in abnormal func-

tional impairment in autism (Dalton et al., 2005; Nacewicz et al., 2006; Rojas et al., 2000).

Since the abnormal structure might be the cause of the functional impairment, there have

been many studies on amygdala volumetry. However, previous amygdala volumetry results

have been inconsistent. Aylward et al. (1999) and Pierce et al. (2001) reported that amyg-

dala volume was significantly smaller in the autistic subjects while Howard et al. (2000) and

Sparks et al. (2002) reported larger volume. Haznedar et al. (2000) and Nacewicz et al.

(2006) found no volume difference. Schumann et al. (2004) reported that age dependent

amygdala volume difference in autistic children and indicated that the age dependency to be

the cause of discrepancy. All these previous studies traced the amygdalae manually and by

counting the number of voxels within the region of interest (ROI), the total volume of the

amygdala was estimated. The limitation of the traditional ROI-based volumetry is that it

can not determine if the volume difference is diffuse over the whole ROI or localized within

specific regions of the ROI (Chung et al., 2001). We present a novel computational and

statistical framework that enables localized amygdala shape characterization and able to

overcome the limitation of the ROI-based volumetry.

Although there are extensive literature on local cortical shape analysis (Chung et al.,

2005; Fischl and Dale, 2000; Joshi et al., 1997; Taylor and Worsley, 2008; Thompson

and Toga, 1996; Lerch and Evans, 2005; Luders et al., 2006; Miller et al., 2000), there

are almost no literature on amygdala shape analysis other than Qiu et al. (2008). We

hope to fill the gap and offer a new unified computational framework for analyzing amyg-

dala shape. Our proposed framework utilizes the weighted spherical harmonic represen-

tation (Chung et al., 2007) for parameterization, surface smoothing and surface registra-

tion in a unified Hilbert space framework. We have developed the self contained MAT-

LAB package called AmygSurf for performing weighted spherical harmonic representation

(www.stat.wisc.edu/∼mchung/research/amygdala).

Since the proposed representation technique requires a smooth mapping to a sphere, we
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have developed a new and very fast surface flattening technique based on the propagation of

heat diffusion. By tracing the integral curve of heat gradient from a heat source (amygdala)

to a heat sink (sphere), we can obtain the mapping. Since solving an isotropic heat equation

in a 3D image volume is fairly straightforward, our proposed method offers a much simpler

numerical implementation than surface flattening techniques such as conformal mappings

(Angenent et al., 1999; Gu et al., 2004; Hurdal and Stephenson, 2004) quasi-isometric map-

pings (Timsari and Leahy, 2000) and area preserving mappings (Brechbuhler et al., 1995).

The established spherical mapping is used to parameterize an amygdala surface using two

Euler angles (ϕ, θ). The Euler angles serve as coordinates for representing amygdala surfaces

using the weighted linear combination of spherical harmonics.

Our approach differ from previous spherical harmonic representation techniques (Gerig

et al., 2001; Gu et al., 2004; Kelemen et al., 1999; Shen et al., 2004). The spherical har-

monic representation has been mainly used a data reduction technique for compressing global

shape features into small number of coefficients, and has been used to model various neu-

roanatomical structures such as ventricles (Gerig et al., 2001), hippocampi (Shen et al.,

2004), cortical surfaces (Chung et al., 2007). The main geometric features are encoded in

low degree coefficients while the noise will be in high degree spherical harmonics (Gu et al.,

2004). Although the truncation of the series expansion can be viewed as a form of smoothing,

there is no direct equivalence to the full width at half maximum (FWHM) usually associ-

ated with kernel smoothing. So it is difficult to relate the amount of smoothing associated

the traditional spherical harmonic representation. Further the traditional series expansion

suffers from the Gibbs phenomenon (ringing artifacts) (Chung et al., 2007; Gelb, 1997) that

usually happens in trying to represent rapidly changing or discontinuous data with smooth

periodic functions. To address theses issues, we have weighted the coefficients of the expan-

sion exponentially such that the weights are related to heat kernel. The weighting has the

effect of actually performing heat kernel smoothing (Chung et al., 2005). Hence, the amount

of smoothing in the representation can be defined using the FWHM of the heat kernel so we

have intuitive sense of how much smoothing we are performing before hand.

Once we obtain the weighted spherical harmonic representation of amygdalae, various

multivariate tests were performed to detect the group difference between 22 autistic and 24

control subjects via the mulivariate linear modeling framework using the SurfStat package

(galton.uchicago.edu/∼worsley). The SurfStat package offers a unified statistical anal-

ysis platform for various surface mesh data structures. The novelty of SurfStat package is
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that there is no need to specify design matrices that tend to baffle researchers not familiar

with contrasts and design matrices. We will show various line by line codes that have been

used for this study for illustration.

In summary, the methodological contributions of the paper are the introduction of a

new unified computational framework for amygdala shape analysis and its MATLAB tool

AmygSurf, and the introduction of a new multivariate linear modeling package SurfStat.

2. Image and Data Acquisition

High resolution T1-weighted magnetic resonance images (MRI) were acquired with a GE

SIGNA 3-Tesla scanner with a quadrature head coil with 240 × 240 mm field of view and

124 axial sections. Details on image acquisition parameters are given in Dalton et al. (2005)

and Nacewicz et al. (2006). T2-weighted images were used to smooth out inhomogeneities

in the inversion recovery-prepared images using FSL (www.fmrib.ox.ac.uk/fsl). Total 22

autistic and 24 normal control MRI were acquired. Subjects were all males aged between

8 and 25 years. The Autism Diagnostic Interview-Revised (Lord et al., 1994) was used for

diagnoses by trained researchers K.M. Dalton and B.M. Nacewicz (Dalton et al., 2005).

MRIs were first reoriented to the pathological plane for optimal comparison with anatomi-

cal atlases (Convit et al., 1999). Image contrast was matched by alignment of white and gray

matter peaks on intensity histograms. Manual segmentation was done by a trained expert

B.M. Nacewicz who has been blind to the diagnoses (Nacewicz et al., 2006). The manual

segmentation also involves refinement through plane-by-palne comparison with ex vivo atlas

sections (Mai et al., 1997). The reliability of the manual segmentation protocol was vali-

dated by two raters on 10 amygdale resulting in interclass correlation of 0.95 and the spatial

reliability (intersection over union) average of 0.84. The total brain volume was also com-

puted using an automated threshold-based connected voxel search method, and manually

edited afterwards to ensure proper removal of skull, eye regions, brainstem and cerebellum.

Figure 1 shows the manual segmentation of in three different cross sections. The amygdala

(AMY) was traced in detail using various adjacent structures such as anterior commissure

(AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic radiations (OR),

optic tract (OT), temporal lobe white matter (TLWM) and tentorial notch (TN).

A subset of subjects (10 controls and 12 autistic) went through a face emotion recogni-

tion task consisting of showing 40 standardized pictures of posed facial expressions (8 each
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Figure 1. Amygdala manual segmentation at (a) axial (b) coronal and (c) midsagittal
sections. The amygdala (AMY) was segmented using adjacent structures such as anterior
commissure (AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic radi-
ations (OR), optic tract (OT), temporal lobe white matter (TLWM) and tentorial notch
(TN).

of happy, angry and sad, and 16 neutral) (Dalton et al., 2005). Subjects were required to

press a button distinguishing neutral from emotional faces. The faces were black and white

pictures taken from the Karolinska Directed Emotional Faces set (Lundqvist et al., 1998).

The faces were presented using E-Prime software (www.pstnet.com) allowing for the mea-

surement of response time for each trial. iView system with a remote eye-tracking device

(SensoMotoric Instruments, www.smivision.com) was used at the same time to measure

gaze fixation duration on eyes and faces during the task. The system records eye movements

as the gaze position of the pupil over a certain length of time along with the amount of

time spent on any given fixation point. It has been hypothesized that subjects with autism

should exhibit diminished eye fixation duration relative to face fixation duration. If there is

no confusion, we will simply refer gaze fixation as the ratio of durations fixed on eyes over

faces. Note that this is a unitless measure. Our study enables us to show that abnormal

gaze fixation duration is correlated with amygdala shape in spatially localized regions.

3. Amygdala Surface Parameterization

Once the amygdala binary segmentation Ma is obtained, the marching cubes algorithm

(Sethian, 2002) was applied to obtain a triangle surface mesh ∂Ma. The weighted spherical

harmonic representation requires a smooth mapping from the surface mesh to a unit sphere

S2 to establish a coordinate system. We have developed a new surface flattening algorithm

based on heat propagation.

We start with putting put a larger sphere Ms that encloses the amygala Ma (Figure 2).
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The amygdala is assigned the value 1 while the enclosing sphere is assigned the value -1, i.e.

f(Ma, σ) = 1 and f(Ms, σ) = −1 (1)

for all σ ∈ [0,∞). The parameter σ is the diffusion time. The amygdala and the sphere

serve as a heat source and a heat sink respectively. Then we solve isotropic diffusion

∂f

∂σ
= ∆f (2)

with the given boundary condition (1). ∆ is the 3D Laplacian. After sufficiently enough

time, the solution reaches the heat equilibrium state where the additional diffusion does not

make any change in heat distribution. The heat equilibrium state is also obtained by letting
∂f
∂σ

= 0 and solving for the Laplace equation

∆f = 0

with the same boundary condition. This will results in the equilibrium state denoted by

f(x, σ = ∞). Once we obtained the equilibrium state, we trace the path from the heat

source to the heat sink for every mesh vertices on the isosurface of the amygdala using the

gradient of the heat equilibrium ∇f(x,∞). Similar formulation called the Laplace equation

method has been used in estimating cortical thickness bounded by outer and inner cortical

surfaces by establishing correspondence between two surfaces by tracing the gradient of the

equilibrium state (Jones et al., 2006 ; Lerch and Evans, 2005). However, our approach is the

first use of the same idea to surface flattening.

The heat gradients form vector fields originating at the heat source and ending at the

heat sink (Figure 2). The integral curve of the gradient field at a mesh vertex p ∈ ∂Ma

establishes a smooth mapping from the mesh vertex to the sphere. The integral curve τ is

obtained by solving a system of differential equations

dτ

dt
(t) = ∇f(τ(t),∞)

with τ(t = 0) = p. The integral curve approach is a widely used formulation in tracking

white matter fibers using diffusion tensors (Basser et al., 2000; Lazar and Alexander, 2003).

These methods rely on discretizing the differential equations using the Runge-Kutta method

; however, the such computation intensive approach is not needed here. Instead of directly
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computing the gradient field ∇f(x,∞), we computed the contours of the equilibrium state

corresponding to the level set f(x,∞) = c for varying c between -1 and 1. The integral

curve is then obtained by finding the shortest path from one contour to the next contour

and connecting them together in a piecewise fashion. This is done in an iterative fashion as

shown in Figure 2, where five contours corresponding to the values 0.6, 0.2, -0.2, -0.6, -1.0

are used to flatten the amygdala surface. Once we obtained the spherical mapping, we can

then project the Euler angles (θ, ϕ) onto the amygdala surface and the Euler angles serve as

the underlying parameterization for the weighted spherical harmonic representation.

4. Weighted Spherical Harmonic Representation

Reduction of Gibbs Phenomenon

The proposed weighted spherical harmonic representation fixes the Gibbs phenomenon

(ringing effects) associated with the traditional Fourier descriptors and spherical harmonic

representation (Brechbuhler et al., 1995; Gerig et al., 2001; Gu et al., 2004; Kelemen et al.,

1999; Shen et al., 2004) by weighting the series expansion with exponential weights. The ex-

ponential weights make the representation converges faster and reduces the amount of ringing

artifacts. Gibbs phenomenon (ringing artifacts) often arises in Fourier series expansion of

discrete data. It is named after American physicist Josiah Willard Gibbs. In representing a

piecewise continuously differentiable data using the Fourier series, the overshoot of the series

happens at a jump discontinuity. The overshoot does not decease as the number of terms

increases in the series expansion, and it converges to a finite limit called the Gibbs constant

(Foster and Richard, 1991; Gelb, 1997). If surface coordinates are abruptly changing or

their derivatives are discontinuous, the Gibbs phenomenon will severely distort the surface

shape as shown in Figure 3, where a cube is reconstructed with various degree spherical har-

monic representation but showing more ringing artifacts compared to the proposed weighted

version.

The mesh coordinates for the amygdala surface ∂Ma is parameterized by the Euler angles

Ω = (θ, ϕ) ∈ [0, π] ⊗ [0, 2π) as

p(θ, ϕ) = (p1(θ, ϕ), p2(θ, ϕ), p2(θ, ϕ)).
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Figure 2. (a) The heat source (amygdala) is assigned value 1 while the heat sink is assigned
the value -1. The diffusion equation is solved with these boundary condition. (b) After a
sufficient number of diffusion, the equilibrium state f(x,∞) is reached. (c) The gradient
field ∇f(x,∞) shows the direction of heat propagation from the source to the sink. The
integral curve of the gradient field is easily computed by connecting one level set to the
next level sets of f(x,∞). (d) Amygala surface flattening is done by tracing the integral
curve at each mesh vertex. The numbers c = 1.0, 0.6, · · · ,−1.0 corresponds to the level set
f(x,∞) = c. For amygdale, 5 to 10 contours are sufficient for flattening. (e) Amygdala
surface parameterization using the Euler angles (θ, ϕ). The point θ = 0 corresponds to the
north pole of a unit sphere.
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The weighted spherical harmonic representation is given by

p(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(θ, ϕ),

where

flm =

∫ π

θ=0

∫ 2π

ϕ=0

p(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ

are the spherical harmonic coefficient vectors and Ylm are spherical harmonics of degree l

and order m defined as

Ylm =






clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
P

|m|
l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and P m

l is the associated Legendre polynomial of order m (Courant

and Hilbert, 1953). The associated Legendre polynomial is given by

P m
l (x) =

(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l, x ∈ [−1, 1].

The first few terms of the spherical harmonics are

Y00 =
1√
4π

, Y1,−1 =

√
3

4π
sin θ sin ϕ,

Y1,0 =

√
3

4π
cos θ, Y1,1 =

√
3

4π
sin θ cos ϕ

and they are displayed in Figure 4. The coefficients flm are estimated in the least squares

fashion (Chung et al., 2007; Gerig et al., 2001; Shen et al., 2004).

Connection to Heat Kernel Smoothing

One important property of the weighted spherical harmonic representation is that it is

related to heat kernel smoothing, which is the differential geometric generalization of the

traditional Gaussian kernel smoothing (Chung et al., 2005). On a unit sphere, the heat
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Figure 3. The first row shows the severe Gibbs phenomenon in the spherical har-
monic representation of a cube for various degrees k = 18, 30, 42, 78. The second row is
the weighted spherical harmonic representation at the same degree but with bandwidth
σ = 0, 01, 0.001, 0, 001, 0.0001 respectively. In almost all degrees, the traditional spherical
harmonic representation shows more prominent ringing artifacts compared to the proposed
weighted version. The ringing artifacts is particularly severe for degree k = 42, and it also
visually demonstrates the increased degree does not necessarily increase the accuracy of the
spherical harmonic representation, possibly due to the discretization error.
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kernel is defined as

Kσ(Ω, Ω′) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(Ω)Ylm(Ω′). (3)

The heat kernel is symmetric and positive definite, and a probability distribution so that

∫

S2

Kσ(Ω, Ω′) dµ(Ω) = 1.

The bandwidth σ controls the dispersion of the kernel and as σ → 0, the kernel becomes the

Dirac-delta function, i.e.

lim
σ→0

Kσ(Ω, Ω′) = δ(Ω − Ω′).

However, this is where the similarity with the traditional Gaussian kernel ends. Since the

heat kernel flattens out as σ → ∞ while it has to integrate to unity, we must have

lim
σ→∞

Kσ(Ω, Ω′) =
1

4π
.

We define heat kernel smoothing of coordinates p as the convolution

Kσ ∗ p(Ω) =

∫

S2

Kσ(Ω, Ω′)p(Ω′) dµ(Ω′). (4)

By substituting (3) into equation (4) and rearranging the integral with the summation,

we can show that heat kernel smoothing is identical to the weighted spherical harmonic

representation:

Kσ ∗ f(Ω) =

∞∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(Ω), (5)

Hence, the weighted Fourier representation should inherit all the properties of kernel-based

smoothing.

Surface Normalization and Resampling

Once amgydala surfaces are represented with weighted spherical harmonics, we need to

establish surface correspondence across different surfaces for later statistical analysis. How-

ever, it is computationally difficult to establish the correspondence across different amygdala
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Figure 4. Spherical harmonic basis for various degree and order. Only nonnegative orders
are shown. For the l-th degree, there are 2l + 1 different orders. The spherical harmonic
representation construct a function defined on a sphere as a linear combination of this basis.
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meshes since any two triangle meshes will have different topology and connectivity. For in-

stance, the first amygdala surface in Figure 5-(a) has 1270 vertices and 2536 faces while the

second surface has 1302 vertices and 2600 faces. The proposed weighted spherical harmonic

representation can establish correspondence between topologically different meshes. The

correspondence is established by matching the coefficient of spherical harmonics at the same

degree and order. This correspondence is optimal in the least squares sense (Chung et al.,

2007).

Denote the surface coordinates corresponding to the i-th subject as pi. Then we have the

weighted spherical harmonic representation

pi(Ω) =
k∑

l=0

l∑

m=−l

e−l(l+1)σf i
lmYlm(Ω), (6)

where f i
lm are the spherical harmonic coefficient vector. There are total (k+1)2×3 coefficients

to be estimated in the least squares fashion. Since the representation is continuously defined

in any Ω ∈ [0, π]⊗[0, 2π), it is possible to resample the amygdala meshes using a topologically

different spherical mesh. We have uniformly sampled the unit sphere and constructed a

spherical mesh with 2563 vertices and 5120 faces. This spherical mesh serves as a common

mesh topology for all amygdala surfaces. After the resampling, all amygdala surface will

have the identical mesh topology as the spherical mesh, and the identical vertex indices will

correspond across different surfaces (Figure 5-(c)). The idea of uniform mesh topology has

been previously used in the basis of MNI cortical mesh normalization (Chung et al., 2005;

MacDonald et al., 2000).

The proposed idea of surface normalization and resampling can be used to construct the

average amygdala surface. We assume there are total n surfaces. The average surface p is

given as

p =
1

n

n∑

i=1

k∑

l=0

l∑

m=−l

e−l(l+1)σf i
lmYlm. (7)

The average left and right amygdala templates are constructed by averaging the spherical

harmonic coefficients of all 24 control subjects. The template surfaces serve as the reference

coordinates for projecting the subsequent statistical parametric maps (Figure 7-8).
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Figure 5. (a) Five representative left amygdala surfaces. (b) 42 degree weighted spherical
harmonic representation. Surfaces have different mesh topology. (c) However, meshes can be
resampled in such a way that all meshes have identical topology with exactly 2562 vertices
and 5120 faces. Identically indexed mesh vertices correspond across different surfaces in the
least squares fashion.
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Degree Selection

Since it is impractical to sum the representation all the way up to k → ∞, we need a rule

for truncating the series expansion. Given the bandwidth of heat kernel, we automatically

determine if increasing degree k has any effect on the goodness of the fit of the representation.

In all spherical harmolnic literature (Gerig et al., 2004; Gerig et al., 2001 ; Gu et al., 2004;

Shen and Chung, 2006; Shen et al., 2004), the truncation degree is simply selected based on

a pre-specified error bound that depends on the size of anatomical structure. Our proposed

statistical framework does not depend on the size of anatomical structures.

Although increasing the degree increases the goodness-of-fit of the representation, it also

increases the number of coefficients to be estimated quadratically. It is necessary to find

the optimal degree where the goodness-of-fit and the number of parameters balance out.

Consider the following k-th degree reconstruction error model:

p(Ωi) =
k−1∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(Ωi) +
k∑

m=−k

e−k(k+1)σfkmYkm(Ωi) + ǫ(Ωi) (8)

at each mesh vertex Ωi with a zero mean Gaussian noise. We test if adding the k-th degree

terms to the k − 1-th degree model is statistically significant by formally testing

H0 : fk,−k = · · · = fk,k = 0.

Let E0 be the sum of squared residual corresponding to the reduced model while E be that

of the full model. Under H0, the test statistic is the F statistic

F =
(E0 − E)/(2k + 1)

E0/(n − (k + 1)2)

which is distributed as the F -distribution with 2k + 1 and n − (k + 1)2 degrees of freedom.

At each degree, we compute the corresponding p-value and stop increasing the degree if it

is smaller than pre-specified significance α = 0.01. For bandwidths σ = 0.01, 0.001, 0.0001,

the approximate optimal degrees are 18, 42 and 78 respectively. In our study, we have used

k = 42 degree representation corresponding to bandwidth σ = 0.001. The bandwidth 0.01

smoothes out too much local details while the bandwidth 0.0001 introduces too much voxel

discretization error into the representation.
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AmygSurf

AmygSurf package (www.stat.wisc.edu/∼mchung/research/amygdala) is developed by

M.K. Chung to perform the weighted spherical harmonic representation from binary amyg-

dala segmentation. Given an amygdala mesh surf, which is, for instance, given as a structure

array of the form

>surf

surf =

vertices: [1270x3 double]

faces: [2536x3 double]

The amygdala flattening algorithm in AmygSurf will generate the corresponding unit sphere

mesh sphere that has identical topology as surf. The weighted spherical harmonic repre-

sentation P with degree k = 42 and the bandwidth σ = 0.001 is computed by running

>[P,coeff]=SPHARMsmooth(surf,sphere,42,0.001);

The detailed step-by-step MATLAB command line instructions are given in the website. The

package also contains few modification of SurfStat for amygdala specific data manipulation

and visualization. Along with SurfStat, AmygSurf is all we need to analyze amygdala surfaces

presented in the result section.

5. Multivariate Linear Models

Multivariate linear models (Anderson, 1984; Taylor and Worsley, 2008; Worsley et al., 2004)

generalize widely used univariate general linear models (Worsley et al., 1996) by incorpo-

rating vector valued response and explanatory variables. The weighted spherical harmonic

representation of amygdala surface coordinates will be taken as the response variable. Con-

sider the following multivariate linear model at each fixed (θ, ϕ)

Pn×3 = Xn×pBp×3 + Zn×rGr×3 + Un×3Σ3×3, (9)

where P = (p1′, p2′, · · · , pn′)′ is the matrix of weighted spherical harmonic representation, X

is the matrix of contrasted explanatory variables, and B is the matrix of unknown coefficients.

Nuisance covariates are in the matrix Z and the corresponding coefficients are in the matrix
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G. The subscripts denote the dimension of matrices. The components of Gaussian random

matrix U are zero mean and unit variance. Σ accounts for the covariance structure of

coordinates. Then we are interested in testing the null hypothesis

H0 : B = 0.

For the reduced model corresponding to B = 0, the least squares estimator of G is given by

Ĝ0 = (Z ′Z)−1Z ′P.

The residual sum of squares of the reduced model is

E0 = (P − ZĜ0)
′(P − ZĜ0)

while that of the full model is

E = (P − XB̂ − ZĜ)′(P − XB̂ − ZĜ).

Note that Ĝ is different from Ĝ0 and estimated directly from the full model. By comparing

how large the residual E is against the residual E0, we can determine the significance of

coefficients B. However, since E and E0 are matrices, we take a function of eigenvalues of

EE−1
0 as a statistic. For instance, Lawley-Hotelling trace is given by the sum of eigenvalues

while Roy’s maximum root R is the largest eigenvalue. In the case there is only one eigenvalue,

all these multivariate test statistics simplify to Hotelling’s T-sqaure statistic. The Hotelling’s

T-square statistic has been widely used in modeling 3D coordinates and deformations in

brain imaging (Cao and Worsley, 1999; Chung et al., 2001; Gaser et al., 1999; Joshi, 1998;

Thompson et al., 1997). The random field theory for Hotelling’s T-square statistic has

been available for a while (Cao and Worsley, 1999). However, the random field theory for

the Roy’s maximum root has not been developed until recently (Taylor and Worsley, 2008;

Worsley et al., 2004). This paper is the first few that utilizes the result originally developed

in Worsley et al. (2004).

The inference for Roy’s maximum root is based on the Roy’s union-intersection principle

(Roy, 1953), which simplifies the multivariate problem to a univariate linear model. Let us
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multiply an arbitrary constant vector ν3×1 on both sides of (9):

Pν = XBν + ZGν + UΣν. (10)

Obviously (10) is a usual univariate linear model with a Gaussian noise. For the univariate

testing on Bν = 0, the inference is based on the F statistic with p and n − p − r degrees of

freedom, denoted as Fν . Then Roy’s maximum root statistic can be defined as R = maxν Fν .

Now it is obvious that the usual random field theory can be applied in correcting for multiple

comparisons. The only trick is to increase the search space, in which we take the supreme

of the F random field, from the amygdala template surface to much higher dimension to

account for maximizing over ν as well.

SurfStat

SurfStat package (galton.uchicago.edu/∼worsley) is developed by K.J. Worsly utiliz-

ing a model formula and avoids the explicit use of design matrices and contrasts, which tend

to be a hinderance to most end users not familiar with such concepts. SurtStat can import

MNI (MacDonald et al., 2000) and FreeSurfer (surfer.nmr.mgh.harvard.edu) based corti-

cal mesh formats. The model formula approach is implemented in many statistics packages

such as Splus (www.insightful.com) R (www.r-project.org) and SAS (www.sas.com).

These statistics packages accept a linear model like

P = Group + Age + Brain

as the direct input for linear modeling avoiding the need to explicitly state the design matrix.

P is a n × 3 matrix of coordinates of weighted spherical harmonic representation, Age is the

age of subjects, Brain is the total brain volume of subject and Group is the categorical group

variable (0=control, 1 = autism). This type of model formula has yet to be implemented in

SPM (www.fil.ion.ucl.ac.uk/spm) or AFNI (afni.nimh.nih.gov) packages.

We show few SurfStat MATLAB command lines to illustrate how the multivariate linear

modeling is done. To test the effect of Group variable on the representation P, we run

>E0 = SurfStatLinMod(P,1);

>E = SurfStatLinMod(P,1+Group,Avg);

>LM = SurfStatF(E,E0);
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Avg is the weighted spherical harmonic representation of the average amygdala surface. The

variable E0 contains the information about the sum of squared residual of the reduced model

P=1 while E contains that of the full model P = 1 + Group. Based on the sum of squared

residuals, LM computes the F-statistics. The F statistic value is stored in LM.t. To display

the F statistic value is on top of the average surface, we use FigureOrigami(Avg,LM.t),

which is the part of the AmygSurf package (Figure 7). To determine the random field based

thresholding corresponding to α = 0.1 level, we run

>resels = SurfStatResels(LM);

>stat_threshold( resels, length(LM.t),1,LM.df,0.1,[],[],[],LM.k)

peak_threshold =

26.9918

resels computes the resels of the random field and peak threshold is the threshold corre-

sponding to 0.1 level. We can construct a more complicated model that includes the brain

size and age variables.

>E0 = SurfStatLinMod(P,Age+Brain);

>E = SurfStatLinMod(P,Age+Brain+Group,Avg);

>LM = SurfStatF(E,E0);

To see if gaze fixation Fixation correlates differently with surface coordinates P between

the groups, we run

>E0=SurfStatLinMod(P,Age+Brai +Group+Fixation);

>E=SurfStatLinMod(P,Age+Brain+Group+Fixation+Group*Fixation,Avg);

>LM=SurfStatF(E,E0);

6. Results

Amygdala Volumetry

We have counted the number of voxels in amygdala segmentation and computed the volume

of both left and right amygdale. The volumes for control subjects (n = 22) are left 1892 ±
173mm3, right 1883 ± 171mm3. The volumes for autistic subjects (n = 24) are left 1858 ±
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Figure 6. Scatter plots of left amygdala volume (vertical axis) vs. (a) right amygdala
volume (b) total brain volume and (c) age showing significant confounding effect of total
brain volume and age on amygdala volume. Any statistical analysis on amygdala volume
and shape needs to account for brain volume and age.

182mm3, right 1862±181mm3. The volume difference between the groups are not statistically

significant based on the two sample t-test (p = 0.52 for left and 0.69 for right). Literature

report somewhat contradicting results (Aylward et al., 1999; Haznedar et al., 2000; Nacewicz

et al., 2006; Pierce et al., 2001; Schumann et al., 2004; Sparks et al., 2002). Previous

amygdala volumetry studies have been inconsistent. Aylward et al. (1999) and Pierce et al.

(2001) reported that significantly smaller amygdala volume in the autistic subjects while

Howard et al. (2000) and Sparks et al. (2002) reported larger volume. Haznedar et al.

(2000) and Nacewicz et al. (2006) found no volume difference. These inconsistency might

be due to the lack of control for brain size and age in statistical analysis (Schumann et al.,

2004). The effect of age and the total brain volume on amygdala volume can be seen in

Figure 6. Therefore, it is necessary to test group difference while accounting for the total

brain volume and age. We did not detect any group difference in amygdala volume for both

left (p = 0.66) and right (p = 0.53) amygdale. The testing was done using SurfStat.

Local Shape Difference

From the amygdala volumetry result, it is still not clear if shape difference might be

still present within amygdala. It is possible to have no significant volume difference while

having shape difference. So we have performed multivariate linear modeling on the weighted

spherical harmonic representation. We have tested the effect of group variable by comparing

the sum of squared residuals of the full (P=1+Group) and the reduced (P=1) models, which
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resulted in the threshold of 26.99, which is far larger than the maximum F statistic value

of 13.55 in Figure 7 (a). So we could not detect any shape difference in the left amygdala.

For the right amygdala, the α = 0.1 level thresholding is 26.64 which is far larger than

the maximum F statistic value of 12.11. So again there is no statistically significant shape

difference in the right amygdala.

Local Shape Difference Accounting for Age and Brain Size

We have tested the effect of Group variable while accounting for age and the total brain

volume by comparing the sum of squared residuals of the full (P=Age+Brain+Group) and

the reduced (P=Age+Brain) models. The maximum F statistics are 14.77 (left) and 12.91

(right) while the threshold corresponding to p = 0.1 is 14.58 (left) and 14.61 (right). Hence,

we still did not detect group difference in the right amygdala (Figure 7-c) while there is

a localize region of group difference in the left amygdala (Figure 7-d). By computing the

average surface coordinate difference (autism - control), we have determined the direction of

shape difference. See the vector fields of the enlarged area in Figure . The outward direction

implies that the autistic subjects has larger amygdale in the region.

Brain and Behavior Association

Among total 46 subjects, 10 control and 12 autistic subjects went through face emotion

recognition task and gaze fixation Fixation was observed. The gaze fixation are 0.30± 0.17

(control) and 0.18±0.16 (autism), which differ statistically (p = 0.11). Nacewicz et al. (2006)

showed the gaze fixation duration correlate differently with amygdala volume between the

two groups; however, it is not clear if the association difference is local or diffuse over all

amygdala. So we have tested the significance of the interaction between Group and Fixation

in the multivariate linear model. We have obtained regions of significant interaction in the

both left (p < 0.05) and right (p < 0.02) amygdale (Figure 8). The largest cluster in the

right amygdala shows highly significant interaction (maxF = 65.68, p = 0.003). The color

bar in Figure 8-(b) has been thresholded at 40 for better visualization. The scatter plots of

x, y and z coordinates vs. Fixation are shown at the two most significant clusters in each

amygdala. The first row is for autism while the second row is for control subjects. The red

lines are linear regression lines. The significance of interaction implies difference in regression

slopes between groups in a multivariate fashion. Note that there are three different slopes

corresponding to x, y and z coordinates.
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Figure 7. F statistic map of shape difference displayed on the average left amygdala (a)
and right amygdala (b). We did not detect any significant difference (p < 0.01). The left
amygdala (a) is displayed in such a way that, if we fold along the dotted lines and connect
the identically numbered lines, we obtain the 3D view of the amygdala. The top middle
rectangle corresponds to the axial view obtained by observing the amygdala from the top of
the brain. (c) and (d) shows the F statistic map of shape difference accounting for age and
the total brain volume. We have detected regions of shape difference in the left amygdala (red
regions) (p < 0.1). The arrows in the enlarged area show the direction of shape difference
(autism - control) indicating autistic subjects has larger amygdala in that area.
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Figure 8. F statistic map of interaction between group and gaze fixation. Red regions
show significant interaction. For better visualization, the color bar for the right amygdala
(b) has been thresholded at 40 since the maximum F statistics at the largest cluster is 65.68
(p = 0.003). Three plots in a row correspond to the scatter plots of x, y and z-coordinates
vs. gaze fixation. The first (second) row is for autistic (control) subjects. The red lines are
linear regression lines. The significance of interaction implies difference in regression slopes
between groups.
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7. Conclusions

The paper proposed a unified multivariate linear modeling approach for amygdala shape

analysis. The coordinates of amygdala surfaces are smoothed and normalized using the

novel weighted spherical harmonic representation. The main methodological contributions

are the development of a new amygdala surface flattening technique, the weighted spherical

harmonic representation, and AmygSurf and SurfStat packages.

Surface flattening is based on tracing the streamline of the gradient of heat equilibrium.

The proposed flattening technique is simple enough to be applied to various applications.

Amygdala surfaces are flattened to a sphere to obtain the Euler angle based surface coor-

dinate system. Then the coordinates of amygdala surface meshes are mapped onto a unit

sphere to establish the spherical harmonic representation. The representation is used to

smooth and to normalize a collection of surfaces. Since the representation is related to heat

kernel smoothing, it reduces the Gibbs phenomenon associated with the previous spheri-

cal harmonic representation. We have made the whole processing processing and modeling

MATLAB pipeline AmygSurf freely available through a website.

Since surface data is inherently multivariate data, traditionally Hotelling’s T-square ap-

proach has been used on surface coordinates in a group comparison. The proposed multi-

variate linear model generalizes the Hotelling’s T-square approach so that we can construct

more complicated statistical models. The model formula based multivariate linear modeling

tool SurfStat is also available through a website. We have applied the proposed methods to

22 autistic subjects to test if there is localized shape difference within an amygdala. We were

able to localize regions, mainly in the right amygdala, that shows differential association of

gaze fixation with anatomy between the groups.
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